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We develop new more powerful techniques, based on an almost closed form for the lattice worldsheet

propagator, for analyzing planar open string worldsheets defined on a lightcone lattice. We show that

results obtained in earlier work are easily reproduced with far more precision. In particular, consistency

checks that required numerical analysis in the earlier work can now be confirmed exactly.
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I. INTRODUCTION

The lightcone worldsheet [1–3] lattice was proposed
long ago [4] as a method to digitize the summation of
planar open string multiloop diagrams. Because the open
string spectrum includes a massless spin 1 particle, this
sum of diagrams should have the infrared behavior of large
N [5] gauge theory. If the worldsheet lattice can reliably
reproduce string theory diagrams, its �0 ! 0 limit should
just as reliably reproduce gauge theory [6]. With this pos-
sibility in mind, we have recently embarked on a program
[7] to critically evaluate the accuracy of this lattice in
reproducing the continuum perturbative diagrams. In par-
ticular, it is very important that lattice artifacts be shown to
be benign: they should either vanish in the continuum limit
or be absorbed in redefinitions of parameters in the theory.
This is a necessary prerequisite to applying these lattice
methods to nonperturbative calculations of QCD.

In Ref. [7] we studied the one loop self-energy diagram
for the bosonic closed string in enough detail to see that the
lattice accurately reproduced the ultraviolet behavior of
the diagram. This is as much as we should expect, since
the open bosonic string tachyon should and does ruin the
infrared behavior of the diagram.1 The analysis in Ref. [7]
employed what might be called a string field theory
approach (see, for example, Ref. [8]): the diagram was
built up from open and closed string propagators. While
this approach was manageable at one loop, it quickly
gets unwieldy for multiloop diagrams. Even for the one
loop open string self-energy diagram, attaining enough
accuracy to make definitive conclusions proved to be prob-
lematic. To improve on this situation we develop, in this
article, a more powerful ‘‘worldsheet’’ approach based on
the techniques of worldsheet quantum field theory defined
on the lightcone lattice. The key to this approach is an

almost closed form expression for the worldsheet propa-
gator on the lattice [see Eq. (18)].
The perturbative string field theory approach of Ref. [7]

keeps manifest the contribution of all the intermediate
string mass eigenstates contributing to the diagram. While
the ensuing formulas for the self-energy shifts were exact at
finite lattice spacing, we had to resort to numerical analysis
to analyze the continuum limit. The extrapolation of our
numerical results to the continuum was sufficiently accu-
rate to make rather convincing consistency checks, such as
a vanishing graviton self-energy. These checks were none-
theless subject to numerical error. In contrast, the methods
of the present paper are powerful enough to analyze the
continuum limit exactly in the ultraviolet and to confirm
rigorously such consistency requirements.
The Giles-Thorn (GT) discretization of the worldsheet

[4] begins with a representation of the free closed or open
string propagator as a lightcone worldsheet path integral
defined on a lattice. The lattice replaces the transverse
coordinates of the string xð�; �Þ, living on a rectangular

Pþ � T domain, with discretely labeled coordinates xjk ¼
xðkaT0; jaÞ, living on an M� N grid with spacing a,
where Pþ ¼ MaT0 and T ¼ aðN þ 1Þ. The free string
propagator is then simply a Gaussian integral

D0 ¼
Z Y

kj

dxjke
�S;

S ¼ T0

2

X
kj

½ðxkjþ1 � xk
jÞ2 þ ðxkþ1

j � xk
jÞ2�

� T0

2
xT ���1x;

(1)

where the MN �MN matrix � is the lattice world-
sheet propagator that will be the central focus of
this article. Then up to an overall normalization factor

D0 ¼ det�ðD�2Þ��1, where D is the spacetime dimension
(D ¼ 26 for the bosonic string).
On this lattice the sum of all open string multiloop

planar diagrams can be obtained by summing over all
patterns of missing spatial bonds. Formally, this is

achieved by introducing Ising-like variables Sjk ¼ 0, 1

and taking the worldsheet action to be
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1It is logically possible that summing the bosonic string

diagrams with an infrared cutoff stabilizes the vacuum in a
way to produce QCD physics, but it is more likely that another
string model, such as the tachyon-free Neveu-Schwarz sector of
the superstring, is required to truly reproduce QCD.
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SPlanar ¼ T0

2

X
ij

½ðxijþ1 � xi
jÞ2 þ Si

jðxiþ1
j � xi

jÞ2�

þ ðD� 2ÞBX
kj

ð1� SjkÞ �
X
ij

½Sijð1� Si
jþ1Þ

þ Si
jþ1ð1� Si

jÞ� lng (2)

� T0

2
xT � ½��1 þ VðSÞ�xþ AðfSgÞ: (3)

The terms in AðfSgÞ insert the coupling constant g in the
appropriate way and allow for an open string self-energy
counterterm B. Then we have

D ¼ D0

X
fSg
det�12ðI þ V�Þe�AðfSgÞ: (4)

When V is a sparse matrix, i.e., when there are a relatively
small number of missing bonds [

P
kjð1� SkjÞ � M,

which can be arranged by taking B � 1], this will be a
particularly efficient way to evaluate the terms of pertur-
bation theory. Holding B sufficiently large serves as a
physical and convenient infrared regulator in our studies
of the properties of the planar diagrams.

The paper is organized as follows. In Sec. II we con-
struct the worldsheet propagator on the GT worldsheet
lattice. It is remarkable that, in spite of the discretization
of time (ixþ), the result is explicit and not much more
complicated than the well known continuum worldsheet
propagator. In Sec. III we apply this expression to the
calculation of the tachyon one loop closed string self-
energy. Our results, being exact, can be carried out to
arbitrary precision, agreeing with the numerical results of
Ref. [7] to the precision achieved in Ref. [7] (only three
significant figures for some of the subleading contribu-
tions). The self-energy of the closed string graviton and
selected higher mass states is similarly analyzed in Sec. IV.
We conclude with discussion in Sec. V of the significance
of our results and their promise for analyzing the open
string self-energy as well as higher loop diagrams.

