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As is well known, both Weyl and Weitzenböck spacetimes were initially used as attempts to geometrize

the electromagnetic field. In this paper, we prove that this field can also be regarded as a geometrical

quantity in an extended version of the Weitzenböck spacetime. The new geometry encompasses features

of both Weyl and Weitzenböck spacetimes. In addition, we obtain Einstein’s field equations coupled to the

Maxwell energy-momentum tensor from a purely geometrical action and, to exemplify the advantage of

using this new geometry when dealing with conformal invariance, we construct a model that is equivalent

to a known conformal-invariant teleparallel model.
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I. INTRODUCTION

In order to geometrize electromagnetism, many famous
physicists have spent a great amount of their time general-
izing the geometrical framework upon which general
relativity (GR) is founded. Among them are names such
as Weyl, Kaluza, and Einstein. While Kaluza generalized
this framework by adding an extra dimension [1], Weyl and
Einstein took completely different approaches. In Weyl’s
approach, a nonmetricity tensor known as the Weyl 1-form
was added to the spacetime manifold [2]. Einstein, in turn,
considered a kind of geometry (Weitzenböck spacetime)
where gravity is described by torsion, and not by curvature
as in GR [3]. However, it seems that all these attempts
did not succeed in providing a satisfactory geometrical
representation of the electromagnetic field [4,5].

Nowadays, Weyl geometry and Weitzenböck spacetime
are still important geometries because of their richness.
For instance, the theory formulated by Einstein in the
framework of Weitzenböck spacetime, which is known as
teleparallelism, is used for solving the problem of the
localization of the gravitational energy [6,7]. With respect
to Weyl geometry, we might say that one of its most
important features is that it provides a natural setting for
conformal invariance [8].

The main goal of this paper is to show that, by extending
teleparallelism theory to Weyl geometry, one is able to
construct a geometrical action that is equivalent to the
Einstein-Hilbert one plus the electromagnetic action in
curved spacetime, which yields Einstein’s field equations
with the Maxwell energy-momentum tensor. We will call
this kind of theory ‘‘Weyl Teleparallel theory’’ (WTT). It is
also shown that the WTTs allow the introduction of con-
formal invariance in a much easier way than teleparallel
theories do. In doing so, we show an equivalence between

the conformally invariant teleparallel theory of Ref. [9] and
a particular WTT.
This paper is organized as follows. In Sec. II, we set the

notation and conventions used in this paper, as well as the
basic mathematical facts of Weyl geometry. We proceed to
Sec. III to briefly introduce teleparallelism theory. All the
results are left to Sec. IV, where the WTT is presented.

II. NOTATION AND CONVENTIONS

Throughout this paper the holonomic and anholonomic
indices are denoted by Greek and Latin letters, respec-
tively. The tetrad fields are represented by eA (frame)
and eA (coframe), whose components in the coordinate
basis are denoted by eA

� and eA�, respectively; the

coordinate basis is denoted by @�. The components of

the metric tensor in the tetrad basis are �AB ¼
diagðþ1;�1;�1;�1Þ, while the ones in the coordinate
basis are g��. We use square brackets around indices to

represent the antisymmetric part of a tensor.
Let M be a manifold endowed with a metric g and

a linear connection r. In this paper, the definition of
torsion, curvature, and the Weyl nonmetricity condition
are given by

TðV;UÞ � rVU�rUV � ½V;U�; (1)

RðV;UÞW � rVrUW �rUrVW �r½V;U�W; (2)

�ðVÞg ¼ rVg; (3)

where � is the Weyl 1-form, and V, U, W are vectors
belonging to the tangent bundle of M. Unless stated other-
wise, the components of these tensors are defined as
TA

BC � heA; TðeB; eCÞi and RA
DBC � heA; RðeB; eCÞeDi.

To keep Eq. (3) invariant under the conformal trans-
formation ~g ¼ e2�g, where � is a scalar function, one
demands that
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~� ¼ �þ 2d�; (4)

where d is the exterior derivative operator.

III. TELEPARALLEL THEORIES

A. The geometrical setting

Many different geometries can be specified by setting
one or more quantities in the definitions (1)–(3) equal to
zero. For instance, if we set T ¼ � ¼ 0, we have the
Riemannian geometry. In turn, if we set R ¼ � ¼ 0, we
obtain the Weitzenböck spacetime. The latter corresponds
to the geometry in which the teleparallel theories are
formulated.

