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Leading finite-size effects on some three-point correlators in AdSs X S°
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In the framework of the semiclassical approach, we find the leading finite-size effects on the normalized
structure constants in some three-point correlation functions in AdSs X S°, expressed in terms of the conserved
string angular momenta J4, J,, and the world-sheet momentum p,,, identified with the momentum p of the
magnon excitations in the dual spin chain arising in 2N' = 4 super Yang-Mills theory in four dimensions.
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I. INTRODUCTION

The correspondence between type IIB string theory on
AdSs X S target space and the N = 4 super Yang-Mills
theory (SYM) in four space-time dimensions, in the planar
limit, is the most studied example of the AdS/CFT duality
[1]. A lot of impressive progress has been made in this field
of research based on the integrability structures discovered
on both sides of the correspondence (for a recent overview
on AdS/CFT integrability, see Ref. [2]).

Various classical string solutions play an important role
in testing and understanding the AdS/CFT correspondence.
To establish relations with the dual gauge theory, we have
to take the semiclassical limit of /arge conserved charges
like string energy E and spins S;, on AdSs and angular
momenta J; 3 on S° [3].

An example of such a string solution is the so-called
“giant magnon,” for which the energy E and the angular
momentum J; go to infinity, but the difference £ — J; is
finite, while S;, =0, J,3 =0 [4]. It lives on R, X S?
subspace of AdSs X S3, and gave a strong support for the
conjectured all-loop SU(2) spin chain, arising in the dual
N =4 SYM, and made it possible to get a deep insight
into the AdS/CFT duality. This was extended to the giant
magnon bound state (J, # 0), or dyonic giant magnon,
corresponding to a string moving on R, X S and related
to the complex sine-Gordon model [5]. Further extension
to R, X S has also been worked out in Ref. [6], where
it was also shown that such type of string solutions can
be obtained by reduction of the string dynamics to the
Neumann-Rosochatius integrable system. It can be used
also for studding the finite-size effects, related to the wrap-
ping interactions in the dual field theory [7]. From the
string theory viewpoint, the leading, and even subleading
finite size, effect on the giant magnon dispersion relation
was first found and described in Ref. [8]. The case of the
leading finite-size effect on the dyonic giant magnon dis-
persion relation was considered in Ref. [9]. There, the
string theory result was compared with the result coming
from the wp-term Liischer correction, based on the S-matrix
description. Both results coincide.
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During the years, many important achievements
concerning correlation functions in the AdS/CFT context
have been obtained. Recently, interesting developments
have been accomplished by considering general heavy
string states [10-70].!

In Refs. [37,39], the three-point correlation functions of
finite-size (dyonic) giant magnons [4,5] and three different
“light” states have been obtained. They are given in terms
of hypergeometric functions and several parameters.
However, it is important to know their dependence on the
conserved string charges J;, J, and the world-sheet
momentum p, because, namely, these quantities are related
to the corresponding operators in the dual gauge theory,
and the momentum of the magnon excitations in the dual
spin chain. That is why we are going to find this depen-
dence here. Unfortunately, this cannot be done exactly
for the finite-size case due to the complicated dependence
between the above mentioned parameters and J;, J,, p.
Because of that, we will consider only the leading
order finite-size effects on the three-point correlators.
In this paper, we will restrict ourselves to the case of
AdSs X /N = 4 SYM duality.

The paper is organized as follows. In Sec. II,
we first give a short review of the giant magnon solution.
Then, we explain the limitations under which the three-
point correlation functions considered here are computed
and give the exact results in the semiclassical limit.
Section III is devoted to the computation of the leading
order finite-size effects on the three-point correlators given
in Sec. Il in terms of the conserved string angular momenta
and the world-sheet momentum p. In Sec. IV we conclude
with some final remarks.

II. FINITE-SIZE GIANT MAGNONS AND
THREE-POINT CORRELATORS

A. Review of the giant magnon solutions

We denote with Y, X the coordinates in AdS5 and S°
parts of the background AdSs X S°:

'Some papers devoted to the field theory side of the problem
are also included here.
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Y +iY, =sinhpcosne'#?,
Y5+ iYy,=coshpe'.

Y, +iY, =sinhpsinne'¢,

The coordinates Y are related to the Poincare coordinates by

xﬂ’l

1
Y, =—2, Y, =—x"x, +2> - 1),
z 2z

1
Ys = —(x"x, + 22+ 1),
2z

where x"x,, = —x3 + x;x;, withm = 0,1,2,3 and i = 1,
2, 3. We parametrize S° as in Ref. [26].

Euclidean continuation of the timelike directions to 7, =
it, Yo, = iYy, x9, = ixo will allow the classical trajectories
to approach the AdSs boundary z = 0 when 7, — *o0,
and to compute the corresponding correlation functions.

