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We develop a relativistic lattice Boltzmann (LB) model, providing a more accurate description of

dissipative phenomena in relativistic hydrodynamics than previously available with existing LB schemes.

The procedure applies to the ultrarelativistic regime, in which the kinetic energy (temperature) far exceeds

the rest mass energy, although the extension to massive particles and/or low temperatures is conceptually

straightforward. In order to improve the description of dissipative effects, the Maxwell-Jüttner distribution

is expanded in a basis of orthonormal polynomials, so as to correctly recover the third-order moment of

the distribution function. In addition, a time dilatation is also applied, in order to preserve the

compatibility of the scheme with a Cartesian cubic lattice. To the purpose of comparing the present

LB model with previous ones, the time transformation is also applied to a lattice model which recovers

terms up to second order, namely up to the energy-momentum tensor. The approach is validated through

quantitative comparison between the second- and third-order schemes with Boltzmann approach multi-

parton scattering (the solution of the full relativistic Boltzmann equation) for moderately high viscosity

and velocities, and also with previous LB models in the literature. Excellent agreement with BAMPS and

more accurate results than previous relativistic lattice Boltzmann models are reported.

DOI: 10.1103/PhysRevD.87.065027 PACS numbers: 47.11.�j, 12.38.Mh, 47.75.+f

I. INTRODUCTION

Relativistic hydrodynamics and kinetic theory play a
major role in many forefronts of modern physics, from
large-scale applications in astrophysics and cosmology, to
microscale electron flows in graphene [1–3], all the way
down to quark-gluon plasmas [4–6]. Because of their strong
nonlinearity and, for the case of kinetic theory, high dimen-
sionality as well, the corresponding equations are extremely
challenging even for the most powerful numerical methods,
let alone analytics. Recently, a promising approach, based on
a minimal form of relativistic Boltzmann equation, whose
dynamics takes place in a fully discrete phase-space and time
lattice, known as the relativistic lattice Boltzmann (RLB),
has been proposed by Mendoza et al. [7–9] (and subse-
quently revised in Ref. [10] for enhancing numerical stabil-
ity). To date, the RLB has been applied to the simulation
of weakly and moderately relativistic fluid dynamics, with

Lorentz factors of �� 1:4, where � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
, with

c being the speed of light and v the speed of the fluid. This
model correctly reproduces shock waves in quark-gluon
plasmas, showing excellent agreement with the solution of
the full Boltzmann equation as obtained by Bouras et al.
using Boltzmann-approach multiparton scattering (BAMPS)

[11,12]. The RLB makes use of two distribution functions,
the first one modeling the conservation of number of
particles, and the second one modeling the momentum-
energy conservation equation. The model was constructed
by matching the first- and second-order moments of the
discrete velocity distribution function to those of the contin-
uum equilibrium distribution of a relativistic gas. However, it
was not able to reproduce the right velocity and pressure
profiles for the Riemann problem in quark-gluon plasmas,
for the case of large values of the ratio between the shear
viscosity and entropy density, �=s� 0:5, at moderate fluid
speeds (v=c� 0:6).
In order to set up a theoretical background for the

lattice version of the relativistic Boltzmann equation,
Romatschke et al. [13] developed a scheme for an ultra-
relativistic gas based on the expansion on orthogonal poly-
nomials of the Maxwell-Jüttner distribution [14] and, by
following a Gauss-type quadrature procedure, the discrete
version of the distribution and the weighting functions was
calculated. This procedure was similar to the one used for
the nonrelativistic lattice Boltzmann model [15,16]. This
relativistic model showed very good agreement with theo-
retical data, although it was not compatible with a lattice,
thereby requiring linear interpolation in the free-streaming
step. This implies the loss of some key properties of
the standard lattice Boltzmann method, such as negative
numerical diffusion and exact streaming.
Very recently, Li et al. [17] noticed that the equation of

conservation for the number of particles recovered by the
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RLB model [7,8] exhibits spurious diffusive effects. They
proposed an improved version of RLB, using a multi-
relaxation-time collision operator in the Boltzmann equa-
tion, which allows independent tuning of the bulk and
shear viscosities, yielding results for the Riemann problem
closer to those of BAMPS [11] when the bulk viscosity is
decreased. However, the third-order moment of the equi-
librium distribution still does not match its continuum
counterpart, and therefore the model still has problems in
reproducing high �=s� 0:5 for moderately high veloc-
ities, � ¼ v=c ¼ 0:6. Thus, while surely providing an
improvement on the original RLB model, the work [17]
did not succeed in reproducing the vanishing bulk viscos-
ity, which is pertinent to the ultrarelativistic gas, while the
issue with the spurious diffusion remained unresolved.

Note that in the much more studied case of the lattice
Boltzmann models for nonrelativistic fluids, the question
of the choice of the lattice with higher-order symmetry
requirements has only recently been solved, in the frame-
work of the entropy-compliant constriction [18,19].
However, the lattices (space-filling discrete velocity sets)
found in that case are tailored to reproduce the moments of
the nonrelativistic Maxwell-Boltzmann distribution, and
do not seem to be directly transferable to the present case
of the relativistic (Maxwell-Jüttner) equilibrium distribu-
tion, which has fairly different symmetries as compared
to the nonrelativistic Maxwell-Boltzmann distribution.
Therefore, the extension of the previous LB models has
to be considered anew.

