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We consider the electromagnetic and gravitational interactions of a massive Rarita-Schwinger field.

Stückelberg analysis of the system, when coupled to electromagnetism in flat space or to gravity, reveals

in either case that the effective field theory has a model-independent upper bound on its UV cutoff, which

is finite but parametrically larger than the particle’s mass. It is the helicity-1=2 mode that becomes

strongly coupled at the cutoff scale. If the interactions are inconsistent, the same mode becomes a telltale

sign of pathologies. Alternatively, consistent interactions are those that propagate this mode within the

light cone. Studying its dynamics not only sheds light on the Velo-Zwanziger acausality, but also

elucidates why supergravity and other known consistent models are pathology-free.
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I. INTRODUCTION

The Rarita-Schwinger field carries a spin-3=2 represen-
tation of the Poincaré group, whose noninteracting massive
theory is described by the following Lagrangian [1]:

L free ¼ �i �c ��
���@�c � � im �c ��

��c �; (1)

with m being the mass.1 The Dirac equation,
ð6@�mÞc � ¼ 0, along with the correct constraints,

@�c � ¼ ��c � ¼ 0, can easily be reproduced from the

Lagrangian equations of motion. The degrees-of-freedom
count works as follows. In four dimensions the vector-
spinor c � contains 4� 4 ¼ 16 components. The trans-

versality and �-tracelessness constraints each remove four
of them, so that one is left with eight degrees of freedom
(four field variables plus four conjugate momenta). Indeed,
a massive spin-3=2 particle has four physical polarizations.

When interactions are turned on—as noticed by various
authors [2–4]—the theory is generically fraught with incon-
sistencies even at the classical level,2 despite the fact that
one starts from a Lagrangian, as per suggestions made in
Ref. [6]. The interacting theory may fail to reproduce the
necessary constraints that forbid propagating unphysical
modes, or it may give rise to the Velo-Zwanziger acausality
[2], i.e., allow faster-than-light speeds for the physical
modes. The addition of nonminimal terms and/or new dy-
namical fields may come to the rescue. For example, the
Lagrangian proposed in Ref. [7] incorporates appropriate
nonminimal terms that only causally propagate the physical
modes of a massive spin-3=2 field in a constant external

electromagnetic (EM) background. A more well-known
example isN ¼ 2 (broken) supergravity [8,9], which con-
tains a massive gravitino that propagates consistently—even
when the cosmological constant is set to zero—given that it
has a charge, e ¼ 1ffiffi

2
p ðm=MPÞ, under the graviphoton [10].

Here causality is preserved by the presence of both EM and
gravity, along with nonminimal terms.
The pathologies arising in an interacting theory are due

to a simple fact: the kinetic part of the free theory (1)
enjoys a gauge invariance, and the zero modes may acquire
nonvanishing but noncanonical kinetic terms in the pres-
ence of interactions. The best way of understanding these
issues is the Stückelberg formalism, which was employed
in the context of massive spin-2 field, for example, in
Refs. [11,12]. To understand this formalism, let us notice
that in the massive theory (1) gauge invariance can be
restored by introducing a spin-1=2 (Stückelberg) field �
through the field redefinition

c � ! c 0
� ¼ c � � 1

m
@��: (2)

Now the Lagrangian is manifestly invariant under the
Stückelberg symmetry,

�c � ¼ @��; �� ¼ m�; (3)

where � is a fermionic gauge parameter. Note that when
the field redefinition (2) is implemented, potentially bad
higher-derivative terms in � are killed by the antisymmetry
of ���. This is a slick way of understanding the structure of
the mass term in Eq. (1).
The Stückelberg field is a mere redundancy since one

can always choose a gauge in which � ¼ 0, as in the
Lagrangian (1). The unitary gauge, however, obscures the
subtleties associated with an interacting theory, and is
therefore not particularly illuminating when interactions
are present. On the other hand, as we will see, the intri-
cacies become rather transparent in a different, judiciously
chosen gauge that instead renders the kinetic operators

1Our conventions are that the metric is mostly positive, the
Clifford algebra is f��; ��g ¼ þ2g��, ��y ¼ �����, �5 ¼�i�0�1�2�3, ��1...:�n ¼ 1

n!�
�1��2 . . .��n þantisymmetrization.

The Dirac adjoint is defined as �c � ¼ c y
��

0. The totally anti-
symmetric tensor 	���
 is normalized as 	0123 ¼ þ1.

2Pathologies at the quantum level were noticed much earlier in
Ref. [5], where it was shown that canonical commutators may
become ill-defined in an interacting theory.
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diagonal. For an interacting theory, the latter gauge choice
enables one to assign canonical dimensions to potential
nonrenormalizable operators.

The organization of this paper is as follows. In the Sec. II
we consider minimal EM and gravitational couplings of a
massive Rarita-Schwinger field, and show that each theory
possesses an intrinsic finite UV cutoff, which can be im-
proved neither by field redefinitions nor by the addition of
nonminimal terms. In Sec. III we perform a Stückelberg
analysis of various (in)consistent Lagrangians that attempt
to describe interactions of a massive spin-3=2 field. In
particular, Sec. III A considers minimal EM coupling and
reproduces the Velo-Zwanziger result [2], while Sec. III B
sheds new light on why the nonminimal Lagrangian pre-
sented in Ref. [7] is consistent. Section III C reconfirms
that minimal gravitational coupling is pathology-free in
arbitrary Einstein spaces [13], and finally Sec. III D ana-
lyzes the consistency of N ¼ 2 (broken) supergravity
[8–10]. We conclude with some remarks in Sec. IV.