The dyonic finite-size giant magnon solution, where
(7, o) are the world-sheet coordinates, can be written as

(t= \/W’T, iT=1,)
1
= tanh \/WTE, x; =0, =,
( ) ¢ cosh (+vVWr,)
cosf = [y dn( " 4/Xp(a'—v7')|1—e)
T—vo vW

V1 — uz\//\/_p(l - Xxp)
X H(—lfip(l — ),

Xp
am(W\/X_p(U — UT)) 1 — e)

b =

1— 2

d)z: l/liz, (21)

1—v
where # is the angle on which the metric on $° C $°
depends, while ¢, are the isometric angles on it
dn(all — €) is one of the Jacobi elliptic functions,
IT(a, BI1 — €) is the incomplete elliptic integral of the third
kind, and am(x) is the Jacobi amplitude. Let us also mention
that x,, x,, are related to u, v, W parameters according to

2—(1+v)W —u?
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and

e =Xm (2.3)

Xp

For the finite-size dyonic giant magnon string solution,
the explicit expressions for the conserved quantities and
the world-sheet momentum p can be written as [30]

2JW(1 - v?) UZ)K(l — ¢
VI - w«— ’

2./X,
T = \/ﬁ[ o K(l—e) E(l—e)], (2.4)

&=

2u
jz=\/T£ME(1_ €),

2v w Xp
p= [ H(— (1— el - e)
V=2 ;L1 = x, =X
_K(1 - e)], 2.5)
where?
27E 2]
&E=—F T2 = L2

A VA

are the string energy and the two angular momenta.
K(1 —€), E(1 — €), and I1(— lf;’(p(l — €)|1 — €) are the
complete elliptic integrals of first, second, and third kind.
As explained in Ref. [8],® (2.5) should be identified with
the momentum of the magnon excitations in the spin chain
arising in the dual N° = 4 SYM theory.

The dyonic giant magnon dispersion relation, including
the leading finite-size correction, can be written as

E-T, =£|:\/J% +4sin*(p/2) —

sin*(p/2) }

JJ% +4sin2(p/2)

Xp+ X = B a— 2.6)
10+ )W+ (vW)?
XpXm = 1—u? ’ @2 where
|
2(J, + \/jz + 4sm2(p/2))\/.72 + 4sm2(p/2)s1n2(p/2)
€ = l6exp 2.7)
J3 + 4sin*(p/2)

’The relation between the string tension T and the ’t Hooft coupling A in the dual N' =4 SYM is TR? =

common radius of AdSs and S3 subspaces. Here R is set to 1.
3See also Ref. [9] for the dyonic case.

VA/27, where R is the
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The second term in (2.6) represents the leading finite-size
effect on the energy-charge relation, which disappears for
€ — 0, or equivalently J; — oo. It is nonzero only for 7
finite.

The above two equalities are found under the following
conditions on the parameters:

0<u<l, 0<v<l, o<w<l,

0<xm<x,<lL

The case of finite-size giant magnons with one angular
momentum can be obtained by setting u = 0, or J, = 0,
as can be seen from (2.4).
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B. Three-point correlation functions

It is known that the correlation functions of any
conformal field theory can be determined in principle in
terms of the basic conformal data {A; C;;}, where A,
are the conformal dimensions defined by the two-point
correlation functions

C120;

lx; — x2|2A",

<(9,T(X1)(9j(xz)> =

and C;j; are the structure constants in the operator product
expansion

Cijk

<(9i(xl)(9j(x2)@k(x3)> =

lx; =

Therefore, the determination of the initial conformal data
for a given conformal field theory is the most important
step in the conformal bootstrap approach.

The three-point functions of two “heavy’” operators and
a light operator can be approximated by a supergravity
vertex operator evaluated at the heavy classical string
configuration [14,26]:

<VH(x1 )VH(XZ)VL (X3)> = VL (XS)classical-

For |x;| =|x,| =1, x3 =0, the correlation function
reduces to
Vale)Vie)V, (0) = — 12
|x] — x2|2AH

Then, the normalized structure constants

C
o=t
Ciz

can be found from

C = CA VL (O)classical’

where c, is the normalized constant of the corresponding
light vertex operator.

Recently, first results describing finite-size effects on the
three-point correlators appeared [30,31,35,37,39]. This
was done for the cases when the heavy string states are
finite-size giant magnons, carrying one or two angular
momenta, and for three different choices of the light state:

(1) Primary scalar operators: V; = V7",

(2) Dilaton operator: V, = V4.

(3) Singlet scalar operators on higher string levels:

VL = V4.

The corresponding (unintegrated) vertices are given

by [14]

(2.8)

PR T RS

Xy — x|t

VI = (Y4 + Y5) "2 (X + X))

X [272(dx,,0x™ — 9z0z) — 0X,0X,], (2.9)

where the scaling dimension is A, = j. The corresponding
operator in the dual gauge theory is Tr(Z/):*

VI = (Y, + Y5) (X, + iXo Ve X(9x,,0x™ + 02d2)

+ 0X,.0X,], (2.10)
where now the scaling dimension A; = 4 + j to the lead-
ing order in the large VA expansion. The corresponding
operator in the dual gauge theory is proportional to

Tr(F2,Z/ +-++), or for j=0, just to the SYM
Lagrangian:
Vi = (Y, + Ys5) 2(0X,.0X,)4. (2.11)

This operator corresponds to a scalar string state at level
n = g — 1, and to leading order in \/LX expansion

A, = 2(\/@ —DVA+1 - %q(q — 1)+ 1). (2.12)

The value n = 1(q = 2) corresponds to a massive string
state on the first exited level and the corresponding opera-
tor in the dual gauge theory is an operator contained within
the Konishi multiplet. Higher values of n label higher
string levels.

