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A fundamental ingredient in wormhole physics is the flaring-out condition at the throat which, in

classical general relativity, entails the violation of the null energy condition. In this work, we present the

most general conditions in the context of modified gravity, in which the matter threading the wormhole

throat satisfies all of the energy conditions, and it is the higher order curvature terms, which may be

interpreted as a gravitational fluid, that support these nonstandard wormhole geometries. Thus, we

explicitly show that wormhole geometries can be theoretically constructed without the presence of exotic

matter but are sustained in the context of modified gravity.
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I. INTRODUCTION

A fundamental property in classical general relativistic
wormhole geometries is that these spacetimes are sup-
ported by exotic matter, which involves a stress-energy
tensor T�� that violates the null energy condition (NEC),

i.e., T��k
�k� < 0, where k� is any null vector [1]. More

specifically, the NEC imposes that T��k
�k� � 0. Indeed,

using the theory of embedded hypersurfaces to place
restrictions on the Riemann tensor and stress-energy tensor
at the throat of the wormhole, Hochberg and Visser
demonstrated that the wormhole throat generically violates
the NEC and provided several theorems that generalize
the Morris-Thorne results on exotic matter [2,3]. In this
context, wormhole geometries violate all the pointwise
energy conditions and the averaged energy conditions
[4]. The latter permit localized violations of the energy
conditions, as long as on average they hold when integrated
along timelike or null geodesics. However, the averaged
energy conditions involve a line integral, and therefore
do not provide useful information regarding the ‘‘total
amount’’ of energy-condition violating matter. This fact
prompted the proposal of a ‘‘volume integral quantifier,’’
which provides information about the ‘‘total amount’’ of
energy-condition violating matter in the spacetime [5]. The
amount of energy-condition violations is then the extent
that these integrals become negative.

Indeed, classical forms of matter are believed to obey
the energy conditions, although they are violated by cer-
tain quantum fields such as the Casimir effect and
Hawking evaporation [1]. Thus, due to its problematic
nature, it is useful to minimize the usage of exotic matter,

and a wide variety of wormhole solutions have been
analyzed in the literature to this effect, ranging from
thin-shell wormholes [6], to rotating [7] and dynamic
wormhole geometries [3,8], and in modified theories of
gravity [9–12]. In the latter context, more specifically in
fðRÞ gravity, it was shown that in principle the matter
threading the wormholes can be imposed to obey all the
energy conditions, and it is the higher order curvature
terms that are responsible for supporting the geometries
[9]. In braneworlds, the local high-energy bulk effects and
the nonlocal corrections from the Weyl curvature in the
bulk may induce a NEC violating signature on the brane,
while the stress-energy tensor confined on the brane,
threading the wormhole, is imposed to satisfy the energy
conditions [11]. In the curvature-matter coupled general-
ization of fðRÞ gravity, exact solutions were found where
the nonminimal coupling minimizes the violation of the
NEC of matter at the throat [12].
It is the purpose of the present paper to generalize the

above analysis presenting the most general conditions
coming from various modified theories of gravity that are
imposed in order to support wormhole geometries. We
note that in this context, in principle, one may impose
that the matter stress-energy tensor satisfies the NEC and
the respective violations arise from the higher order curva-
ture terms.

II. WORMHOLE GEOMETRIES AND
THE ENERGY CONDITIONS

Consider the following wormhole line element in curva-
ture coordinates [1]:

ds2 ¼ �e2�ðrÞdt2 þ dr2

1� bðrÞ=rþ r2ðd�2 þ sin2 �d�2Þ:
(1)
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The redshift function �ðrÞ must be finite everywhere to
avoid the presence of event horizons. In order to have a
wormhole geometry, the shape function bðrÞmust obey the
flaring-out condition of the throat r0, which is translated by
ðb� b0rÞ=b2 > 0 [1]. At the throat, we have bðr0Þ ¼ r0,
and the condition b0ðr0Þ< 1 is imposed. Note that the
flaring-out condition has a purely geometric nature.
However, in classical general relativity, through the
Einstein field equation, one can deduce that the matter
threading the wormhole throat violates the NEC.

Generally, the NEC arises when one refers back to the
Raychaudhuri equation given by

d�

d�
¼ � 1

2
�2 � ����

�� þ!��!
�� � R��k

�k�; (2)

where R�� is the Ricci tensor, and �, ���, and !�� are,

respectively, the expansion, shear, and rotation associated
to the congruence defined by the null vector field k�.
The Raychaudhuri equation is also a purely geometric
statement, and as such it makes no reference to any gravi-
tational field equations. Now, the shear is a ‘‘spatial’’
tensor with �2 � ����

�� � 0 and !�� � 0 for any

hypersurface orthogonal congruences, so that the condition
for attractive gravity reduces to R��k

�k� � 0. The posi-

tivity of this latter quantity ensures that geodesic con-
gruences focus within a finite value of the parameter
labeling points on the geodesics. In general relativity,
contracting both sides of the Einstein field equation
G�� � R�� � 1

2Rg�� ¼ �2T�� with any null vector k�,

one can write the above condition in terms of the stress-
energy tensor given by T��k

�k� � 0.