In teleparallel theories, one assumes the existence of a
particular tetrad eA that satisfies

reBeA ¼ 0: (5)

This is equivalent to saying that there exists a basis in
which the affine connection coefficients vanish. Of course,
in a Riemannian manifold, this would imply that eA is a
holonomic basis [see Eq. (1)]. However, this need not
be the case for a more general manifold. In the case of
teleparallelism, one removes this restriction by assuming a
nonvanishing torsion tensor.

The substitution of Eq. (5) into Eqs. (1)–(3) yields

TðeA; eBÞ ¼ �½eA; eB�; (6)

RðV;UÞW ¼ 0; (7)

� ¼ 0: (8)

In general, teleparallel theories are based upon the
following general Lagrangian density:

L T ¼ eða1QABCQBAC þ a2Q
AQA þ a3Q

ABCQABCÞ; (9)

where

QA
BC � heA; TðeB; eCÞi ¼ 2eB

�eC
�eA½�;�� (10)

are the components of the Weitzenböck connection in
the preferred frame eA, the comma stands for the
partial derivative, and we have defined QA � QB

BA and
e � det ðeA�Þ.

For a1 ¼ �1=2, a2 ¼ 1, and a3 ¼ �1=4, we have the
teleparallel equivalent of general relativity [7]. As the
name suggests, the teleparallel equivalent of general
relativity is formally equivalent to GR.

B. Teleparallel theories with conformal invariance

In Ref. [9], the authors consider a teleparallel model that
is invariant under the transformation

~g ¼ e2�g; ~eA ¼ e�eA; ~eA ¼ e��eA; (11)

where the tilde indicates a new basis and � is a function of
the coordinates; it is easy to verify that ~e ¼ e4�e.
The Lagrangian density of this model is given by

LT ¼ e

�
�2

�
� 1

4
QABCQABC � 1

2
QABCQBAC þ 1

3
QAQA

�

þ 6g���j��j�
�
; (12)

where � is a scalar field that is assumed to transform

as ~� ¼ e��� under Eq. (11). In addition, it is also defined
a gauge-covariant derivative whose components are
�j� � ð@� �Q�=3Þ�.

The Lagrangian density (12) is invariant under Eq. (11).
In fact, any term like

L ¼ a1Q
ABCQBAC þ a2Q

AQA þ a3Q
ABCQABC (13)

with

a1 þ 3a2 þ 2a3 ¼ 0 (14)

will transform as ~L ¼ e�2�L, which can be used as a
starting point to construct many different conformal-
invariant theories. As we shall see, in the WTT we can
start from terms that are simpler than Eq. (13).

IV. WEYLTELEPARALLEL THEORIES

Let M be a manifold endowed with a metric g, a
connection r, and a 1-form �. Now suppose there exists
a privileged frame feAg that satisfies

reBeA ¼ � 1

2
�BeA: (15)

It is clear that any other frame related to feAg by a constant
Lorentz transformation will also satisfy this condition.
By using Eq. (15) in the definitions (1)–(3), one obtains

TA
BC ¼ 2eB

�eC
�eA½�;�� þ �½Cj�A

jB�; (16)

RA
DBC ¼ eB

�eC
��½�;���A

D; (17)

while Eq. (3) is satisfied identically. Note that the curvature
vanishes for an integrable Weyl geometry.
It is straightforward to show that Eqs. (2) and (17)

lead to

eR
c ¼: e

�
� 1

4
TABCTABC � 1

2
TABCTBAC þ TATA

þ 3

2
�A�

A � 2�AT
A

�
; (18)
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where R
c
is the scalar curvature in terms of the Christoffel

symbols, all surface terms have been neglected, and
TA � TB

BA.

A. The electromagnetic field as a geometric entity

Let us consider the following action:

S ¼
Z

d4xe

�
4RABRAB � 1

4
TABCTABC � 1

2
TABCTBAC

þ TATA þ 3

2
�A�

A � 2�AT
A

�
; (19)

where we are using relativistic units. In order to obtain the
field equations, one may vary S with respect to the tetrad
and the Weyl field independently or, equivalently, take the
metric and the Weyl field as independent variables.