The results obtained for the normalized structure con-
stants (2.8), for the case of finite-size giant magnons in
AdSs X $°, and the above three vertices, are as follows
[37,39]:

*Z is one of the three complex scalars contained in N = 4
SYM.
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j—1

Cpr 3/2 oPT ' Xr

= q7° j F(%+/) [—(1 — MZ)W

, 11
= (1 + )= uz)Xp2F1<—, -5 %; L1 - e)]

2’ 2
FE) X7

1
— 2 -
4+’1“(5”) (1—u2)W[ )X”ZF1<2’

Cd_z 3/2 od

C1=cy 72 F(%) (—1)4[2 = (1 + V)W .

q F(Aq2+1) (1- v2)q—1m,

where ,F,(a, b; c; z) is Gauss’s hypergeometric function.

III. LEADING ORDER FINITE-SIZE EFFECTS

As we already point out in the beginning, (2.4) and (2.5)
cannot be solved exactly with respect to the parameters
involved, in order to express the relevant three-point cor-
relation functions in terms of the conserved charges and p.
That is why we will consider here only the leading order
finite-size effects on the three-point correlators. This
means that we will consider the limit 7 large, i.e., J; >
VA, where the finite-size corrections to both conformal
dimensions and energies of string states have been com-
puted also from the Liischer corrections. Practically, the
problem reduces to consider the limit € — 0, since € = 0
corresponds to the infinite-size case, i.e., J; = . The
relevant expansions of the parameters are [30]

Xp = /\/p() + (/Ypl + XleOg(e))E’ Xm
W=1+ WIE,

= Xm &
v=uvy+ (v, +vylog(e)e,

u=uy+ (u; + u,log(e)e. (3.1)

The coefficients on the first line in (3.1) can be obtained
by using the equalities (2.2) and the definition of € (2.3) to be

2

_ Vo
/\/l)o_l_l_u%;
Xpl = 2U0 2 Q{UO[(I - U(2))2 - 3(1 - U%)u%
(1—=v5)(1 —ug)
+2uf = 2(1 = v)ugu 1= 2(1 = v3) (1 = ud)vy},
Jo— vy + (vouy — ugvy)ug
2_ 0 y
P (1—ud)?
2 2
v (l—uo—vo)
=1-—s, Wi=——— O 3.2
R B (T I

The coefficients in the expansions of v and u we take from
Ref. [71], where for the case under consideration we have to
set K; = x,1 = 0, or equivalently ® = 0. This leads to

[(1 — W+ j(1 — v®W)),F, (
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11
2’2 20 6)

(2.13)

q! 1 — u? ko, 11
- XpoFil5 5~
Sklg—L 1-11+Hwl"7 2°2

2.15)
[
sin (p)
Vg = 5
VT3 + 4sin*(p/2)
_ P
MO = 5
VT3 + 4sin*(p/2)d
vl = uo)

v =3 u0>(1 10— )1~ log (16)

—ud(5 - v%(l + 10g(16)) — log (4096))],
v, = ‘Uo(l - Uo - uo)
a1 - w1 - D)

[1- v(z) — u%(3 + v(z))],

4y = Z‘O(}m—))[1 log (16) — v5(1 + log (16))],
~ug(1 = vi —ud)
1y = W(l +v3). (3.3)

We need also the expression for €. It can be found
from the expansion of 7, and to the leading order is given
by (2.7).

A. Giant magnons and primary scalar operators

Let us first point out that (2.13) simplifies a lot when j is
odd (j=2m+ 1, m=0,1,2,...). In that case, Gauss’s
hypergeometric functions in (2.13) reduce to polynomials.
This results in

3/2 AP I(m + ) m/2X
Com+1 F(m + 2) ,———————(1 —

x[~20m + 00— Wex P (57)

+ (1 =W+ @2m+ 1)1 —v*W))P, (12}6)]

(3.4)

62m+1

where P, (z) are Legendre’s polynomials.
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Since the corresponding operators in the dual gauge theory are of the type Tr(Z’/), we will restrict ourselves to
integer-valued j.

Let us start with the simpler case when J, = 0, or equivalently # = 0. Expanding (2.13) in € and using (3.1), (3.2), and
(3.3), one finds that®

4 ,
Chy =0, Chy = gcgrjlsinz(p/Z)e, Ch = cla;sin(p/2) e, ji=3...,10, (3.5)
where

€= 16exp[—2— T csc(p/2)] (3.6)

for the case under consideration.® The numerical coefficients a j are given by

(1 L2 1 , 27 35, 210 57 0 oM )
=T = =T =, T = o T o )
GT\a" 35 16" 3257 0 T Bsr ol T 252 2 ]

A few comments are in order. From (3.5) one can conclude that the CY and C5, cases are exceptional, while C% have the

same structure for j = 3. C}, = 0 means that the small € contribution to the three-point correlator is zero to the leading
order in e. C; is the only one normalized structure constant of this type proportional to 7. It is still exponentially
suppressed by €. The common feature of C% in (3.5) is that they all vanish in the infinite-size case, i.e., for € = 0. This

property was established in Ref. [26], and confirmed even for the y-deformed case in Ref. [37]. Here, we obtained the
leading finite-size corrections to it.
Now, let us turn to the dyonic case, i.e., J, # 0. Working in the same way, but with u # 0, we derive

j=1:
pr 77_2 J3esc(p/2)
116 [72 + 4sin2(p/2) /AL T2 + 4sin*(p/2)]

X {8[j% + 4sin%(p/2)|[ T3 + 4sin*(p/2)] + sin?(p/2)[40 + 1775 + 2J5% — 20(3 + J3) cos (p)

J5 + 8sin?(p/2)
J3 + 4sin(p/2)

' =c

+3(8 + J2)cos (2p) — 4cos(3p) — 4 X (T3 T3 + 4sin2(p/2) + T3 + 4sin2(p/2))

X (T2 + dsin*(p/2) + 2sin2<p>>sin2(p/z)]e}; 37)
j=2:
=2 !