II. LATTICE WORLDSHEET PROPAGATORS

We develop the tools of quantum field theory for the
worldsheet lattice. Of central interest are the worldsheet
correlators of the coordinates on the M� N lattice corre-
sponding to the free closed or open string,

�ij;kl ¼ T0hxjixlki ¼ T0

R
Dxxjix

l
ke

�SR
Dxe�S

: (5)

Because the expectations are taken with Gaussian weight,
the two point correlator in a single dimension captures
all of the relevant information in arbitrary multipoint cor-
relators in any number of dimensions. For the bosonic
string we should of course take 26 space-time dimensions
or 24 transverse dimensions.

A straightforward evaluation is to use closure to write
the numerator as the product of three string field propaga-
tors (see Appendix B): one from time �ðN � jÞ to j, one
from time j to l, and the last from time l to þðN þ lÞ. We

can resolve xji , x
l
k into normal modes qjm, qln, respectively.

Then because each normal mode path integral is indepen-

dent, hqjmqlni ¼ �mnhqjmqlmi, one ends up with a simple two
variable Gaussian integral to do,Z

dqjmdqlmq
j
mqlm exp

�
� 1

2
½Aðqj2m þ ql2mÞ þ 2Bqjmqlm�

�

¼ � B

A2 � B2
det�1=2

A B

B A

 !
;

hqjmqlni ¼ � B

A2 � B2
�mn: (6)

Here A and B are read off from the formulas of
Appendix B. For simplicity we set the q’s at the initial
and final times to zero.
Then for nonzero modes they are

A ¼ T0 sinh�½cothN�þ coth ðl� jÞ��;
B ¼ �T0 sinh�

sinh ðl� jÞ� ;
(7)

where � is �o
m ¼ 2sinh �1 sin ðm�=2MÞ or �c

m ¼
2sinh �1 sin ðm�=MÞ for the open or closed string, respec-
tively. The nonzero mode contribution has a well defined
N ! 1 limit:

A!T0 sinh�½1þcothðl� jÞ��; B¼ �T0 sinh�

sinh ðl� jÞ�;
�B

A2�B2
! 1

2T0 sinh�

�
1

ðcoshðl� jÞ�þ sinh ðl� jÞ�Þ
�

¼ e�jl�jj�

2T0 sinh�
: (8)

For the zero modes

A0 ¼ T0

N þ l� j

Nðl� jÞ ; B0 ¼ � T0

l� j
;

�B0

A2
0 � B2

0

¼ N

2T0ð1þ ðl� jÞ=2NÞ !
N

2T0

� l� j

4T0

;

(9)

where we have taken N large on the right side. To properly
isolate the diverging term, we must remember that 2N is
not the total time length of the string propagator. Rather the
total length is 2NT ¼ 2N þ l� j. NT is the quantity that
should be regarded as independent of j, l. In other words
we should write

hqj0ql0i �
N

2T0

� l� j

4T0

þO
�
1

N

�
¼ NT

2T0

� l� j

2T0

þO
�
1

NT

�
:

(10)

The zero mode contribution grows linearly with NT . So it
will be important that the zero mode be suppressed in the
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physical quantities that require the input of worldsheet
propagators. It is helpful to appreciate though that the
divergent term is a constant independent of j, l. To define
the inverse lattice Laplacian, it is consistent to drop it, in
effect modifying the boundary conditions on the Green
function.

In these derivations we have assumed l > j. For l < j the
roles of the two indices are switched. When N ! 1, we
simply replace l� j ! jl� jj in the formulas:

hqjmqlni ¼ �mn

e�jl�jj�m

2T0 sinh�m

; N ! 1;

hqj0ql0i �
NT

2T0

� jl� jj
2T0

; N ! 1:

(11)

From their physical interpretation these are inverses of the
lattice Laplacian2

ð�4þ4sinh 2�=2Þfj
� 2fj � fjþ1 � fj�1 þ 4fjsinh

2�=2: (12)

It is remarkable that this can be checked directly:

2e�jl�jj�� e�jlþ1�jj�� e�jl�1�jj�

¼
8><
>:
e�ðl�jÞ�ð2� 2cosh�Þ l> j

e�ðj�lÞ�ð2� 2cosh�Þ l< j

2� e��� e�� ¼ ð2� 2cosh�Þþ 2sinh� l¼ j

¼�4e�jl�jjsinh2�

2
þ 2�lj sinh�; (13)

�
�4þ4sinh 2 �

2

�
e�jl�jj�

2 sinh�
¼ �lj; (14)

which shows that hqjmqlni is the inverse of the lattice
Laplacian on the nonzero modes. The proof for zero modes
is even simpler

�4 jl� jj ¼ 2jl� jj � jlþ 1� jj � jl� 1� jj
¼ �2�lj; (15)

which confirms the same property for the zero modes.
Finally we return to the correlators on the spatial lattice

by expanding in normal modes. The mode functions differ
for the various types of string. For the Neumann open
string

�o
hj;kl ¼ T0hxjhxlki

¼ T0

M
hqj0ql0i þ

2T0

M

XM�1

m¼1

hqjmqlmi cosmðh� 1=2Þ�
M

� cos
mðk� 1=2Þ�

M

¼ NT � jl� jj
2M

þ 1

M

XM�1

m¼1

e�jl�jj�o
m

sinh�o
m

� cos
mðh� 1=2Þ�

M
cos

mðk� 1=2Þ�
M

: (16)

For the Dirichlet open string

�D
hj;kl ¼ T0hyjhylki ¼

2T0

M

XM�1

m¼1

hqjmqlmi sinmh�

M
sin

mk�

M

¼ 1

M

XM�1

m¼1

e�jl�jj�D
m

sinh�D
m

sin
mh�

M
sin

mk�

M
; h;k�M;