II. ULTRAVIOLET CUTOFF

Local Lagrangians describing the interactions of a mas-
sive spin-3=2 field do not have a smooth massless limit.
Because the free part of the Lagrangian acquires a gauge
invariance in this limit, propagators of the massive theory
become singular, so that scattering amplitudes diverge.
Notice, however, that if we introduce minimal coupling
(to EM or gravity) in the Rarita-Schwinger action (1), no
inverse powers of the mass appear in the resulting
Lagrangian. Thus the massless singularity is not at all
obvious in the unitary gauge.

The Stückelberg formalism, on the other hand, focuses
precisely on the gauge modes responsible for bad high-
energy behavior. One can ‘‘invent’’ the Stückelberg sym-
metry and then exploit it to make a judicious covariant
gauge fixing such that the propagators acquire a smooth
massless limit. In this gauge one will end up having an
explicit dependence on inverse powers of the mass in the
form of nonrenormalizable interaction terms that involve
the Stückelberg field �. The cutoff scale can be read off
from the most divergent terms in the Lagrangian—the
terms that survive in an appropriate scaling limit of zero
mass and zero coupling.

A. EM coupling in flat space

First we consider EM coupling in flat space, and show
that the theory has an upper bound on its UV cutoff.3 When
minimally coupled to a U(1) gauge field, the Stückelberg-
invariant Lagrangian for a massive Rarita-Schwinger field
reads

Lem¼�i

�
�c �� 1

m
��DQ �

�

�ð����D�þm���Þ
�
c �� 1

m
D��

�
�1

4
F2
��; (4)

which has the manifest gauged Stückelberg symmetry,

�c � ¼ D��; �� ¼ m�; (5)

where the covariant derivatives obey ½D�;D�� ¼ ieF��.

More explicitly,

Lem ¼ L3=2 þLmix þLint � 1

4
F2
��; (6)

where L3=2 involves only the helicity-3=2 mode, Lmix is

the kinetic mixing between the two modes, and Lint are
nonrenormalizable interaction terms, respectively, given as

L3=2 ¼ �i �c ��
���D�c � � im �c ��

��c �; (7)

Lmix ¼ ið �c ��
��D��þ ��DQ ��

��c �Þ; (8)

Lint ¼ e

2m
F��ð ������c � � �c ��

����� ������Þ

� e

2m2
F�� ���

���D��: (9)

The kinetic mixing can be removed by a field redefinition,
namely

c � ! c � þ 1

2
���; (10)

which, at the same time, produces a kinetic term for � as
well as mass mixing. Now we can add the following gauge-
fixing term to the Lagrangian:

Lgf ¼ i �c �ð����� � �����ÞD�c � þ im �c ��
���c �

þ 3

2
imð �c ��

��� ����c � � ���Þ; (11)

which renders the propagators smooth in the massless
limit, thanks to the identity

���� ¼ ����� þ ����� � �����: (12)

The same removes the mass mixing as well, finally giving

Lem¼�i �c �ð 6D�mÞc ��3

2
i ��ð 6D�mÞ�

�1

4
F2
��þ e

2m
F��ð ������c �� �c ��

����þ ������Þ

� e

2m2
F��ð ������D��Þ: (13)

For e � 1, the most dangerous terms in the high-energy
limit are the dimension-six operators. Note that the degree
of divergence does not improve with the addition of non-
minimal terms, since any such operator is necessarily
irrelevant. Even a dipole term,

3This was originally considered in Ref. [14]. Here we recon-
sider it, with a more refined analysis, for the sake of complete-
ness. The analysis will also be useful for the latter parts of the
paper.
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Ldipole ¼ ea

m
F�� �c �c �

! ea

m
F��

�
�c � � 1

2
���� � 1

m
��DQ �

�

�
�
c � þ 1

2
���� 1

m
D��

�
; (14)

introduces, among others, equally bad but new dimension-
six operators that involve both the helicities. Clearly,
higher-multipole operators will worsen the degree of di-
vergence.4 Now one can take the scaling limit m ! 0 and
e ! 0, such thatm2=e � �2

em ¼ constant. The Lagrangian

then reduces, after the rescaling � !
ffiffi
2
3

q
�, to

Lem ! �i �c � 6@c � � i ��6@�� 1

4
F2
��

� 1

3�2
em

F��ð ������@��Þ: (15)

Notice, however, that the nonrenormalizable operators
in Eq. (15) are all proportional to the equations of motion,
up to total derivatives. Indeed, one can use the identity (12)
to write

F��ð ������@��Þ ¼ 1

2
F��ð ����� 6@�� �� 6@Q ����Þ

� @�F
��ð �����Þ: (16)

Therefore, one can eliminate them by appropriate field
redefinitions of � and A�, namely

� ! �þ i

6�2
em

F���
���; A� ! A� � 1

3�2
em

�����;