32 [ + 4sin2(p/ 2[5 + dsin*(p/2)]
X {2j§[j§ + 4sin?(p/2)][ T3 + 4sin*(p/2)] — sin*(p/2) X [20 + 373 — 2735 — 2(15

8
J3 +4sin*(p/2)

X (=3 +2(2 + J3)cos(p) — cos (2p))sin4(p/2)]e}; (3.8)

+2J3)cos (p) + (12 + J3) cos (2p) — 2cos 3p) + (jl\/j% +4sin?(p/2) + J5 + 4sin?(p/2))

>We use the notation C% in order to say that C}" are computed for the case J, = 0.

“This expression for € comes from (2.7) after setting 7, = 0.
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Jj=3
[73 + 4sin*(p/2)P/?

J5 + 4sin*(p/2)

J3 +4sin*(p/2) [ 25.7% _ T3 + 4sin*(p/2)
[J3 + 4sin?(p/2)F  LLT3 +4sin(p/2)P 7 *[TJ} + 4sin?(p/2)F
1 — 12cos(p) + cos 2p) + 673

[J3 + 4sin?(p/2)]*
+ jl\/j% +4sin?(p/2)) X (80 + 4273 + 1275 — (120 + 4773 — 473) cos (p) + (8 + T3)(6 cos (2p)
1 3 2075sin?(p)

72
= 356 ©5¢ (p/2)

X {48J§sin 2(p/2) (21 = 16cos (p)

+ (373(T3 + 4sin*(p/2)

—500s(2p)+8j%)—%jgl

— COS (3P)))S1n4(l7/2)) [j% n 4s1n2(p/2)]4[j% n 4sm4(p/2)] [j% n 4s1n2(p/2)]3
3J3sin*(p) T3+ 4sin*(p/2)\27 ].
s~ s o) I (39)
j=4
o~ 2o [73 + 4sin?(p/2)]/ {3252[32 + 4sin*(p/2)]sin*(p/2)
4 45 J5 +4sin*(p/2) [J3 + 4sin?(p/2)P
B 1775 J3 +4sin*(p/2) B B
I:[Jz a2 F Jg 72+ dsin(p/)F (39 — 32cos (p) — 7cos (2p) + 1673)
11 —-12 + 2p) + 6
- J8 [;(;S_f_pism(;?;;z;)]i J5 + (2J3(J3 + 4sin%(p/2) + jl\/jz + 4sin?(p/2))
X (75 + 4473 + 1675 — 2(58 + 2375 — 4J3) cos (p) + 4(13 + J3) cos (2p) — 2(6 + J3) cos (3p)
_ 1 _ 1373sin?(p)
+eos@psinp /) X G TS + dsin /D] (3 + dsin?(p/2)T
2J3sin*(p) LT3+ 4sin*(p/2)\2
T anonr e 4 (3.10)

In the four formulas above € is given by (2.7).

B. Giant magnons and dilaton operator

The leading finite-size effect on the normalized structure constant in the three-point correlator of two finite-size giant
magnon’s states and zero-momentum dilaton operator (j = 0), in the limit J; > VA, has been considered in Ref. [30].
Here, we will deal with the j > 0 cases. Since the corresponding operators in the dual gauge theory are proportional to
Tr(F3,Z/ + - - ), we will restrict ourselves to integer-valued j.

When jisodd (j =2m + 1,m =0, 1,2,...), the normalized structure constants (2.14) simplify to

Lim+3) em/2ym l1+e€ 1+e€
— 3/2 .d p 2 — - W I
CZm+l 27T Com+s r(m + 3) (1 — uz) [ u )\/EXme+1< 2\/;) (1 )Pm< 2\/; )] (311)

Expanding (2.14) in € and using (3.1), (3.2), and (3.3), one finds
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j=1
1 B 1
\/J 2 1 45in2(p/2) 128(73 + 4sin?(p/2))>2(J3 + 4sin*(p/2))?

X [(840 + 82672 + 25874 — 2475 — 2(744 + 70773 + 24474 + 72.75) cos (p)
+ 4255 + 21872 + 6274 — 6.75) cos (2p) — (520 + 36772 + 24.73) cos (3p) + 2(92
+ 4773 + 3735) cos (4p) — (40 + 1173) cos (5p) + 4 cos (6p))

Cl = —77 cssm3(p/2){

+875in2(p/2)y T3 + 4sin2(p/2)(8 + 1973 + 12.7%) cos (p)

+ (8 — 16J3) cos (2p) — (8 +3F3)cos (3p) — 2(5 + 573 — 25 — cos (4p)))]e};

j=2:

8

1
C = 2 c6s1n4(p/2){ !

\/ J2 + 4sin2(p/2) 128(J2 + 4sin2(p/2))2(J2 + 4sin*(p/2))?
X [(210 + 873(6 — J3)(7 + 473) — 8(63 + 8473 + 3875 + 16.7%) cos (p) + (585 + 57673
+ 17675 — 3275) cos (2p) — 4(115 + 8473 + 473) cos (3p) + 2(111 + 5675 + 473) cos (4p)

3%5

— 4(15 + 473) cos (5p) + Tcos (6p)) — 8J1sin2(p/2)\/\7% + 4sin2(p/2)(15 + 875 — 875

—4(3 + 573 +4T3)cos (p) — (12 — 873) cos (2p) + 4(3 + J3) cos (3p) — 3 cos (4p))]e};

j=3
3.5 ! !
Cd ~ 7 5 2 +
73 m>cgsin’(p/ )[‘/\7% T sin(p/2) 960(73 + 4sin?(p/2))¥*(J3 + 4sin*(p/2))?