�D
Mj;Ml ¼ T0hyjMylMi ¼

e�jl�jj�D
M

2sinh�D
M

;

�D
Mj;kl ¼ 0; k�M: (17)

For the closed string

�c
hj;kl ¼T0hxjhxlki

¼T0

M
hqj0ql0iþ

T0

M

XM�1

m¼1

hAj
mAl

M�miexp
2mðh�kÞi�

M

¼NT �jl� jj
2M

þ 1

2M

XM�1

m¼1

e�jl�jj�c
m

sinh�c
m

exp
2mðh�kÞi�

M
:

(18)

III. CLOSED STRING SELF-ENERGY: TACHYON

For the rest of the paper, we will apply our new approach
in order to assess its calculational efficiency. In particular,
we will use it to obtain one loop self-energy corrections to
low-lying states of the closed string, for which we have a
measure of comparison from our previous treatment [7]. In
this section, we will particularly focus on the tachyon
ground state.

A. A single missing link

The matrix V has indices that are lattice locations;
i.e., they are specified by two integers Vkj;ml. For a

single missing link, at time j and linking spatial site k to

site kþ 1, the term ðT0=2Þðxjjþ1 � xjkÞ2 is missing from S.

That means thatX
ml;m0l0

xlm � Vm0l0;mlx
l0
m0

¼ �ðxjkþ1 � xjkÞ2 ¼ �xj2kþ1 � xj2k þ 2xjkþ1 � xjk; (19)

2Similar results for the inverse of the one-dimensional discrete
Laplacian (discrete Green function) have actually appeared some
time ago [9].
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from which we see

Vml;m0l0 ¼ ��lj�l0jð�m;kþ1�m0;kþ1 þ �m;k�m0;k

� �m;kþ1�m0k � �m0;kþ1�mkÞ: (20)

This matrix has entries only in rows and columns with
labels kj and kþ 1, j, in other words, a 2� 2 submatrix.
However, the product matrix V� has nonzero entries only
in rows with labels kj and kþ 1, j, but in general any
column entry in these two rows can be nonzero: there are
2MN entries. But in calculating the determinant of I þ V�
by expanding in minors, one quickly sees that it is only the
2� 2 subblock of I þ V� that contributes. Similarly if

there are several missing links, the only part of I þ V� that
contributes to the determinant is a correspondingly sized
subblock.
Let us work out V� and the determinant for a single

missing link,

ðV�Þml;qp ¼ ��ljð�m;kþ1�ðkþ1Þj;qp þ �m;k�kj;qp

� �m;kþ1�kj;qp � �mk�ðkþ1Þj;qpÞ
¼ ��ljðð�m;kþ1 � �mkÞð�ðkþ1Þj;qp � �kj;qpÞÞ:

(21)

Then the desired determinant is

det ðI þ V�Þ ¼ det
1þ�ðkþ1Þj;kj ��kj;kj �ðkþ1Þj;ðkþ1Þj � �kj;ðkþ1Þj
��ðkþ1Þj;kj þ�kj;kj 1� �ðkþ1Þj;ðkþ1Þj þ �kj;ðkþ1Þj

 !

¼ 1� �ðkþ1Þj;ðkþ1Þj þ �kj;ðkþ1Þj þ �ðkþ1Þj;kj � �kj;kj: (22)

From (18)

�ðkþ1Þj;kj � �kj;kj

¼ 1

2M

XM�1

m¼1

1

sinh�c
m

�
exp

2mi�

M
� 1

�

¼ � 1

M

XM�1

m¼1

sin 2ðm�=MÞ
sinh�c

m

¼ � 1

2M

XM�1

m¼1

sin ðm�=MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2ðm�=MÞp : (23)

Evidently the same result is obtained for the difference
�kj;ðkþ1Þj ��ðkþ1Þj;ðkþ1Þj. For large M we can apply the
Euler-Maclaurin series

1

M

XM�1

m¼1

f

�
m

M

�

¼
Z 1

0
dxfðxÞ � 1

2M
ðfð0Þ þ fð1ÞÞ

þ X1
k¼1

B2k

ð2kÞ!
1

M2k
ðfð2k�1Þð1Þ � fð2k�1Þð0ÞÞ; (24)

where Bk are the Bernoulli numbers, to get

�ðkþ1Þj;kj � �kj;kj ¼ � 1

2

�Z 1

0
dx

sin�xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2�x

p � 2�
B2

2M2

þ 8�3 B4

24M4
þO

�
1

M6

��

¼ � 1

2

�
1

2
� �

6M2
� �3

90M4
þO

�
1

M6

��
:

(25)

So finally

det ðI þ V�Þ ¼ 1

2
þ �

6M2
þ �3

90M4
þO

�
1

M6

�
: (26)

B. Single slit with K� 1 missing links

The case of one missing link describes a one loop
diagram with the loop occupying two time steps. A single
loop occupying K time steps has K � 1 consecutive miss-
ing links, as we depict in Fig. 1. Proceeding with the
case of K � 1 missing links, again between spatial sites k
and kþ 1, but this time for the time interval between
instants J þ 1 to J þ K � 1, it is evident that we will
simply have to sum the right-hand side of (20) over j 2
½J þ 1; J þ K � 1�. The sum will also carry over to (21),
whose nontrivial subblock will now have size 2ðK � 1Þ.

J K L

M

1

FIG. 1. GTworldsheet lattice for the closed string self-energy.The
dotted lines are identified. There areK � 1missing links, chosen for
concreteness between the spatial positions k ¼ 1 and k ¼ M.
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Because of the difference of delta functions on the latter
relation, clearly the matrix rows with m ¼ kþ 1 will have
the opposite values of the rows with m ¼ k. So sorting our
rows such that

ðm; lÞ ¼ fðk; J þ 1Þ; . . . ; ðk; J þ K � 1Þ; . . . ;
ðkþ 1; J þ 1Þ; . . . ; ðk; J þ K � 1Þg; (27)

and similarly for the columns, we can write in ðK � 1Þ �
ðK � 1Þ block form

det ðI þ V�Þ

¼ det
I þ A B

�A I � B

 !
¼ det

I I

�A I � B

 !