(17)

as canceling contributions come from the helicity-1=2 and
photon kinetic terms. The price one has to pay is that new
nonrenormalizable operators of dimensions eight, ten, and
12 show up, all with various negative powers of the scale
�em. Can we add local counter-terms to the original action
which eliminate all these operators up to total derivatives,
and introduce only new terms that vanish in the above
scaling limit? A positive answer would mean that one
may improve the degree of divergence of the minimally
coupled theory by field redefinitions plus the addition of
local counterterms. To see that this is not the case, let us
consider the dimension-eight operator ð �����Þhð �����Þ,
which comes from the photon-field redefinition acting on
the last term of Eq. (16). It is neither proportional to the

equations of motion nor does it contain the EM field
strength. Without worsening the degree of divergence,
such operators may only be produced by four-Fermi-like
local counterterms, which in the unitary gauge look like
ðe2=m2Þ �c c �c c . More explicitly,

Lc:t: ! b

�
e

m

�
2
�
�c � �

ffiffiffi
1

6

s
���� � 1

m

ffiffiffi
2

3

s
��DQ �

�

� ����


�
c � þ

ffiffiffi
1

6

s
���� 1

m

ffiffiffi
2

3

s
D��

�

�
�
�c � �

ffiffiffi
1

6

s
���� � 1

m

ffiffiffi
2

3

s
��DQ �

�

�
�
c 
 þ

ffiffiffi
1

6

s
�
�� 1

m

ffiffiffi
2

3

s
D
�

�
þ � � � ; (18)

where ����
 plays the essential role of killing the more
dangerous operators. However, such counterterms
produce—on top of those that we want to eliminate—
new dimension-eight operators involving both helicities
that survive in the scaling limit.
Thus the effective field theory of a massive Rarita-

Schwinger field interacting with EM in flat space has a
finite intrinsic upper bound on its cutoff,

�em ¼ mffiffiffi
e

p ; (19)

which is parametrically larger than m. As seen from
Eq. (15), the breakdown of the effective action is due to
the helicity-1=2 mode � that becomes strongly coupled at
high energies.

B. Gravitational coupling

The Stückelberg-invariant action for a massive spin-3=2
field minimally coupled to gravity is

Lg ¼ �i
ffiffiffiffiffiffiffi�g

p �
�c � � 1

m
��rQ �

�
ð����r� þm���Þ

�
�
c � � 1

m
r��

�
þ 1

2
M2

P

ffiffiffiffiffiffiffi�g
p

R: (20)

Here the commutator of the covariant derivatives acts on
different modes as

½r�;r��c � ¼ �R���

c 
 þ 1

4
R�����

��c �; (21)

½r�;r��� ¼ 1

4
R�����

���: (22)

One can work out the Lagrangian (20) to write

Lg ¼ L3=2 þLmix þLint þ 1

2
M2

P

ffiffiffiffiffiffiffi�g
p

R; (23)

where L3=2 and Lmix are the gravitational counterparts of

those given by Eqs. (7) and (8), respectively, whileLint are
the nonrenormalizable interactions. The latter can be

4We emphasize that here we are only attempting to improve
the degree of divergence, as we are looking for a theoretical
upper bound on the cutoff scale that no theory can beat. In no
way do we mean that nonminimal terms are forbidden. In fact,
they do appear in consistent models, e.g., supergravity. But then
the theory will have a cutoff that is simply lower than the upper
bound we are trying to find.
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computed explicitly using Eqs. (21) and (22), the Bianchi
identity, R½����� ¼ 0, and various �-matrix identities. The

following ones are particularly useful:

�������R����ðc �;r��Þ ¼ 4G����ðc �;r��Þ;
������R���� ¼ �2R;

(24)

where G�� is the Einstein tensor. The result is

Lint ¼ � i

2m

ffiffiffiffiffiffiffi�g
p �

G��ð ����c � � �c ����Þ þ 1

2
��R�

�

þ i

2m2

ffiffiffiffiffiffiffi�g
p

G�� ����r��: (25)

The field redefinition that eliminates the kineticmixing is
the same as Eq. (10), while the desired gauge-fixing term is
just the gravitational counterpart of Eq. (11). One is left with

Lg ¼�i
ffiffiffiffiffiffiffi�g

p �
�c �ðr�mÞc � þ 3

2
��ðr�mÞ�

�

þ 1

2
M2

P

ffiffiffiffiffiffiffi�g
p

R� i

2m

ffiffiffiffiffiffiffi�g
p �

G��ð ����c �� �c ����Þ

� 1

2
��R�� 1

m
G�� ����r��

�
: (26)

Before assigning canonical dimensions to various opera-
tors, we must canonically normalize the graviton field h��,

so that it has mass dimension one,

g�� ¼ ��� þ 1

MP

h��: (27)

We takem � MP, which is essential for a sensible effective
field theory to exist. We see that in the high-energy limit the
most dangerous terms are the dimension-seven operators
contained in G�� ����r��, which are �� h� � vertices.

Because nonminimal interactions show up with Planck-
mass suppression in the unitary gauge, they can contribute
only less divergent terms to the Lagrangian (26). Thus they
are harmless, but they do not improve the degree of diver-
gence either.