X [20(256(13 + 15 cos (p))sin 1%(p/2) + 288.75(5 + T cos (p))sin®(p/2) + J5(54 + 241 cos (p)
+ 10cos (2p) + 15cos (3p))sin2(p/2) + 10T5 cos (p)(5 + 3 cos (p)))

+ 607 5in2(p/2y T3 + 4sin2(p/2)(20 + 673 — 1274 — (16 + 2173 + 20.7%) cos (p)

—2(8 =5J3)cos(2p) + (16 + 573) cos (3p) — 4cos (4p))]e};
j=4:

11 1 1

_l’_
\/‘7% + 4sin2(p/2) 8192(J3 + 4sin2(p/2))*/*(J3 + 4sin*(p/2))?
X [64(294 + 1475 — 60T% + 4875 — 4(51 — 4973 — 537J% — 3675) cos (p)
— (435 + 8j2(61 + 19‘72 - 6j4)) cos (2p) + 2(305 + 209‘72 + 6J§) cos(3p)
—2(179 + 8373 + 6J3) cos (4p) + 2(53 + 1373) cos (5p) — 13 cos (6p))

2
Cd ~
43527

cgsinﬁ(p/Z){

+ 512j1sin2(p/2)\/j§ +4sin2(p/2)(25 + 4% — 1674 — (20 + 2272 + 24.7%) cos (p)

—4(5 —3J3) cos (2p) +2(10 + 373) cos 3p) — 5cos (4p))]e}.

In the four formulas above € is given by (2.7).
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Actually, we computed the normalized coefficients in the three-point correlators up to j = 10. However, since
the expressions for them are too complicated, we give here only the results for the first two odd and two even
values of j. Knowing these expressions, the conclusion is that they have the same structure for any j in the small € limit.” Namely,

1 Cl/'

J’_
JT2 +asin2(@) (T3 +4sin )T + 4sint )

X [P?(jg) + jlsin2<§) T+ 4sin2(§)Qj2(j§)]e , (3.12)

Cd ~ Ajc;?ﬂsin”z(B)

where € is given in (2.7), A; and a; are numerical coefficients, while P?(j 5) and Q3(J3) are polynomials of third and
second order, respectively, with coefficients depending on p in a trigonometric way.

Now, let us restrict ourselves to the simpler case when J, = 0, i.e., giant magnon string states with one (large) angular
momentum 7; # 0. Knowing the above results for 1 = j = 10, one can conclude that the normalized structure constants

in the three-point correlators for any j = 1 in the small € limit look like®

A; . 3 —2-
de-o =~ ?"c7+4sin/<§)[sin (g) + (Bjo sin (g) + Cjpsin (jp) + Djo(1 + cos (p))Jl)e "‘“5], (3.13)
where
2.11 2332 53 2.73
Bj0:<_22,3, 3 ,11, 5 ,?, 7 ,233,...) forj=(1,...,8,...), C]0=1+3J, D]0:2(1+1)

C. Giant magnons and singlet scalar operators on higher string levels

For that case, the expressions for the normalized structure constants in the three-point correlation functions for dyonic
giant magnons are too long and complicated. That is why we will write down here the results for finite-size giant magnon
states only, i.e., for 7, = 0. Then, after small € expansion, one can find that (2.15) reduces to’

by NF T
0 A, Aqo F(1+2A‘I)

+ Agesc(p/2)(1 + cos (p)) T 1]}, (3.14)

{Aqysin(p/2) + Aqy T + [(Ags + Agycos (p))sin(p/2) + (Ags + Age cos (p)) T

where Ag; (i =0, 1, ..., 7) are numerical coefficients, and for the case at hand € is given by (3.6).
This is the general structure of C{. The values of Ag; we found are as follows (¢ = 1,..., 10):

Aqo = (8,24, 60, 420, 2520, 27720, 180180, 180180, 3063060, 116396280),

Aq, = (16, —16, 152, —632, 7216, —55216, 559304, —420312, 10089896, —301915216),

Ag, = (—38,24, —60, 420, —2520, 27720, — 180180, 180180, —3063060, 116396280),

Agqs = (2, =66, 147, —2575, 13446, —272694, 1555993, —2484923, 37469109, —2088496586),
Agqy = (2, —10,171, —1027, 15334, — 144942, 1747825, — 1523631, 41620821, —1396357874),

187 1 12 27342361
Ags = (—5, 31, - 187 1897 6343 86653, — 1220090 3 490499, — 27342901 ,587890603),
22 2 2 2
7 1207 86299 3 22747771
Age = (1, 13, - 97, 5 4453, 65863, - 986299, 5400409, — == 500593393),
15 105 45045 3 765765
Agy = (—1, 3, = ~315,3465, — =5, 215015, - =5, 14549535). (3.15)

"The only difference in that sense is that for j odd an additional overall factor of 772 appears, as can be seen from the formulas above.