¼ det
I 0

�A I þ A� B

 !
¼ det ðI þ A� BÞ; (28)

where we employed elementary row and column manipu-
lations that leave the determinant invariant, together with
the block matrix identity

det

�
Q 0

R S

�
¼ det ðQÞ det ðSÞ: (29)

In formula (28) above,

Alp ¼ �ðkþ1Þl;kp � �kl;kp;

Blp ¼ �ðkþ1Þl;ðkþ1Þp � �kl;ðkþ1Þp;
(30)

and since these quantities depend on l, p only through
jl� pj, the value of J þ 1 will be immaterial and we can
set it to zero. Hence our final expression for the determi-
nant will be

det ðI þ V�Þ ¼ det ðhlpÞ; l; p ¼ 1; 2; . . . ; K � 1;

(31)

where

hlp¼�lpþ�ðkþ1Þl;kp��kl;kpþ�kl;ðkþ1Þp��ðkþ1Þl;ðkþ1Þp:

(32)

Notice in particular that we now have the determinant of a
(K � 1)-dimensional matrix, whose elements depend on
differences of propagators, such that the zero modes in
(16)–(18) always cancel out. Specializing to the case of the
closed string propagator (18), it is easy to show that3

hlp¼�lp� 1

M

XM�1

m¼1

sinðm�=MÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsin2ðm�=MÞp

�ðsinðm�=MÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þsin2ðm�=MÞ

q
Þ�2jl�pj; (33)

and applying again the Euler-Maclaurin formula (24), we
obtain

hlp ¼ �lp� Ijl�pj þ �

6M2
�ð�1þ 3jl�pj2Þ�3

90M4
þO

�
1

M6

�
;

(34)

where we have reduced the integral Ijl�pj to a simple finite

sum in Appendix C. Reexpressing

hlpðxÞ ¼ hlpð0Þ þ xþOðx2Þ; x ¼ �

6M2
; (35)

we can separate the M dependence of the determinant,

detðhlpÞ¼detðhlpð0ÞÞþ �

6M2

@

@x
detðhlpðxÞÞjx¼0þO

�
1

M4

�
:

(36)

Finally, the summand of the energy shift will be given by

�P�
G;closed ¼ � e�24ðK�1ÞB0

det 12ðIþ V�Þ ¼ � e�24ðK�1ÞB0

det 12ðhlpÞ
(37)

¼ � e�24ðK�1ÞB0

det 12ðhlpð0ÞÞ
�
1� 2�

M2

@
@x det ðhlpðxÞÞjx¼0

det ðhlpð0ÞÞ
�

þO
�
1

M4

�
; (38)

where hlp is given exactly in (33) and asymptotically in

(34), and similarly we have expressed the summand in its
exact (37) and asymptotic (38) form.
Let us now discuss how our current, worldsheet-based

approach compares to the string field theory-related ap-
proach we employed in Ref. [7], when it comes to comput-
ing the tachyon energy shift. Clearly, the formulas we have
derived here involve determinants of roughly size K, so
that they are advantageous for analyzing the summand in
the ultraviolet region K � M. Conversely, the approach
[7] yields determinants of size M, more suitable for the
infrared K � M regime.

TABLE I. Asymptotic expansion up to OðxÞ, x ¼ �
6M2 , of the

determinant (36), entering the tachyon energy shift (38), for a slit
of length K � 1, K ¼ 2; . . . ; 6. Evidently, the coefficients of the
expansion can be calculated exactly.

K det ðhlpðxÞÞ
2 1

2 þ x

3 � 4
�2 þ 2

� þ 4x
�

4 �2� 64
�3 þ 16

�2 þ 8
� þ ð�4þ 16

�Þx
5 �16� 8192

9�4 � 2048
9�3 þ 256

�2 þ 64
3� þ ð�64� 16384

9�3 þ 2048
3�2 þ 512

3�Þx
6 �128� 1441792

81�4 þ 45056
27�3 þ 3072

�2 � 512
3� þ ð�768� 8388608

81�4 þ
262144
27�3 þ 163840

9�2 � 1024
� Þx

3Evidently, hlp ¼ hðjl� pjÞ, namely det ðhlpÞ, is the determi-
nant of a symmetric Toeplitz matrix. It can be shown [10] that it
further reduces to a product of two determinants of approxi-
mately half the size.
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The fact that each approach is more suitable for one of
the two domains is also evident in our ability to derive
asymptotic formulas there. Because in our earlier paper we
had no such formula for analyzing the K � M behavior of
the integrand, we had to use the exact formula for the
summand, evaluate it for a range ofM and K, and perform
fits in both variables in order to find the respective depen-
dence. In contrast, here we obtain explicitly the form of the
asymptotic expansion inM, and we only need to fit for the
dependence of the coefficients on K.

Furthermore, it is possible to compute these coefficients
exactly for specific K, or evaluate them at arbitrary preci-
sion. As an example, we present the exact values for the
first two coefficients of det ðhlpðxÞÞ for K ¼ 2; . . . ; 6 in

Table I. In Table II, we also present the respective asymp-
totic expansion for the summand (38), and compare the
values for the coefficients, on the one hand obtained with
our current method, and on the other hand by fitting the M
dependence along the lines of Ref. [7].4

Clearly, the two results agree within our margins of
error; notice, however, that their difference increases with
K. This is a result of the systematic error coming from not
taking into account the Oð1=M4Þ term in the fits, whose
relative size also increases with K. Apart from the asymp-
totic expansion, we also confirmed that the exact formulas
for the summand of the tachyon energy shift in the two
approaches, (37) here and (51) in Ref. [7], agree for a large
set of M, K values.