The high-energy regime we are interested in—
characterized by the center-of-mass energy
m � ffiffiffi

s
p � MP—includes two parametrically disparate

scales of interest,

�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2MP

3

q
; �g �

ffiffiffiffiffiffiffiffiffiffiffi
mMP

p
; (28)

where �� � �g. Now, with the rescaling � !
ffiffi
2
3

q
�, our

Lagrangian (26) reduces to

Lg ! �i �c �ð6@�mÞc � � i ��ð6@�mÞ�
þ h��G�� þ i

3�3�
G�� ����@��þ � � � ; (29)

where the ellipses stand for less divergent terms that
become important at scales �g or higher. Here G�� �
ðE � hÞ�� is the linearized Einstein tensor, and

E���� ¼ 1

2
½ð���;�� � ������Þhþ ���@�@�

þ ���@�@� � ��ð�@�Þ@� � ��ð�@�Þ@��; (30)

so that h��G�� is the kinetic term for the canonically

normalized graviton h��. It is clear that the dimension-

seven operator in Eq. (29) can be eliminated by the field
redefinition

h�� ! h�� � i

6�3�
���ð�@�Þ�: (31)

But this will leave us with the following dimension-ten
operator, quartic in �:

Ldim -10 ¼ � 1

36�6�
ð ����@��ÞE����ð ����@��Þ: (32)

This is a contact term for four helicity-1=2modes. Because
we are interested in on-shell scattering amplitudes, some
pieces contained in Eq. (32) may actually be less divergent,
thanks to the equation of motion 6@� ¼ m�þ � � � . Indeed,
all but the first term from the expression (30) for E����

give—up to total derivatives—dimension-eight operators
that go like 1=�4

g. This follows partly from the fact that,

unlike in the electromagnetic case, here one is dealing with
Majorana fermions, so that one has ����� ¼ 0. Thus one is
left with

Lint!� 1

72�6�
ð ����@��Þ���;��hð ����@��Þþ��� : (33)

This operator does not reduce further for on-shell �.
However, as we will see, it can be canceled, up to total
derivatives, by the addition of local counterterms.
In the unitary gauge, the potentially interesting counter-

terms are four-Fermi interactions,

Lc:t: ¼ M�2
P ð �c ���c �ÞA�����
ð �c 
��c �Þ; (34)

where A�����
 is a dimensionless tensor. The replace-

ment c � ! c � þ
ffiffi
1
6

q
����

ffiffi
2
3

q
@��=m will then give rise

to dimension-ten operators, quartic in �, which may cancel
those of Eq. (33). It is easy to find that the required
cancelation takes place for

A�����
 ¼ 1

32
ð�����½��
�� þ 2��½����½
����Þ: (35)

Note that the antisymmetry in the indices ð�; �Þ and ð
;�Þ
ensures that no new dimension-ten operators are generated.
Thus no terms remain that become important at ��: the
counterterm (34) has improved the high-energy behavior of
the system.
Next, one would like to consider the dimension-nine

operators coming from this counterterm that blow up at

the scale
ffiffiffiffiffiffiffiffiffiffiffiffi
���g

q
—higher than �� but lower than �g.
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A straightforward computation shows that all such contact
terms are actually less divergent for on-shell �. Therefore,
the strong-coupling regime is pushed even higher, to the
scale �g.

Can we improve the cutoff scale any further? The an-
swer is negative. To see this, let us take the scaling limit
m ! 0 and MP ! 1, such that �g ¼ constant. This gives

Lg þLc:t:; (36)

where the dimension-eight operators, which are Oð1=�4
gÞ,

contain quartic contact terms originating from the naive
dimension-ten operator (32) as well as from the counter-
term (34). Another field redefinition of the graviton,
namely

h�� ! h�� þ i

2�2
g

�
���ð�c �Þ þ 1

4
��� ���

�
; (37)

will remove all the dimension-six operators in Eq. (36) and
give rise to additional dimension-eight operators. For sim-
plicity, let us look at all the dimension-eight quartic terms
that involve two helicity-3=2 and two helicity-1=2 modes.
They are

�4
gLc c�� ¼ 2

3
ð �c ���c �ÞA�����
ð@
 ����@��Þ

þ 2

3
ð@� ����@��ÞA�����
ð �c 
��c �Þ

þ 8

3
ð �c ���@��ÞA�����
ð �c 
��@��Þ

� 1

4
ð ����c �ÞE����ð ����c �Þ: (38)

Notice that the last term that comes from the field redefi-
nition (37) contains pieces that are nonvanishing on-shell.
Can these be canceled by the first three terms? No, because
of simple symmetry considerations. The latter set of terms
enjoys the shift of � by a constant spinor, while the former
does not. At this point, we also have exhausted the possi-
bility of local counterterms coming to the rescue.

Thus we have found an upper bound on the UV cutoff of
the effective theory describing a gravitationally interacting
massive spin-3=2 field,

�g ¼
ffiffiffiffiffiffiffiffiffiffiffi
mMP

p
: (39)

This is finite, but parametrically larger than the mass.
Again, it is the helicity-1=2 mode that is responsible for
the strong coupling around the cutoff scale.

Our result5 is hardly a surprise given the existence of
N ¼ 1 broken supergravity [16]. This theory possesses
remarkably good properties in the high-energy limit, and
its strong-coupling regime has been investigated in
Ref. [17]. When the (pseudo)scalars are decoupled from

the theory, with their masses sent to infinity, one ends up
having only a massive gravitino coupled to gravity. This is
the system we have considered in this section, and indeed
the theory has a cutoff around the supersymmetry-breaking
scale �g [17].