In modified theories of gravity, the gravitational field
equations can be rewritten as an effective Einstein equation
given by G�� ¼ �2Teff

��, where Teff
�� is an effective stress-

energy tensor containing the matter stress-energy tensor
T�� and the curvature quantities arising from the specific

modified theory of gravity considered. Now, the positivity
condition R��k

�k� � 0 in the Raychaudhuri equation pro-

vides the generalized NEC, Teff
��k

�k� � 0, through the

modified gravitational field equation.
By definition (see Ref. [2]) the wormhole throat has

to defocus a null geodesic congruence. Therefore, the
necessary condition to have a wormhole geometry is the
violation of the generalized NEC, i.e., Teff

��k
�k� < 0. In

classical general relativity this simply reduces to the vio-
lation of the usual NEC, i.e., T��k

�k� < 0. However, in

modified theories of gravity, one may in principle impose
that the matter stress-energy tensor satisfies the standard
NEC, T��k

�k� � 0, while the respective generalized NEC

is necessarily violated, Teff
��k

�k� < 0, in order to ensure the

flaring-out condition.
Note that instead of a null geodesic congruence, we can

consider a congruence of timelike geodesics. In this case
the corresponding Raychaudhuri equation reads

d�̂

d�
¼ � 1

3
�̂2 � �̂���

�� þ !̂��!
�� � R��u

�u�; (3)

where �̂, �̂��, and !̂�� are, respectively, the expansion,

shear, and twist of the congruence defined by the timelike
unit vector field u� normalized to unit length, u�u

� ¼ �1.

The positivity condition R��u
�u� � 0 focuses the time-

like congruence and ensures an attractive nature of gravity.
In classical general relativity, using Einstein’s equation, we
can write this condition as T��u

�u� � � 1
2T, where u

� is

any timelike vector. This assumption is known as the strong
energy condition (SEC). Its violation is a necessary condi-
tion to have a wormhole geometry.

III. WORMHOLES IN GENERALIZED
MODIFIED GRAVITY

Consider the generalized gravitational field equations
for a large class of modified theories of gravity given by
the following field equation

g1ð�iÞðG�� þH��Þ � g2ð�jÞT�� ¼ �2T��; (4)

where H�� is an additional geometric term that includes

the geometrical modifications inherent in the modified
gravitational theory under consideration; gið�jÞ (i¼1, 2)
are multiplicative factors that modify the geometrical
sector of the field equations, and �j denote generically
curvature invariants or gravitational fields such as scalar
fields; the term g2ð�iÞ covers the coupling of the curvature
invariants or the scalar fields with the matter stress-energy
tensor, T��.

It is useful to rewrite this field equation as an effective
Einstein field equation, as mentioned above, with the
effective stress-energy tensor Teff

�� given by

Teff
�� � 1þ �g2ð�jÞ

g1ð�iÞ T�� � �H��; (5)

where �g2ð�jÞ ¼ g2ð�jÞ=�2 and �H�� ¼ H��=�
2 are

defined for notational convenience.
In modified gravity, the violation of the generalized NEC

Teff
��k

�k� < 0 implies the following restriction:

1þ �g2ð�jÞ
g1ð�iÞ T��k

�k� < �H��k
�k�: (6)

For general relativity, with g1ð�jÞ ¼ 1, g2ð�jÞ ¼ 0, and
H�� ¼ 0, we recover the standard violation of the NEC for

the matter threading the wormhole, i.e., T��k
�k� < 0.

If the additional condition ½1þ �g2ð�jÞ�=g1ð�iÞ> 0 is
met, then one obtains a general bound for the normal
matter threading the wormhole, in the context of modified
theories of gravity given by

0 � T��k
�k� <

g1ð�iÞ
1þ �g2ð�jÞ

�H��k
�k�: (7)
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Analogously, in modified gravity, wormhole solutions
also violate the generalized SEC, i.e., Teff

��u
�u� <� 1

2T
eff ,

which implies the following bound on the matter stress-
energy tensor:

1þ �g2ð�jÞ
g1ð�iÞ

�
T��u

�u� � 1

2
T

�
< �H��u

�u� � 1

2
�H: (8)

Now, one may demand that the latter condition is fulfilled
even if the matter stress-energy tensor satisfies the usual
SEC, T��u

�u� � 1
2T � 0, or the weak energy condition

(WEC) T��u
�u� � 0.