IV. CLOSED STRING SELF-ENERGY: GRAVITON

To extract information, e.g., energy shifts, about excited
closed string states, wewill need to consider the propagator
on a worldsheet that includes interactions. If we denote the
matrix describing a particular configuration of missing
links by V, as we did in (3), then the propagator in question
will be given by

�V ¼ ð��1 þ VÞ�1 ¼ �ðI þ V�Þ�1

¼ ���ðI þ V�Þ�1V� � �� �V�: (39)

The final form on the right is useful when V is sparse,
because then the inverse matrix appearing in the second
term can be evaluated as the inverse of the submatrix
obtained by projecting onto the sparse subspace.
Using index notation for the propagator, �V

kj;pq, and

choosing the times q and j much earlier and much later
than all of the times occupied by V, respectively, we can
also write

�V
kj;pq ¼

X
m;m0

exp

�
�j�m þ q�m0 þ 2�i

M
ðmk�m0pÞ

�

�
~�V
mm0

2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�m sinh�m0

p ; (40)

~�V
mm0 ¼ �mm0 �

~Vmm0

2M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh�m sinh�m0

p ; (41)

~Vmm0 ¼ X
kl;rs

exp

�
l�m � s�m0 � 2�i

M
ðmk�m0rÞ

�
V kl;rs:

(42)

We have normalized ~�V
mm0 so that it is �mm0 for V ¼ 0.

Thus ~�V
mm0det�12ðIþ V�Þ gives the probability amplitude

that the mode m0 at early times evolves to mode m at late
times. For the graviton self-energy, the relevant process is
modes m ¼ 1, M� 1 at early times evolving to the same
modes at late times. Thus this contribution to the graviton
self-energy is

�ð~�V
11
~�V
ðM�1ÞðM�1Þ þ ~�V

1ðM�1Þ ~�
V
ðM�1Þ1Þdet�12ðI þ V�Þ:

(43)

A. A single missing link

For starters, let us take V with a single missing link. Its
nonvanishing 2� 2 subblock is the matrix

V ¼ �1 1

1 �1

 !
: (44)

Putting A¼�ðkþ1Þj;kj��kj;kj¼�ðkþ1Þj;kj��ðkþ1Þj;ðkþ1Þj
the matrix I þ V� projected onto the subspace of V, and
its inverse times V are

TABLE II. Asymptotic expansion up to Oð1=M2Þ, of the tachyon energy shift summand (38)
for K ¼ 2; . . . ; 6, where K � 1 is the slit length. The left-hand side (LHS) coefficients were
determined by fitting the M dependence, as in Ref. [7], with an error estimate at the order of the
last digit. The right-hand side (RHS) coefficients have been calculated exactly with the methods
of the present paper and evaluated up to the desired precision.

K ��P�
G;closed fit ��P�

G;closed actual

2 0:1044844648� 1:31291=M2 0:104484465146� 1:31299=M2

3 0:027700432� 0:9578=M2 0:0277004334342� 0:957933=M2

4 0:010959556� 0:7268=M2 0:0109595576932� 0:727031=M2

5 0:005388196� 0:5811=M2 0:00538819758183� 0:581471=M2

6 0:003032942� 0:4828=M2 0:00303294412639� 0:483277=M2

4See also Fig. 5 in the Ref. [7].
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Iþ V� ¼ 1þ A �A

�A 1þ A

 !
;

V ¼ ðI þ V�Þ�1V

¼ 1

1þ 2A

1þ A A

A 1þ A

 ! �1 1

1 �1

 !

¼ V

1þ 2A
: (45)

Then we easily compute

~Vmm0 ¼ �4ejð�m��m0 Þþ�iðm0�mÞð2kþ1Þ=M

� sin ð�m=MÞ sin ð�m0=MÞ
1þ 2A

; (46)

~Vmm ¼ �4
sin 2ð�m=MÞ

1þ 2A
;

~VmðM�mÞ ¼ 4e�2�imð2kþ1Þ=M sin 2ð�m=MÞ
1þ 2A

:

(47)

Then we find

~�V
mm ¼ ~�V

ðM�mÞðM�mÞ

¼ 1þ 4
sin 2ð�m=MÞ

2Mð1þ 2AÞ sinh�m

¼ 1þ 2�m

M2
� 2m�2ð1þ 2m2�Þ

3M4
þO

�
1

M6

�
; (48)

~�V
mðM�mÞ ¼ �4

sin 2ð�m=MÞ
2Mð1þ 2AÞ sinh�m

e�2�imð2kþ1Þ=M

¼ � 2�m

M2
e�2�imð2kþ1Þ=M þO

�
1

M4

�
: (49)

The one missing link contribution to the self-energy of the
closed string state jm;M�mi 	 jM�m;mi is up to
Oð1=M4Þ

�
~�V
mm

~�V
ðM�mÞðM�mÞ	 ~�V

mðM�mÞ ~�
V
ðM�mÞm

det12ð1þV�Þ ��ð1þ4�m=M2�4m�2ð1�3ð1	1Þmþ2m2�Þ=3M4Þ
ð1=2þ�=6M2þ�3=90M4Þ12

��212
�
1þ4�ðm�1Þ

M2
�2�2ð�65þ130m�30ð1	1Þm2þ2�þ20m3�Þ

15M4

�
: (50)

This formula includes the shift for tachyon (m ¼ 0) and
the graviton (m ¼ 1). The latter receives no 1=M2 cor-
rection, consistent with zero shift in the continuum limit.
Note also that we have assumed in these formulas that the
polarizations of the first and second entries of jm;m0i are
different, so they do not properly describe the dilaton self-
energy shift.

Furthermore, for the graviton (m ¼ 1 and plus sign),
we can also compare the above formula with the fits
we obtained for the value of the graviton energy shift in
Ref. [7]. Multiplying (50) with the boundary counterterm
exp ð�24B0Þ, and writing the result in the notation of the
latter paper, we have

� 1

2
ð1þ CK

GÞ

¼ �
�

2

1þ ffiffiffi
2

p
�
12
�
1� 2�2ð5þ 22�Þ

15M4

�
þO

�
1

M6

�

’ �0:104484þ 10:1905

M4
þO

�
1

M6

�
: (51)

The result above is in excellent agreement with the fit
presented in Fig. 11 of Ref. [7].