III. INTERACTING THEORIES OFA
RARITA-SCHWINGER FIELD

Now we will consider various (in)consistent models of
an interacting massive spin-3=2 field, and analyze them
through the Stückelberg formalism. As we already know,
when interactions are present, the helicity-1=2 mode gen-
erally acquires nonstandard kinetic terms. In inconsistent
theories this mode may move faster than light or even cease
to propagate. The consistency of interacting theories cru-
cially relies on having a pathology-free helicity-1=2 sector.
Conversely, by ensuring that this mode does not exhibit
pathological behavior, we can (re)derive conditions that
render a theory consistent.

A. Minimal EM interaction

This has already been considered in Sec. II A, and we
recall from Eq. (13) that the Lagrangian can be written as

Lem ¼ �i �c �ð 6D�mÞc � � 3

2
i ��ð 6D�mÞ�� 1

4
F2
��

þ e

2m
F��ð ������c � � �c ��

����þ ������Þ

� e

2m2
F��ð ������D��Þ: (40)

It is manifest that the helicity-3=2 sector enjoys a healthy
kinetic term. On the other hand, the � sector is tricky,
because in an external EM background the last term in
Eq. (40) will act like a kinetic operator. Let us write down
the equations of motion for �,

� i6@�� 1

2
�����F��@��þðlower-derivative termsÞ ¼ 0;

�� 2

3
e=m2: (41)

Now we will use the method of characteristic determinants
[2] to investigate whether this system allows propagation
outside the light cone. The method consists of determining
the normal, n� ¼ ðn0; ~nÞ, to the characteristic hypersurfa-

ces. We replace @� with �in� in the highest-derivative

terms in Eq. (41), and then equate the determinant �ðnÞ of
the resulting coefficient matrix to zero. The system is
hyperbolic if for any ~n the algebraic equation �ðnÞ ¼ 0
has real solutions for n0; then the ratio n0=j ~nj gives the
maximum wave speed. The required coefficient matrix is
given by

5This result agrees with the conjecture �g ¼ðm2s�2MPÞ1=ð2s�1Þ for generic spin s made in Ref. [15].
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M ¼ ���n� þ i

2
�����F��n�

¼ �i
0 � ~
 � ð ~nþ �n0 ~BÞ � ðn0 þ �~n � ~BÞ

~
 � ð ~n� �n0 ~BÞ � ðn0 � �~n � ~BÞ 0

 !
: (42)

To compute its determinant let us assume, without loss of
generality, that the magnetic field ~B points in the z direc-
tion, and that the three-vector ~n lies on the zx plane making
an angle  with ~B. Thus we obtain

�ðnÞ � detM ¼ ½n20 � ~n2 � �2 ~B2ðn20 � ~n2cos 2Þ�2;
(43)

which vanishes for

n0
j ~nj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 ~B2cos 2

1� �2 ~B2

s
: (44)

We see that the system ceases to be hyperbolic whenever
�2 ~B2 exceeds unity, i.e., when

~B 2 �
�
3m2

2e

�
2
: (45)

In addition, even an infinitesimal magnetic field will cause
superluminal propagation for generic . This is the so-
called Velo-Zwanziger problem. The pathologies are seri-
ous in that they can very well arise when the EM field

invariants ~B2 � ~E2 and ~B � ~E are nonvanishing but small

(in the units of m4=e2), so that we are far away from the
regime of instabilities [18] and the notion of long-lived
propagating particles makes sense.

B. Consistent nonminimal EM couplings

The Velo-Zwanziger acausality shows up even for the
simplest possible interaction setup of a constant external
EM background. A wide class of nonminimal models [3]
also exhibits the same pathological features. Porrati and
Rahman [7] wrote down a nonminimal Lagrangian, which
consistently describes a charged massive Rarita-Schwinger
field exposed to a constant EM background in flat space. In
the unitary gauge it reads [7]

LPR ¼ �i �c ��
���D�c � � im �c �b

��c �; (46)

where the antisymmetric tensor b�� contains ‘‘corrections’’

to ��� of the form

b�� ¼ ��� þ Bþ
�� þ ��C�½����;

B	
�� � B�� 
 i�5

~B��;
(47)

with ~B�� � 1
2 	���
B

�
. The Lorentz tensor B�� is anti-

symmetric, while the Lorentz tensor C�� is symmetric and

traceless. They are respectively imaginary and real, as
implied by the Hermiticity condition, and they both vanish
in the limit F ! 0. They are related as [7]

C�� ¼ � 1

2
Bþ��B��

� ¼ � 1

2
B���Bþ�

�

¼ �½B��B�
� � 1

4
��� TrðB2Þ�; (48)

while B�� can be computed from the relation [7]

B�� ¼ iðe=m2ÞF�� þ 1

4
TrðB2ÞB�� � 1

4
TrðB ~BÞ ~B��

(49)

as a power series in the EM field strength F��, which is

always possible in physically interesting situations, i.e.,
when the EM field invariants are small.
In what follows we perform a Stückelberg analysis of the

Lagrangian (46) to reveal that the relations (48) and (49)
are precisely those that ensure a healthy helicity-1=2
sector. We can render the Lagrangian Stückelberg invariant
as usual, and work out the various terms to arrive at the
nonminimal counterpart of Eq. (6),