SC‘/?O is used for Cj-’ computed for the 7, = 0 case.

i = ¢4 computed for J, = 0.
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LEADING FINITE-SIZE EFFECTS ON SOME THREE- ...
IV. CONCLUDING REMARKS

In this paper, in the framework of the semiclassical ap-
proach, we computed the leading finite-size effects on the
normalized structure constants in some three-point correlation
functions in AdSs X S, expressed in terms of the conserved
string angular momenta J;, J,, and the world-sheet momen-
tum p,,, identified with the momentum p of the magnon
excitations in the dual spin chain arising in N' = 4 SYM in
four dimensions. Namely, we found the leading finite-size
effects on the structure constants in three-point correlators of
two heavy (dyonic) giant magnon’s string states and the
following three light states:

PHYSICAL REVIEW D 87, 066003 (2013)

(1) Primary scalar operators;
(2) Dilaton operator with nonzero momentum
G =1

(3) Singlet scalar operators on higher string levels.

A natural generalization of the above results would be
to consider the case of y-deformed (or 7'sT-transformed)
AdSs X S$° type IIB string theory background. Another
possible issue to investigate is the case of AdS, X CP?
type IIA string theory background, dual to JN° = 6 super
Chern-Simons-matter theory in three space-time dimen-
sions (Aharony-Bergman-Jafferis-Maldacena model) and
its T'sT deformations. We hope to report on these soon.

[1] J.M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);
S.S. Gubser, I.R. Klebanov, and A.M. Polyakov, Phys.
Lett. B 428, 105 (1998); E. Witten, Adv. Theor. Math.
Phys. 2, 253 (1998).

[2] N. Beisert et al., Lett. Math. Phys. 99, 3 (2012).

[3] S.S. Gubser, I.R. Klebanov, and A. M. Polyakov, Nucl.
Phys. B636, 99 (2002).

[4] D.M. Hofman and J. Maldacena, J. Phys. A 39, 13095 (2006).

[5] H.-Y. Chen, N. Dorey, and K. Okamura, J. High Energy
Phys. 09 (2006) 024.

[6] M. Kruczenski, J. Russo, and A.A. Tseytlin, J. High
Energy Phys. 10 (2006) 002.

[7] J. Ambjorn, R. A. Janik, and C. Kristjansen, Nucl. Phys.
B736, 288 (2006); R.A. Janik and T. Lukowski, Phys.
Rev. D 76, 126008 (2007).

[8] G. Arutyunov, S. Frolov, and M. Zamaklar, Nucl. Phys.
B778, 1 (2007).

[9] Y. Hatsuda and R. Suzuki, Nucl. Phys. B800, 349 (2008).

[10] R.A. Janik, P. Surowka, and A. Wereszczynski, J. High
Energy Phys. 05 (2010) 030.

[11] E.I. Buchbinder and A. A. Tseytlin, J. High Energy Phys.
08 (2010) 057.

[12] K. Zarembo, J. High Energy Phys. 09 (2010) 030.

[13] M.S. Costa, R. Monteiro, J. E. Santos, and D. Zoakos, J.
High Energy Phys. 11 (2010) 141.

[14] R. Roiban and A.A. Tseytlin, Phys. Rev. D 82, 106011
(2010).

[15] R. Hernandez, J. Phys. A 44, 085403 (2011).

[16] S. Ryang, J. High Energy Phys. 01 (2011) 092.

[17] G. Georgiou, J. High Energy Phys. 02 (2011) 046.

[18] J. Escobedo, N. Gromov, A. Sever, and P. Vieira, J. High
Energy Phys. 09 (2011) 028.

[19] D. Arnaudov and R. C. Rashkov, Phys. Rev. D 83, 066011
(2011).

[20] J.G. Russo and A.A. Tseytlin, J. High Energy Phys. 02
(2011) 0209.

[21] C. Park and B. Lee, Phys. Rev. D 83, 126004 (2011).

[22] E.I. Buchbinder and A. A. Tseytlin, J. High Energy Phys.
02 (2011) 072.

[23] D. Bak, B. Chen, and J. Wu, J. High Energy Phys. 06
(2011) 014.

[24] A. Bissi, C. Kristjansen, D. Young, and K. Zoubos, J. High
Energy Phys. 06 (2011) 085.

[25] D. Arnaudov, R.C. Rashkov, and T. Vetsov, Int. J. Mod.
Phys. A 26, 3403 (2011).

[26] R. Hernandez, J. High Energy Phys. 05 (2011) 123.

[27] X. Bai, B. Lee, and C. Park, Phys. Rev. D 84, 026009
(2011).

[28] J. Escobedo, N. Gromov, A. Sever, and P. Vieira, J. High
Energy Phys. 09 (2011) 029.

[29] L.F. Alday and A.A. Tseytlin, J. Phys. A 44, 395401
(2011).

[30] C. Ahn and P. Bozhilov, Phys. Lett. B 702, 286 (2011).

[31] B. Lee and C. Park, Phys. Rev. D 84, 086005 (2011).

[32] T. Klose and T. McLoughlin, J. High Energy Phys. 04
(2012) 080.

[33] D. Arnaudov and R. C. Rashkov, Fortschr. Phys. 60, 217
(2012).

[34] D. Arnaudov and R. C. Rashkov, Phys. Rev. D 84, 086009
(2011).

[35] C. Ahn and P. Bozhilov, Phys. Rev. D 84, 126011
(2011).

[36] G. Georgiou, J. High Energy Phys. 09 (2011) 132.