B. Single slit with K� 1 missing links

Let us now generalize the discussion of the previous
section, for the worldsheet configuration where a link is

missing between the same spatial sites k and kþ 1, but for
a time interval K � 1 links long. Using the same reasoning
as for the tachyon in the same configuration, it is possible
to show that the matrix V defined in (39) has the special
structure

V kl;ks ¼ V ðkþ1Þl;ðkþ1Þs ¼ �V ðkþ1Þl;ks
¼ �V kl;ðkþ1Þs ¼ �h�1

ls ; (52)

where h is the same (K � 1)-dimensional matrix appearing
in (31). With the help of these relations, we do the k, r
summation in (42)

~Vmm0 ¼ �X
ls

el�m�s�m0 ðe2�i
M ðm0�mÞk þ e

2�i
M ðm0�mÞðkþ1Þ

� e
2�i
M ðm0þm0k�mkÞ � e

2�i
M ðm0�mk�mÞÞh�1

ls ;

and if we take out an overall factor exp ½�iðm0 �mÞ�
ð2kþ 1Þ�, this simplifies to

~Vmm0 ¼ �4e�iðm0�mÞð2kþ1Þ sin
m�

M

� sin
m0�
M

X
ls

el�m�s�m0h�1
ls : (53)

It is evident that the above relation implies

~VmðM�mÞ ~V ðM�mÞm ¼ ~V 2
mm;

~V ðM�mÞðM�mÞ ¼ ~Vmm;
(54)
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so that our final working formula for the graviton summand,
also including the required boundary counterterm, will be

�P�
Graviton

¼� e�24ðK�1ÞB0

det12ðIþV�Þð
~�V
11
~�V
ðM�1ÞðM�1Þþ ~�V

1ðM�1Þ ~�
V
ðM�1Þ1Þ

¼� e�24ðK�1ÞB0

det12ðIþV�Þ
��

1þ
~V 11

2Msinh�1

�
2þ

� ~V 11

2Msinh�1

�
2
�

¼� e�24ðK�1ÞB0

det12ðIþV�Þð1þ2 ~Uþ2 ~U2Þ; (55)

where

~U¼ sin �
M

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2 �

M

q XK�1

l;s¼1

�
sin

�

M
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2 �

M

r �
2ðl�sÞ

h�1
ls ;

(56)

and h�1 is the inverse of the (K � 1)-dimensional matrix
with elements (32). The same interesting phenomenon that
we encountered for the tachyon also appears here; namely,
we can reduce the size of the matrices entering the energy
shift by a half. The asymptotic expansion of (55) in M
readily follows from the respective expansion of hls (34),
and in particular it is easy to show that

h�1
ls ¼h�1

ls ð0Þ� �

6M2

�XK�1

i¼1

h�1
li ð0Þ

��XK�1

i¼1

h�1
is ð0Þ

�
þO

�
1

M4

�
;

(57)

where hð0Þ is the M-independent part of the matrix h.
Because the overall factor in (56) starts as Oð1=M2Þ, we
do not need additional terms in order to obtain (55) at
Oð1=M4Þ. In fact, if we only focus at Oð1=M2Þ for a mo-
ment, the term on the right-hand side of (55) simplifies to

1þ 2 ~Uþ 2 ~U2 ’ 1þ 2�

M2

XK�1

l;s¼1

h�1
ls ð0Þ

¼ 1þ 2�

M2

@
@x det ðhlpðxÞÞjx¼0

det ðhlpð0ÞÞ ; (58)

where for the last equality we used the identity

@

@x
det ðhÞ ¼ det ðhÞTr

�
h�1 @h

@x

�
; (59)

and also the fact that in our case the derivative matrix has all
entries equal to one.
Comparing (58) and (55) with (38), we observe that

we have rigorously proven two important facts: that the
leading order of the asymptoticM expansion for the gravi-
ton is equal to the tachyon one, and that the subleading
term is always Oð1=M4Þ for any K � M. Of course, these
properties were expected to hold on physical grounds;
however, in the approach of our previous paper, we could
only obtain empirical indications about them from the fits.
Finally, for sample slit lengths, we compare the coeffi-
cients of the aforementioned fits with the exact values
obtained with our new method, and evaluated at higher
precision, in Table III.

V. DISCUSSION AND CONCLUSION

In this paper, we continued our investigation of
lattice-regularized string theory in the lightcone gauge,
by introducing a new approach for evaluating the cor-
responding path integral. Whereas in our earlier work [7]
we built the path integral by integrating products of free
string propagators over the interaction points, here we
treated it as a quantum field theory on the worldsheet.
Given that free string propagators are the two-point
functions of string field theory, we could call the former
approach string field theory based, and the latter ap-
proach worldsheet based.
The key idea for treating string interactions in this

framework was to examine how the path integral is modi-
fied as we start removing links from the free worldsheet
(3). An essential ingredient for describing this departure is
the worldsheet correlation function � of two target space
coordinates (5). We consider as the main result of this
paper the determination of this quantity explicitly in
Fourier mode space (11), and as a simple sum in coordinate
space (16)–(18).
We then moved on to assess the efficiency of the world-

sheet approach, by calculating the one loop self-energy
corrections for the closed string tachyon and graviton, and

TABLE III. Asymptotic expansion up to Oð1=M4Þ, of the graviton energy shift summand for
K ¼ 2; . . . ; 6, where K � 1 is the slit length. The LHS coefficients have been determined by
fittingM, as in Ref. [7], with an error estimate at the order of the last digit. The RHS coefficients
have been calculated exactly with the methods of the present paper and evaluated with two
additional digits of precision.