LPR ¼ �i �c ��
���D�c � � im �c �b

��c �

þ ið �c �b
��D��þ ��DQ �b

��c �Þ
þ e

2m
F��ð ������c � � �c ��

����� ��b���Þ

� e

2m2
F��ð ������D��Þ: (50)

As we have already seen in the minimal theory, a redefi-
nition of c � can eliminate the kinetic mixing. To find such

a field redefinition in the present case, let us take note of the
following identities that follow from elementary manipu-
lations of �-matrix algebra:

Bþ
�� ¼ � 1

4
�� 6B���� ¼ � 1

4
���� 6B��; 6B � ���B��;

(51)

��C�½���� ¼ � 1

2
��C

������ ¼ � 1

2
����C

����: (52)

Given this, it is not difficult to see that the required field
redefinition is

c � ! c � þ 1

2

�
�� � 1

2
6B�� � ��C��

�
�: (53)

This, when implemented in Eq. (50), will also produce new
noncanonical kinetic operators for �, which add to the
already existing troublesome operator F�� ���

���D��.

One can also add the gauge-fixing term (11) to make
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manifest that the helicity-3=2 sector is hyperbolic and
causal. The result is the nonminimal counterpart of
Eq. (13), given by

LPR ¼ �i �c �ð 6D�mÞc � � 3

2
i ��ð 6D�mÞ�

þ e

2m
F��ð ������c � � �c ��

����þ ��b���Þ

þ 1

2
i ��

�
iðe=m2Þ����F��

þ b��

�
�� � 1

2
6B�� � ��C��

�
þ 3��

�
D��:

(54)

The key point is that we have at our disposal two
functions of the EM field strength, B�� and C��, which

could be judiciously chosen so as to render the � sector
pathology-free. With this end in view, we make the rescal-

ing � !
ffiffi
2
3

q
�, and look at the helicity-1=2 kinetic-like

operators, which we symbolically write as

L�;kin ¼ �i ����D��: (55)

If �� is proportional to �� with a positive coefficient, the �
sector will be ghost-free, hyperbolic, and causal. The ex-
pression for �� can be simplified to

�� ¼ �� þ 1

3

�
�iðe=m2Þ����F�� þ ����B��

þ ��C��

�
B��� � 1

2
Bþ������

��

þ 1

3
��½2C�� þ Bþ��B��

� � þ 1

6
��C��C

�
���
;

(56)

thanks to the identities

��Bþ
�� ¼ 1

2
6B��; Bþ

���
� ¼ 1

2
�� 6B;

�� 6B�� ¼ 0;
1

2
ð�� 6Bþ 6B��Þ ¼ ����B��:

(57)

In Eq. (56), if one sets the symmetric traceless tensor inside
the brackets to zero—which is nothing but the choice of the
relation (48)—the entire second line becomes proportional
to ��. This is because of the identity

B	
��B

	�� ¼ 1

2
½TrðB2Þ 	 i�5TrðB ~BÞ���

�; (58)

which, along with Eq. (48), enables one to write

��C��C
�
���
 ¼ 1

4
��ðBþ�

� B�
��B

���Bþ

� Þ���


¼ � 1

8
f½TrðB2Þ�2 þ ½TrðB ~BÞ�2g��: (59)

Moreover, one can use Eqs. (48) and (58) and the defini-
tions of B	

�� and ~B�� to write

��C��

�
B��� � 1

2
Bþ������

�

¼ � 1

4
����½TrðB2ÞB�� � TrðB ~BÞ ~B���: (60)

Now in view of Eqs. (48), (59), and (60), the expression for
�� reduces to

�� ¼
�
1� 1

48
½TrðB2Þ�2 � 1

48
½TrðB ~BÞ�2

�
��

þ 1

3
����

�
�iðe=m2ÞF�� þ B�� � 1

4
TrðB2ÞB��

þ 1

4
TrðB ~BÞ ~B��

�
: (61)

This produces the same kind of helicity-1=2 kinetic terms
as the minimally coupled theory. Clearly, the second line in
the above expression will give rise to pathologies unless
it is set to zero. Then, the consistent propagation of �
requires Eq. (49), and we are left with

L�;kin ¼ �i

�
1� 1

48
½TrðB2Þ�2 � 1

48
½TrðB ~BÞ�2

�
�� 6D�: (62)

The factor appearing in the kinetic term manifestly de-
pends on the relativistic field invariants in such a way that it
is always positive in the regimes of physical interest. Thus
the mere requirement of a healthy helicity-1=2 sector
recovers the model (46)–(49).