In order for normal matter to satisfy the WEC, to have a
positive energy density, one also needs to impose the
following relationship:

T��u
�u� ¼ g1ð�iÞ

�2 þ g2ð�jÞ ðG�� þH��Þu�u� � 0: (9)

Imposing T��u
�u� � 0 entails a restriction on the geome-

try arising from the modified gravity under consideration.
If the normal matter is given by a diagonal stress-energy
tensor, i.e., T�

� ¼ diag½��ðrÞ; prðrÞ; ptðrÞ; ptðrÞ�, one can
physically interpret T��u

�u� as the energy density mea-

sured by any timelike observer with four-velocity u�. This
definition is useful, as using local Lorentz transformations
it is possible to show that T��u

�u� � 0 implies that the

energy density is positive in all local frames of reference.
Thus, the standardWEC imposes that � � 0 and �þpi�0
(where i ¼ r, t).

A. fðRÞ gravity
Awell-known modification of general relativity is fðRÞ

gravity with the following action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
fðRÞ þLm

�
: (10)

The stress-energy tensor of matter is defined as [13]

T�� ¼ � 2ffiffiffiffiffi�g
p 	ð ffiffiffiffiffi�g

p
LmÞ

	g�� , and we consider that the matter

Lagrangian density Lm only depends on the metric tensor
components g��, and not on its derivatives.

In this case, the field equations are given by Eq. (4), with
the relationships g1ð�iÞ ¼ fRðRÞ, g2ð�jÞ ¼ 0, and

H�� ¼ 1

fR

�
1

2
ðRfR � fÞg�� �r�r�fR þ g��hfR

�
;

(11)

where fR ¼ df=dR.
The generic condition for the violation of the general-

ized NEC in fðRÞ gravity is given by

1

fR
T��k

�k� <� 1

�2fR
k�k�r�r�fR: (12)

It is worth noting that, depending on a particular form of
fðRÞ, the latter inequality could be fulfilled even if

T��k
�k� > 0. In particular, if fR > 0, then the bound

0 � �2T��k
�k� <�k�k�r�r�fR is imposed.

As a specific example, consider R2 gravity with fðRÞ ¼
Rþ 1

2
R
2, so that the second term dominates for strong

curvatures as is the case at the wormhole throat and its
neighborhood. In this case, Eq. (12) reads

T��k
�k�

1þ 
R
<� 
k�k�R;��

�2ð1þ 
RÞ : (13)

In particular, in the wormhole metric (1) with �ðrÞ � 0,
so that the curvature scalar is given by R ¼ 2b0=r2,
then inequality (13) evaluated at the throat r0 takes the
form

T��k
�k�jr0

r20 þ 2
b00
<


ð1� b00Þð2b00 � r0b
00
0 Þ

�2r40ðr20 þ 2
b00Þ
: (14)

It is obvious that for 
 ¼ 0 we have T��k
�k�jr0 < 0.

However, generally we can choose 
 so that Eq. (14) is
fulfilled even if T��k

�k� � 0.

B. Curvature-matter coupling

Now let us consider the modified theory of gravity with
an explicit curvature-matter coupling given by the follow-
ing action [14]:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
fðRÞ þ ½1þ �hðRÞ�Lm

�
; (15)

where fðRÞ and hðRÞ are arbitrary functions of the Ricci
scalar R. The coupling constant � characterizes the
strength of the interaction between hðRÞ and the matter
Lagrangian.
Taking into account the modified Einstein equation, the

effective stress-energy tensor is given by

Teff
�� ¼ 1

Lc

�
ð1þ �hÞT�� þ 1

2�2
ðf�LcRÞg��

� 1

�2
ðg��r
r
 �r�r�ÞLc

�
; (16)

where fR ¼ df=dR and hR ¼ dh=dR, and we have defined
Lc � fR þ 2��2hRLm for notational simplicity.
The general condition to have wormhole geometries

Teff
��k

�k� < 0 reduces to

1þ �h

Lc

T��k
�k� <� k�k�r�r�Lc

�2Lc

: (17)

As a specific example, consider the model with
fðRÞ ¼ hðRÞ ¼ R and Lm ¼ �� [15], where � is the
energy density of matter. In this case, Eq. (17) yields

1þ �R

1� 2�2��
T��k

�k� <
2�k�k��;��

1� 2�2��
: (18)

For the wormhole geometry (1) with �ðrÞ � 0, and

choosing the null vector k� ¼ ð1; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b=r

p
; 0; 0Þ, so that
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k�k�r�r�� ¼ ½2ðr2 � rbÞ�00 þ ðb� rb0Þ�0�=ð2r2Þ, the

inequality (18) evaluated at the throat r0, is as follows:

r20 þ 2�b00
1� 2�2��0

T��k
�k�jr0 <

�r0�
0
0ð1� b00Þ

1� 2�2��0

: (19)

Again, it is seen that T��k
�k�jr0 < 0 provided � ¼ 0.