By identifying RAB with FAB=2, where FAB is the
electromagnetic tensor, and using the identity (18) in
the action (19), one arrives at the Einstein-Hilbert action
minimally coupled with the electromagnetic field
(see, e.g., pp. 153 and 163 of Ref. [10]). Therefore,
Einstein’s field equations with the Maxwell energy-
momentum tensor follow naturally. However, it should
be noted here that we have a clear difference between the
two approaches: in the case of WTT we can readily see
the geometric nature of the electromagnetic field as it can
be naturally identified with the Weyl field. It is also
important to note that the derivation by purely geomet-
rical means of the Einstein field equations with the
Maxwell energy-momentum tensor as source is not a
result exclusive to this model (see, e.g., Refs. [11–13]).

B. Equation of motion

Let us now set � ¼ 0 (no electromagnetic field). If we
couple a matter field with Eq. (19) and vary the action with
respect to the metric, we will clearly obtain Einstein’s field
equations,

G
c �� ¼ 8	T��; (20)

where G
c ��

is the Einstein tensor written in terms of the
Christoffel symbols, and T�� is the energy-momentum

tensor. Since G
c ��

:� ¼ 0, where the colon represents the

Riemannian covariant derivative, we have T��
:� ¼ 0.

It can be verified that this last result leads to the geodesic
equation with the Christoffel symbols, as in GR (see, e.g.,
p. 152 of Ref. [14]).

C. Conformal invariance

To introduce the conformal invariance in the teleparallel
model (12), one needed to postulate a scalar field which is
not present in the original geometry (Riemann-Cartan) and
add some extra properties to it. It is possible to get rid of
this scalar field by taking terms like eLL0, where L0 is

written in the same fashion as L [see Eqs. (13) and (14)].
However, the resultant theory would probably be too com-
plicated and we would still be restricted by the conditions
(14). Here, we show that a natural conformal invariance
can be achieved in the case of WTT with an integrable
Weyl field playing the role of �.
For an integrable Weyl field we have � ¼ ’;�dx

�,

where ’ is a scalar function. In this case, the transforma-
tion (11) leads Eq. (4) to

~’ ¼ ’þ 2�: (21)

From Eq. (16), it is straightforward to verify that

~T A
BC ¼ e��TA

BC; (22)

~T A ¼ e��TA: (23)

It is interesting to note that, since �AB does not change, we
can raise and lower tetrad indices without changing these
transformations.
From the Lagrangian density

L I ¼ ee�’ða1TABCTBAC þ a2T
ATA þ a3T

ABCTABCÞ;
(24)

it is easy to build up many conformal-invariant theories
regardless of the values of ai (i ¼ 1, 2, 3). When one
imposes the condition (14), the terms with ’ in brackets
in Eq. (24) cancel out.

D. The WTT equivalent of Eq. (12)

By identifying e�’ with �2 and using the relation
TABC ¼ QABC þ �½C�B�A, one can easily check that the

Lagrangian density (12) is equivalent to

L ¼ ee�’

�
� 1

4
TABCTABC � 1

2
TABCTBAC þ TATA

�
:

(25)

As one can see, the Lagrangian density (25) looks more
natural than Eq. (12) because it contains only geometrical
quantities.

V. FINAL REMARKS

In principle, the WTT presented in Sec. IVA may suffer
from the same problem as Weyl theory, namely, ‘‘the
second clock effect’’. Since this effect was predicted by
Einstein from a geometrical point of view, Weyl argued
that it may not happen because the behavior of real clocks
should be deduced only from a dynamical theory of matter
[15]. If Weyl’s argument is right, then the behavior of
clocks in this WTT may be the same as that of GR, since
the field equations and the equation of motion are already
the same.
It is worth mentioning that, unlike Weyl, we have

not demanded that the theory be invariant by Weyl
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transformations. This demand led Weyl to a complicated
theory that is not formally equivalent to GR. In this case,
the model (19) may become more suitable for the geo-
metrization of electromagnetism.

Since the equivalence shown in Sec. IVD holds with
an integrable Weyl geometry, the second clock effect is

not present. Therefore, this equivalence may hold not
only in terms of the field equations and the equation of
motion, but also in terms of measurements.
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