K ��P�
Graviton fit ��P�

Graviton actual

2 0:104484465145� 10:19=M4 0:10448446514630� 10:1905=M4

3 0:027700433434� 3:85=M4 0:02770043343416� 3:8499=M4

4 0:010959557693þ 1:87=M4 0:01095955769317þ 1:8837=M4

5 0:0053881975þ 6:82=M4 0:00538819758183þ 6:8571=M4

6 0:003032944127þ 11:28=M4 0:00303294412639þ 11:3355=M4
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performing a comparison with the results of Ref. [7]. The
self-energy corrections involve determinants of sizeM and
K for the string field theory and worldsheet approach,
respectively, and hence the first one is more convenient
for analyzing the K � M (infrared) regime, whereas the
second one is for the K � M (ultraviolet) regime.5

Indeed, with our current approach we were able not only
to find the structure of the asymptotic expansion in M of
the self-energy summand but also to calculate its coeffi-
cients exactly, for each value of K. In this manner, we were
able to rigorously prove two important facts, for which we
only had strong indications up to now, namely, that the
leading term in the expansion is the same for the tachyon
and the graviton, and that theOð1=M2Þ subleading term for
the graviton is zero (i.e., the graviton is massless in the
ultraviolet region). In contradistinction, analyzing the
K � M regime in Ref. [7] had to rely on fits for both
variables M and K, which introduced larger numerical
errors and made conclusions less definitive.

Apart from its calculational virtues, our new approach
adopts the point of view, implicit in our representation of
the planar sum as a sum over Ising spin variables (2), which
is much closer to the treatment of more general lattice
systems: Each string diagram is like a lattice state, and
we build all states by gradually adding more and more
‘‘excitations,’’ namely missing links, to the ‘‘vacuum,’’ or
free worldsheet. It would be very interesting to explore
this point of view further, as it seems to suggest that
string diagrams of different loop order but the same
excitation number may be similar to each other. Indeed,
generalizing the considerations of Secs. III B and IVB
for arbitrary positions of the K � 1 missing links
ðm;lÞ¼fðk1;j1Þ;...;ðkK�1;jK�1Þg yields again a (K � 1)-
dimensional determinant, this time with elements

hml;m0l0 ¼ �mm0�mm0 þ�ðmþ1Þl;m0l0 � �ml;m0l0

þ �ml;ðm0þ1Þl0 ��ðmþ1Þl;ðm0þ1Þl0 : (60)

It may be more advantageous to organize the sum over
diagrams not by loop order, as dictated by the conventional
wisdom of string perturbation theory, but by the number of
missing link excitations.

With this more efficient method now in place, a primary
objective will be its application for the study of the one
loop self-energy corrections to the low-lying states of open
string theory, which though more intricate, is of main
interest because of its relation to large N gauge theory.
Once we have similarly established the compatibility of the
lattice regularization with Lorentz invariance in this case as
well, then the next natural step will be the numerical
evaluation of the full path integral with the help of
Monte Carlo methods.

In this respect, it will be very interesting to examine
whether efficiency can be further improved by performing
the sums in (16)–(18) analytically, in order to obtain ex-
plicit expressions for the worldsheet propagators in coor-
dinate space as well. In the most probable scenario, that the
summation of all bosonic string diagrams does not succeed
in stabilizing the vacuum, we will, of course, be aiming to
develop a similar treatment for the superstring as well.
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APPENDIX A: NORMAL MODES

A string with Pþ ¼ MaT0 is described at a fixed time by
M coordinates xi or yi, i ¼ 1; . . . ;M. In this article we
require several normal mode decompositions depending on
the boundary conditions.
Neumann Open String

xi ¼ 1ffiffiffiffiffi
M

p q0 þ
ffiffiffiffiffi
2

M

s XM�1

m¼1

qom cos
m�ði� 1=2Þ

M
; (A1)

q0 ¼
ffiffiffiffiffi
1

M

s XM
i¼1

xi; qom ¼
ffiffiffiffiffi
2

M

s X
i

xi cos
m�ði� 1=2Þ

M
:

(A2)

Dirichlet Open String

yk ¼
ffiffiffiffiffi
2

M

s XM�1

m¼1

qDm sin
m�k

M
for k ¼ 1; . . . ;M� 1;

yM ¼ qDM; (A3)

qDm ¼
ffiffiffiffiffi
2

M

s XM�1

k¼1

yk sin
m�k

M
; 0<m<M;

qDM ¼ yM:
(A4)

Closed String

xk ¼ 1ffiffiffiffiffi
M

p XM�1

m¼0

Am exp
2mk�i

M
;

Am ¼ 1ffiffiffiffiffi
M

p X
k

xk exp
2ðM�mÞk�i

M
:

(A5)

This goes to the normal mode expansion with trigono-

metric functions with the substitutions Am ¼ A

M�m ¼

ðqcm � iqsmÞ=
ffiffiffi
2

p
, with 0<m<M=2, A0 ¼ q0, and

AM=2 ¼ qcM=2 (if M is even). From this dictionary the

nonzero correlators are

5We remind the reader that M is the spatial size of the lattice
and K is the temporal length of the slit representing the loop.
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hAmAM�mi¼1

2
ðhqcmqcmiþhqsmqsmiÞ; m�0;

M

2
;

hA0A0i¼ hq0q0i; hAM=2AM=2i¼ hqM=2qM=2i: (A6)

APPENDIX B: STRING PROPAGATORS

1. Neumann open string propagator

hN þ 1; xfj0; xiiopen ¼ DopenðN þ 1ÞeiWopen ; (B1)

iWopen ¼ �T0

2

�ðq0;f � q0;iÞ2
N þ 1

þ XM�1

m¼1

sinh�o
m

�
ðq2m;i þ q2m;fÞ coth ðN þ 1Þ�o

m

� 2
qm;iqm;f

sinh ðN þ 1Þ�o
m

��
; (B2)

�o
m ¼ 2sinh�1

�
sin

m�

2M

�
: (B3)

Where the qm’s are the normal mode coordinates for the
x’s. The right side is the result of doing the integrations

over all the xji with i ¼ 1; . . . ;M and j ¼ 1; . . . ; N. The
propagator spans N þ 1 time steps, and this result corre-
sponds to assigning half the potential energy

T0

P
M�1
i¼1 ðxjiþ1 � xji Þ2=2 to time j ¼ 0 and half to j¼Nþ1.