[37] P. Bozhilov, J. High Energy Phys. 08 (2011) 121.

[38] M. Michalcik, R.C. Rashkov, and M. Schimpf, Mod.
Phys. Lett. A 27, 1250091 (2012).

[39] P. Bozhilov, Nucl. Phys. B855, 268 (2012).

[40] S. Ryang, J. High Energy Phys. 11 (2011) 026.

[41] R. Janik and A. Wereszczynski, J. High Energy Phys. 12
(2011) 095.

[42] Y. Kazama and S. Komatsu, J. High Energy Phys. 01
(2012) 110; 06 (2012) 150(E).

[43] E.I. Buchbinder and A.A. Tseytlin, Phys. Rev. D 85,
026001 (2012).

[44] N. Gromov, A. Sever, and P. Vieira, J. High Energy Phys.
07 (2012) 044.

[45] Omar Foda, J. High Energy Phys. 03 (2012) 096.

[46] A. Bissi, T. Harmark, and M. Orselli, J. High Energy Phys.
02 (2012) 133.

[47] G. Georgiou, V. Gili, A. Grossardt, and J. Plefka, J. High
Energy Phys. 04 (2012) 038.

[48] C.A. Cardona, Nucl. Phys. B867, 165 (2013).

066003-9


http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1007/s11005-011-0529-2
http://dx.doi.org/10.1016/S0550-3213(02)00373-5
http://dx.doi.org/10.1016/S0550-3213(02)00373-5
http://dx.doi.org/10.1088/0305-4470/39/41/S17
http://dx.doi.org/10.1088/1126-6708/2006/09/024
http://dx.doi.org/10.1088/1126-6708/2006/09/024
http://dx.doi.org/10.1088/1126-6708/2006/10/002
http://dx.doi.org/10.1088/1126-6708/2006/10/002
http://dx.doi.org/10.1016/j.nuclphysb.2005.12.007
http://dx.doi.org/10.1016/j.nuclphysb.2005.12.007
http://dx.doi.org/10.1103/PhysRevD.76.126008
http://dx.doi.org/10.1103/PhysRevD.76.126008
http://dx.doi.org/10.1016/j.nuclphysb.2006.12.026
http://dx.doi.org/10.1016/j.nuclphysb.2006.12.026
http://dx.doi.org/10.1016/j.nuclphysb.2008.04.007
http://dx.doi.org/10.1007/JHEP05(2010)030
http://dx.doi.org/10.1007/JHEP05(2010)030
http://dx.doi.org/10.1007/JHEP08(2010)057
http://dx.doi.org/10.1007/JHEP08(2010)057
http://dx.doi.org/10.1007/JHEP09(2010)030
http://dx.doi.org/10.1007/JHEP11(2010)141
http://dx.doi.org/10.1007/JHEP11(2010)141
http://dx.doi.org/10.1103/PhysRevD.82.106011
http://dx.doi.org/10.1103/PhysRevD.82.106011
http://dx.doi.org/10.1088/1751-8113/44/8/085403
http://dx.doi.org/10.1007/JHEP01(2011)092
http://dx.doi.org/10.1007/JHEP02(2011)046
http://dx.doi.org/10.1007/JHEP09(2011)028
http://dx.doi.org/10.1007/JHEP09(2011)028
http://dx.doi.org/10.1103/PhysRevD.83.066011
http://dx.doi.org/10.1103/PhysRevD.83.066011
http://dx.doi.org/10.1007/JHEP02(2011)029
http://dx.doi.org/10.1007/JHEP02(2011)029
http://dx.doi.org/10.1103/PhysRevD.83.126004
http://dx.doi.org/10.1007/JHEP02(2011)072
http://dx.doi.org/10.1007/JHEP02(2011)072
http://dx.doi.org/10.1007/JHEP06(2011)014
http://dx.doi.org/10.1007/JHEP06(2011)014
http://dx.doi.org/10.1007/JHEP06(2011)085
http://dx.doi.org/10.1007/JHEP06(2011)085
http://dx.doi.org/10.1142/S0217751X11053869
http://dx.doi.org/10.1142/S0217751X11053869
http://dx.doi.org/10.1007/JHEP05(2011)123
http://dx.doi.org/10.1103/PhysRevD.84.026009
http://dx.doi.org/10.1103/PhysRevD.84.026009
http://dx.doi.org/10.1007/JHEP09(2011)029
http://dx.doi.org/10.1007/JHEP09(2011)029
http://dx.doi.org/10.1088/1751-8113/44/39/395401
http://dx.doi.org/10.1088/1751-8113/44/39/395401
http://dx.doi.org/10.1016/j.physletb.2011.07.011
http://dx.doi.org/10.1103/PhysRevD.84.086005
http://dx.doi.org/10.1007/JHEP04(2012)080
http://dx.doi.org/10.1007/JHEP04(2012)080
http://dx.doi.org/10.1002/prop.201100081
http://dx.doi.org/10.1002/prop.201100081
http://dx.doi.org/10.1103/PhysRevD.84.086009
http://dx.doi.org/10.1103/PhysRevD.84.086009
http://dx.doi.org/10.1103/PhysRevD.84.126011
http://dx.doi.org/10.1103/PhysRevD.84.126011
http://dx.doi.org/10.1007/JHEP09(2011)132
http://dx.doi.org/10.1007/JHEP08(2011)121
http://dx.doi.org/10.1142/S0217732312500915
http://dx.doi.org/10.1142/S0217732312500915
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.008
http://dx.doi.org/10.1007/JHEP11(2011)026
http://dx.doi.org/10.1007/JHEP12(2011)095
http://dx.doi.org/10.1007/JHEP12(2011)095
http://dx.doi.org/10.1007/JHEP01(2012)110
http://dx.doi.org/10.1007/JHEP01(2012)110
http://dx.doi.org/10.1007/JHEP06(2012)150
http://dx.doi.org/10.1103/PhysRevD.85.026001
http://dx.doi.org/10.1103/PhysRevD.85.026001
http://dx.doi.org/10.1007/JHEP07(2012)044
http://dx.doi.org/10.1007/JHEP07(2012)044
http://dx.doi.org/10.1007/JHEP03(2012)096
http://dx.doi.org/10.1007/JHEP02(2012)133
http://dx.doi.org/10.1007/JHEP02(2012)133
http://dx.doi.org/10.1007/JHEP04(2012)038
http://dx.doi.org/10.1007/JHEP04(2012)038
http://dx.doi.org/10.1016/j.nuclphysb.2012.09.017