C. Minimal coupling to gravity

As already considered in Sec. II B, minimal gravitational
coupling shows up, interestingly, as one tries to write down
consistent models for a massive spin-3=2 field in Einstein
space [13]. The Lagrangian found in Ref. [13] (by using the
Becchi-Rouet-Stora-Tyutin approach to higher-spin fields)
boils down to the minimal Lagrangian in the unitary gauge.
It means that if we take the minimally coupled theory with
the spin-3=2 field as a probe, the consistent propagation of
the helicity-1=2 mode would require that the Einstein
tensor be proportional to the metric.
The consistency of minimal gravitational coupling in

Einstein spaces becomes rather obvious in the
Stückelberg language. We recall from Eq. (26) that the
minimally coupled theory, in d ¼ 4 dimensions, can be
cast into the following form:

Lg ¼ �i
ffiffiffiffiffiffiffi�g

p �
�c �ðr �mÞc � þ 3

2
��ðr �mÞ�

�

� i

2m

ffiffiffiffiffiffiffi�g
p �

G��ð ����c � � �c ����Þ

� 1

2
��R�� 1

m
G�� ����r��

�
: (63)
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With the rescaling � !
ffiffiffiffiffiffiffi
2

d�1

q
�, the kinetic-like operators

for � become

L �;kin ¼ �i
ffiffiffiffiffiffiffi�g

p �
g�� � 1

ðd� 1Þm2
G��

�
����r��:

(64)

The above expression actually holds true even when d is
arbitrary. It is clear that, if G�� is proportional to g��, the
system reduces to a manifestly hyperbolic and causal one.
We must ensure, however, that the coefficient in front of
( ��r�) is always non-negative. Otherwise, as � becomes a
propagating ghost, there will be loss of unitarity. The
coefficient can be computed by noting that for Einstein
spaces one has

G�� � R�� � 1

2
g��R ¼ �

�
d� 2

2d

�
g��R; (65)

which enables one to rewrite Eq. (64) as

L�;kin ¼ �i
ffiffiffiffiffiffiffi�g

p �
1þ d� 2

2dðd� 1Þ
�
R

m2

��
��r�: (66)

Therefore, everywhere in spacetime, the Ricci scalar must
satisfy �

d� 2

2d

�
R � �ðd� 1Þm2: (67)

Of special interest are constant-curvature spaces,
for which the left-hand side of Eq. (67) is nothing but the
cosmological constant �. The unitarity bound then
reduces to

� � �ðd� 1Þm2: (68)

This is precisely the result of Ref. [19] for a neutral
massive spin-3/2 field in cosmological backgrounds. The
equality sign in Eq. (68) renders the field � algebraic by
setting its kinetic term to zero, and this corresponds to a
genuinely massless spin-3=2 field in AdS [13,19].

D. Supergravity

It is well known that N ¼ 2 gauged supergravity [8]
incorporates a consistently propagating Rarita-Schwinger

field (gravitino), which is coupled to a U(1) field
(graviphoton) as well as gravity with a cosmological con-
stant. When the cosmological constant is detuned from its
supersymmetric value, � ¼ �3m2, the resulting broken
supergravity theory [9,10] still propagates the massive
gravitino causally for any unitarily allowed �, provided
the usual mass-charge relation holds [10], i.e., the gravitino
charge e under the graviphoton is

e ¼ 1ffiffiffi
2

p
�
m

MP

�
: (69)

We consider the gravitino as a probe in the dynamical
Maxwell-Einstein background; the latter satisfies the
bosonic equations of motion of N ¼ 2 (broken) super-
gravity,

r�F
�� ¼ 0; G�� þ�g�� ¼ 1

M2
P

T��; (70)

where T�� is the stress-energy tensor of the Maxwell field,
given by

T�� ¼ � 1

2
Fþ��F��

� ¼ � 1

2
F���Fþ�

�

¼ �
�
F��F�

� � 1

4
���TrðF2Þ

�
: (71)

In this combined background of EM and gravitational
fields, the probe Rarita-Schwinger field is described in
the unitary gauge by the following nonminimal
Lagrangian:

Lgravitino ¼ �i
ffiffiffiffiffiffiffi�g

p ½ �c ��
���D�c � þm �c �f

��c ��;
f�� � ��� þ iðe=m2ÞFþ��: (72)

The commutator of covariant derivatives is given by

½D�;D�� ¼ ½r�;r�� þ ieF��; (73)

which, along with the relations (21) and (22), enables one
to work out the Stückelberg-invariant Lagrangian. Thanks
to the Bianchi identities and Eq. (24), the result is

Lgravitino ¼ �i
ffiffiffiffiffiffiffi�g

p ð �c ��
���D�c � þm �c �f

��c �Þ þ i
ffiffiffiffiffiffiffi�g

p ð �c �f
��D��þ ��D�f

��c �Þ
þ e

2m

ffiffiffiffiffiffiffi�g
p �

F��ð ������c � � �c ��
����� ��f���Þ � 1

m
F�� ���

���D��

�

� i

2m

ffiffiffiffiffiffiffi�g
p �

G��ð ����c � � �c ����Þ þ 1

2
��R�� 1

m
G�� ����D��

�
: (74)

The field redefinition that will remove the kinetic mixing is

c � ! c � þ 1

2

�
�� � i

2
ðe=m2ÞF��

�
�; (75)
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which can simply be found upon comparison with the model in Sec. III B. The gauge-fixing term to be added is the
appropriate version of Eq. (11). Thus we are left with

L gravitino ¼ �i
ffiffiffiffiffiffiffi�g

p �
�c �ð6@�mÞc � þ 3

2
��ð6@�mÞ�

�
þ e

2m

ffiffiffiffiffiffiffi�g
p �

F��ð ������c � � �c ��
����þ ��f���Þ

� 1

m
F�� ���

���D��

�
� i

2m

ffiffiffiffiffiffiffi�g
p �

G��ð ����c � � �c ����Þ � 1

2
��R�� 1

m
G�� ����D��

�
þ i

2

� ffiffiffiffiffiffiffi�g
p

�

�
ð��� þ ie

m2
Fþ
��Þð�� � ie

2m2
F��Þ þ 3��

�
D��: (76)