2. Dirichlet open string propagator

The Dirichlet open string propagator over a time of
K ¼ N þ 1 steps is evaluated to be

hqf; N þ 1jqi; 0iD ¼ DDðN þ 1ÞeiWD
; (B4)

where

iWD ¼ �T0

2

�XM
m¼1

�
ðqf2Dm þ qi2DmÞ sinh�D

m cothK�D
m

� 2qfDmq
i
Dm

sinh�D
m

sinhK�D
m

��
; (B5)

DDðNþ1Þ¼
�
T0

2�

�
M=2 YM

m¼1

�
sinhðNþ1Þ�D

m

sinh�D
m

��1=2
; (B6)

�D
M ¼ 2sinh�1 1ffiffiffi

2
p ; �D

m ¼ �o
m ¼ 2sinh�1 sin

m�

2M
;

m ¼ 1; . . . ;M� 1: (B7)

We recall that the above expressions give the result of

integrating over all the variables yji , for j ¼ 1; . . . ; N,
with half the potential energy assigned to j ¼ 0, N þ 1,
which is consistent with the closure requirement.

3. Closed string propagator

hN þ 1; xfj0; xiiclosed ¼ DclosedðN þ 1ÞeiWclosed ; (B8)

iWclosed ¼ �T0

2

�ðq0;f � q0;iÞ2
N þ 1

þ XM�1

m¼1

sinh�c
m

�
ðq2m;i þ q2m;fÞ coth ðN þ 1Þ�c

m

� 2
qm;iqm;f

sinh ðN þ 1Þ�c
m

��
; (B9)

�c
m ¼ 2sinh�1

�
sin

m�

M

�
; (B10)

where the qm’s are the normal mode coordinates for the x’s.
When we divide the closed string normal modes into sine
and cosine modes, we arbitrarily call the m>M=2 modes
sine modes and the m<M=2 modes cosine modes. When
M is even, the M=2 mode is not doubles. The right side is

the result of doing the integrations over all the xji with
i ¼ 1; . . . ;M and j ¼ 1; . . . ; N. The propagator spans
N þ 1 time steps and this result corresponds to assigning

half the potential energy T0

P
M
i¼1ðxjiþ1 � xji Þ2=2 to time

j ¼ 0 and half to j ¼ N þ 1. In sums like these it is

understood that xjMþ1 � xj1. Whenever we concatenate at

a time j propagators with different numbers of missing
links, we will understand that we add terms T0ð�xÞ2=4 in
the exponent so that the potential assigned to time j is that
of the system with the least number of missing links. For
example, the concatenation of an open string propagator
with a closed string propagator entails the addition of

T0ðxjM � xj1Þ2=4 to the exponent.

APPENDIX C: A USEFUL EULER-MACLAURIN
EXPANSION

As we saw in Sec. III B for the closed string propagator,
when many links are missing, the leading term in the Euler-
Maclaurin expansion of the elements of the corresponding
determinant involves an integral of the form

In �
Z 1

0
dx

sin�xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2�x

p ðsin�xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2�x

p
Þ�2n

¼
Z 1

0
dx

sin �x
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sin 2 �x
2

q �
sin

�x

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2 �x

2

r ��2n

¼
Z 1

0
dx

sin �x
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sin 2 �x
2

q �
�sin

�x

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2 �x

2

r �
2n

¼ 2

�

Z 1

0
dz

zð�zþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
Þ2nffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
p : (C1)

We can evaluate this with the help of the identity [10]
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ðzþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
Þ2n ¼ Xn

r¼0

�nrz
2r þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p Xn
r¼1

�nrz
2r�1;

(C2)

where

�nr ¼ n

nþ r

nþ r

2r

 !
22r; �nr ¼ r�nr

n
; (C3)

so that the integral can be rewritten as

In ¼ 2

�

Xn
r¼0

�nr

Z 1

0
dz

z2rþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
� 2

�

Xn
r¼1

�nr

Z 1

0
dz

z2rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼ Xn

r¼0

�nr

�ð12 þ r
2Þ

2
ffiffiffiffi
�

p
�ð1þ r

2Þ
� Xn

r¼1

�nr

�ð12 þ rÞffiffiffiffi
�

p
�ð1þ rÞ : (C4)

If desired, we can formally express these finite sums in
terms of hypergeometric functions, for example,

Xn
r¼1

�nr

�ð12 þ rÞffiffiffiffi
�

p
�ð1þ rÞ ¼ n2F1ð1� n; 1þ n; 2;�1Þ: (C5)

In any case, the sums can be readily evaluated for specific
values of n, and for the reader’s convenience we have
tabulated the first few cases in Table IV.
Summarizing, the sums that are relevant for the compu-

tation of the closed string propagator when many missing
links are present have an Euler-Maclaurin expansion of the
form

1

M

XM�1

m¼0

sin
�m

M

�
sin �m

M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2 �m

M

q 	�2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2 �m

M

q
¼ In � �

6M2
þ ð�1þ 3n2Þ�3

90M4
þO

�
1

M6

�
: (C6)
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TABLE IV. Values of integral In (C1), for n ¼ 0; 1; . . . ; 6.

n In

0 1=2 ’ 0:5
1 �1=2þ 2=� ’ 0:1366
2 �5=2þ 8=� ’ 0:04648
3 �25=2þ 118=ð3�Þ ’ 0:02019
4 �129=2þ 608=ð3�Þ ’ 0:01080
5 �681=2þ 16046=ð15�Þ ’ 0:006696
6 �3653=2þ 86072=ð15�Þ ’ 0:004568
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