PLAMEN BOZHILOV

(49]
(50]
[51]
[52]
(53]
[54]
[55]

[56]
[57]

(58]

[59]

N. Gromov and P. Vieira, arXiv:1202.4103v1.

R. Hernandez, Nucl. Phys. B862, 751 (2012).

C. Ahn, O. Foda, and R.I. Nepomechie, J. High Energy
Phys. 06 (2012) 168.

D. Serban, J. High Energy Phys. 01 (2013) O12.

I. Kostov, Phys. Rev. Lett. 108, 261604 (2012).

P. Bozhilov, P. Furlan, V. B. Petkova, and M. Stanishkov,
Phys. Rev. D 86, 066005 (2012).

G. Grignani and A.V. Zayakin, J. High Energy Phys. 06
(2012) 142.

S. Ryang, Phys. Lett. B 713, 122 (2012).

P. Caputa, R. de Mello Koch, and K. Zoubos, J. High
Energy Phys. 08 (2012) 143.

S. Hirano, C. Kristjansen, and D. Young, J. High Energy
Phys. 07 (2012) 006.

I. Kostov, J. Phys. A 45, 494018 (2012).

[60]

[61]
[62]

[63]
[64]
[65]
[66]
[67]
[68]

[69]

[70]
[71]

066003-10

PHYSICAL REVIEW D 87, 066003 (2013)

G. Grignani and A.V. Zayakin, J. High Energy Phys. 9
(2012) 087.

N. Gromov and P. Vieira, arXiv:1205.5288v1.

Y. Kazama and S. Komatsu, J. High Energy Phys. 09
(2012) 022.

D. Arnaudov and R. C. Rashkov, arXiv:1206.2613v1.

J. A. Minahan, J. High Energy Phys. 07 (2012) 187.
A.Bissi, G. Grignani, and A. V. Zayakin, arXiv:1208.0100v 1.
J. Caetano and J. Toledo, arXiv:1208.4548v2.

H. Lin, J. High Energy Phys. 12 (2012) 011.

P. Caputa and B. A. E. Mohammed, J. High Energy Phys. 1
(2013) 055.

A. Bissi, C. Kristjansen, A. Martirosyan, and M. Orselli, J.
High Energy Phys. 01 (2013) 137.

B. Gwak, B.-H. Lee, and C. Park, arXiv:1211.5838.

P. Bozhilov, arXiv:1010.5465v1.


http://arXiv.org/abs/1202.4103v1
http://dx.doi.org/10.1016/j.nuclphysb.2012.05.013
http://dx.doi.org/10.1007/JHEP06(2012)168
http://dx.doi.org/10.1007/JHEP06(2012)168
http://dx.doi.org/10.1007/JHEP01(2013)012
http://dx.doi.org/10.1103/PhysRevLett.108.261604
http://dx.doi.org/10.1103/PhysRevD.86.066005
http://dx.doi.org/10.1007/JHEP06(2012)142
http://dx.doi.org/10.1007/JHEP06(2012)142
http://dx.doi.org/10.1016/j.physletb.2012.05.049
http://dx.doi.org/10.1007/JHEP08(2012)143
http://dx.doi.org/10.1007/JHEP08(2012)143
http://dx.doi.org/10.1007/JHEP07(2012)006
http://dx.doi.org/10.1007/JHEP07(2012)006
http://dx.doi.org/10.1088/1751-8113/45/49/494018
http://dx.doi.org/10.1007/JHEP09(2012)087
http://dx.doi.org/10.1007/JHEP09(2012)087
http://arXiv.org/abs/1205.5288v1
http://dx.doi.org/10.1007/JHEP09(2012)022
http://dx.doi.org/10.1007/JHEP09(2012)022
http://arXiv.org/abs/1206.2613v1
http://dx.doi.org/10.1007/JHEP07(2012)187
http://arXiv.org/abs/1208.0100v1
http://arXiv.org/abs/1208.4548v2
http://dx.doi.org/10.1007/JHEP12(2012)011
http://dx.doi.org/10.1007/JHEP01(2013)055
http://dx.doi.org/10.1007/JHEP01(2013)055
http://dx.doi.org/10.1007/JHEP01(2013)137
http://dx.doi.org/10.1007/JHEP01(2013)137
http://arXiv.org/abs/1211.5838
http://arXiv.org/abs/1010.5465v1