The OðFÞ contributions coming from the last line exactly
cancel the original offending operatorF�� ���

���D��, and
this can be seen by making use of identities like (57). Then,

upon the rescaling � !
ffiffi
2
3

q
�, the kinetic-like operators for

� reduce to

L�;kin ¼ �i
ffiffiffiffiffiffiffi�g

p
��

�
g�� � 1

3m2

�
�
G�� þ e2

m2
Fþ��F��

�

��
��D��: (77)

Now one can use the equations of motion (70) of the
background fields and the definition (71) of the EM stress-
energy tensor T�� to rewrite the above expression as

L�;kin ¼ �i
ffiffiffiffiffiffiffi�g

p
��

��
1þ �

3m2

�
g��

� 1

3m2

�
1

M2
P

� 2e2

m2

�
T��

�
��D��: (78)

If the symmetric tensor inside the brackets is propor-
tional to the metric with a non-negative coefficient, the �
sector will be ghost-free, and manifestly hyperbolic and
causal. This is possible if the factor in front of the stress-
energy tensor is set to zero, which is nothing but imposing
the charge-mass relation (69). Then, unitarity requires that
the cosmological constant be bounded from below: � �
�3m2. In this unitarily allowed region, any value of� will
be consistent, and in particular one can set � ¼ 0.

This shows that the various parameters in N ¼ 2
(broken) supergravity [8–10] are tuned precisely in a way
that ensures a pathology-free helicity-1=2 sector. When
m2 ¼ ��=3 ¼ 2e2M2

P, the kinetic term (78) vanishes, so
that � is relegated to a nondynamical field. Thus we
recover the unbrokenN ¼ 2 AdS supergravity [8], where
the Rarita-Schwinger field is truly massless and enjoys null
propagation.

Notice that arriving at Eq. (78) from Eq. (77) is a non-
trivial step, and it crucially depends on the fact that both
EM and gravity are dynamical, so that the Einstein equa-
tion is sourced by the Maxwell stress-energy tensor. This
relates the two a priori different noncanonical kinetic
terms in Eq. (77), and reduces their number to one. Then

the charge-mass relation removes the sole dangerous
kinetic-like operator in Eq. (78). Finally, one forbids
propagating ghosts in the � sector by restricting the cos-
mological constant.

IV. REMARKS

The purpose of this paper was to demonstrate the power
of the Stückelberg formalism in making transparent the
intricacies associated with interacting theories of a massive
Rarita-Schwinger field. All the peculiarities—such as the
onset of strong coupling, loss of (causal) propagation and
unitarity, etc.—are essentially captured in the dynamics of
the helicity-1=2 mode, and a study thereof elucidates why
(in)consistent models are (in)consistent.
We have seen that EM or gravitational interactions of a

massive spin-3/2 field can have a local effective field
theory description up to energy scales parametrically larger
than the mass. The finite UV cutoff signals the onset of a
dynamical regime where the helicity-1=2 sector becomes
strongly coupled. Causal propagation may call for non-
minimal interactions, which could lower the intrinsic cut-
off of the theory from the theoretical upper bound reported
in this paper. For example, in the case of EM coupling the
required unitary-gauge Pauli term, iðe=mÞ �c �F

þ��c �,

gives rise to an OðeÞ dimension-seven operator in the
helicity-1=2 sector, and this lowers the UV cutoff to the
scale m=

ffiffiffi
e3

p � m=
ffiffiffi
e

p
.

As pointed out in Ref. [14], the cutoff scale may also
mean that there could be new interacting degrees of free-
dom lighter than that scale. These new fields may further
improve the high-energy behavior of the theory. For the
gravitational case this is exactly what happens in broken
N ¼ 1 supergravity [16]. As was shown in Ref. [17], a
scalar and a pseudoscalar with masses much lower than�g

(slightly above m) can push the strong-coupling regime all
the way to the Planck scale MP.
We have performed a Stückelberg analysis as a consis-

tency check of a number of interacting theories known in
the literature. The Velo-Zwanziger acausality [2] of a
massive spin-3=2 field minimally coupled to EM indeed
shows up as a pathology of the helicity-1=2 mode itself.
‘‘Appropriate’’ nonminimal EM interactions [7] are pre-
cisely those that ensure the light-cone propagation of this
mode. In the case of minimal gravitational coupling, the
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noncanonical kinetic terms can be rendered harmless by

requiring the spacetime to be an Einstein manifold,

provided that the curvature has the well-known unitarity

bound; this reconfirms the results of Refs. [13,19]. Finally,

we have analyzed N ¼ 2 (broken) supergravity [8–10] to
reveal that the helicity-1=2 sector acquires healthy kinetic

terms in the presence of dynamical Maxwell-Einstein

fields if the usual charge-mass relation holds.
The Stückelberg mode(s) can be used as a probe of the

consistency of interactions for any massive particle with

s � 1. While spin 2 was considered in Refs. [11,12], it

remains to be seen what more we can learn from them

about consistent interactions of massive higher spins.
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