However, generally one can choose the specific parameters
of the model so that the restriction (19) could be fulfilled
even if T��k

�k� � 0.

C. FðR;LmÞ gravity
In this section, consider the following action for the

generalized modified gravitational theory [16]:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
FðR;LmÞ; (20)

where FðR;LmÞ is an arbitrary function of the Ricci scalar
R, and of matter Lagrangian density, Lm. This theory
generalizes the fðRÞ gravity models and the curvature-
matter couplings [14].

For FðR;LmÞ gravity, we have the following relation-
ships: H�� ¼ 1

FR
½12 �Fg�� þh��FR�, g1ð�iÞ ¼ FR, and

g2ð�jÞ ¼ FLm
=2� �2, where we have defined �F �

ðFRRþ FLm
Lm � FÞ, h�� � g��r
r
 �r�r�, and

denoted FR ¼ @F=@R and FLm
¼ @F=@Lm, respectively.

The gravitational field equation may be written as an
effective Einstein field equation, with Teff

�� given by

Teff
�� ¼ 1

2FR

½ �Fg�� � 2h��FR þ FLm
T���: (21)

Note that the divergence of the stress-energy tensor T�� is

given by r�T�� ¼ 2r� ln ðFLm
Þ @Lm

@g�� , which translates an

explicit exchange of energy and momentum between the
matter and the higher order curvature terms. The covariant
conservation of the stress-energy tensor r�T�� ¼ 0 pro-

vides an effective functional relation between the matter
Lagrangian density and the function FLm

ðR;LmÞ given by

r� ln ðFLm
Þ@Lm=@g

�� ¼ 0. Thus, in principle, once the

matter Lagrangian density is known, by an appropriate
choice of the function FðR;LmÞ one can construct
conservative models with arbitrary curvature-geometry
couplings [17].

Now, contracting Teff
�� with any null vector k�, the

essential condition to support wormhole geometries is
Teff
��k

�k� < 0, which is given by

FLm

FR

T��k
�k� <� 2k�k�r�r�FR

FR

: (22)

For fðR;LmÞ ¼ R=2�2 þLm, then (22) reduces to the
standard violation of the NEC in general relativity [1].

Thus, the general condition for wormhole spacetimes is
given by inequality (22), and in principle one may now
construct specific solutions, either by considering a specific

form for FðR;LmÞ, and by imposing an equation of state of
the matter stress-energy tensor, and/or considering choices
for the metric functions �ðrÞ and bðrÞ. We leave this
analysis for a future publication.

IV. DISCUSSIONS AND FINAL REMARKS

Despite the fact that the flaring-out condition, in classi-
cal general relativity, through the Einstein field equation
necessarily entails the violation of the NEC, in modified
theories of gravity it is the generalized NEC that is vio-
lated. The latter involves an effective stress-energy tensor
that includes the matter stress-energy tensor and higher
curvature terms, which may be interpreted as a gravita-
tional fluid. Thus, in this work, we have explicitly shown
that one may impose that the normal matter stress-energy
tensor satisfies all the standard energy conditions and
presented very general restrictions on the wormhole
geometry arising from the modified theory of gravity under
consideration. Indeed, this is translated through general
inequalities showing that the higher curvature terms sustain
the wormhole geometries.
In addition to this, we have considered specific cases of

modified theories of gravity considered in the literature,
namely, fðRÞ gravity, the curvature-matter coupling, and
the FðR;LmÞ generalization. In the first two theories, we
analyzed specific cases and showed explicitly that one may
choose the parameters of the theory such that the matter
threading the wormhole throat satisfies the energy condi-
tions. Thus, this shows that one may theoretically construct
wormhole geometries without the use of exotic matter,
although it is the higher order curvature terms arising in
the modified theories of gravity that sustain these exotic
spacetimes.
It would also be interesting to analyze whether the

various modified gravitational models required for a worm-
hole have any serious instabilities. For instance, in Rþ

R2 gravity, it was claimed in Ref. [18] that a Lorentzian
wormhole would require 
< 0, i.e., the existence of the
sign that corresponds to an unbounded from below poten-
tial or tachyonic kinetic term in the conformally related
scalar field model (see also Ref. [19]). In this context, it
would be interesting to consider whether a modified gravi-
tational model could effectively violate the null energy
condition without such a related instability. Although this
analysis lies outside the scope of the present paper, work
along these lines is currently under way.
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