In this paper, we develop a new lattice Boltzmann model
capable of reproducing the third-order moment of the
continuum equilibrium distribution, and still realizable
on a cubic lattice. The model is based on a single distri-
bution function and satisfies the conservation of both num-
ber of particles and momentum-energy equations. The
model is based on the single-relaxation-time collision
operator proposed by Anderson andWitting [14,20], which
is more appropriate for the ultrarelativistic regime than the
Marle model used in the previous works. Thus, the pro-
posed model offers significant improvement on previous
relativistic lattice Boltzmann models in two respects: (i) It
captures the symmetry of the higher-order equilibrium
moments sufficiently to reproduce the dissipative relativ-
istic hydrodynamics at the level of the Grad approximation
to the relativistic Boltzmann equation. (ii) It represents a
genuine lattice Boltzmann discretization of space and time,
with no need of any interpolation scheme, thereby avoiding
the otherwise ubiquitous spurious dissipation. The new
lattice Boltzmann model is shown to reproduce with very
good accuracy the results of the shock waves in quark-
gluon plasmas, for moderately high velocities and high
ratios �=s.

The paper is organized as follows: in Sec. II, we describe
in detail the model and the way it is constructed; in Sec. III,
we implement simulations of the Riemann problem in

order to validate our model and compare it with BAMPS
and previous relativistic lattice Boltzmann models; and
finally, in Sec. IV, we discuss the results and future work.

II. MODEL DESCRIPTION

A. Symmetries of the relativistic Boltzmann equation

To build our model, we start from the relativistic
Boltzmann equation for the probability distribution
function f:

p�@�f ¼ �p�U
�

c2�
ðf� feqÞ; (1)

where the local equilibrium is given by the Maxwell-
Jüttner equilibrium distribution [14],

feq ¼ A exp ð�p�U�=kBTÞ: (2)

In the above, A is a normalization constant, c the speed of
light, and kB the Boltzmann constant. The 4-momentum
vectors are denoted by p� ¼ ðE=c; ~pÞ, and the macro-
scopic 4-velocity by U� ¼ ðc; ~uÞ�ðuÞ, with ~u the three-
dimensional velocity of the fluid. Note that we have used the
Anderson-Witting collision operator [20] [rhs of Eq. (1)],
making our model compatible with the ultrarelativistic re-
gime. Hereafter, we will use natural units, c ¼ kB ¼ 1, and
work in the ultrarelativistic regime, � � mc2=kBT � 1.
According to a standard procedure [13,15,16], we first

expand the Maxwell-Jüttner distribution in the rest frame,
feq ¼ A exp ð�p0=TÞ, in an orthogonal basis. Since in the

ultrarelativistic regime p0=T ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2=T2 þm2=T2

p ’ p=T,

being p ¼ ffiffiffiffiffiffi
~p2

p
, we can write the equilibrium distribution

in spherical coordinates:

Z
ge�p0=T

d3p

p0
¼

Z 1

0

Z �

0

Z 2�

0
gpe�p=Tdp sin ð�Þd�d	;

(3)

where g is an arbitrary function of momentum. Following
Romatschke [13], we can expand the distribution in each
coordinate separately; and subsequently, by using a Gauss
quadrature, we can calculate the discrete values of the
4-momentum vectors. Thus, the discrete equilibrium
distribution can be written as

f
eq
l ¼ X

i;j;k

aijkðU�ÞPið�lÞRjðplÞFkð	lÞ; (4)

where the coefficients aijkðU�Þ are the projections of

the distribution on the polynomials Pið�lÞRjðplÞFkð	lÞ,
and the discrete 4-momenta are denoted by p

�
l ¼

ðpl; pl cos ð	lÞ sin ð�lÞ; pl sin ð	lÞ sin ð�lÞ; pl cos ð�lÞÞ.
Consequently, the discrete form of the Boltzmann equation
takes the form
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flðx� þ p
�
l =p

0
l 
t; tþ 
tÞ � flðx�; tÞ

¼ �pl�U
�
t

�p0
l

ðfl � feql Þ: (5)

However, note that in the streaming process on the
right-hand side of Eq. (5), the distribution moves at veloc-
ity p

�
l =p

0
l , which implies that the information travels

(in a single time step) from each cell center to a position
that belongs to the surface of a sphere of radius c 
t ¼ 1.
Furthermore, to represent correctly the third-order moment
of the equilibrium distribution,

P��� ¼ X
l

f
eq
l p�

l p
�
l p

�
l ; (6)

the number of points needed on the surface of the unit
sphere exceeds 6 and 12, which correspond to the first
neighbors for cubic and hexagonal closed packed lattices,
respectively. This implies that, in general, the 4-vectors
p�=p0 cannot be embedded into a regular lattice, and
therefore, an interpolation algorithm has to be used. By
doing this, we are losing one of the most important features
of lattice Boltzmann models, which is the exact streaming.
Thus, within this spherical coordinate representation, the
streaming process cannot take place on a regular lattice.

B. Moment projection of the equilibrium

In this work, we shall use a different approach to the
quadrature representation. We first calculate a basis of
orthonormal polynomials in Cartesian coordinates, unlike
the spherical coordinate system used in Ref. [13], using as
the equilibrium distribution at rest wðp0Þ ¼ feqð ~u ¼ 0Þ
as a weight function. Once the polynomials are obtained,
they are used to perform the expansion of the complete
equilibrium distribution feq. This procedure avoids extra
terms in the product, Pið�lÞRjðplÞFkð	lÞ for the discrete

spherical case, which are not necessary if we only need to
recover correctly the first three moments of the equilibrium
distribution, simplifying considerably its expanded form.

In order to find the orthonormal polynomials, we first
build the set

L j ¼ f1; p0; px; py; pzg; (7)

where the subindex j ¼ 1, 5 explicitly denotes each
element on the right-hand side. By calculating all possible
combinations of the elements of Lk up to third order, we
get the family of polynomials defined by

J k ¼
[4

i;j;l¼0

fLiLjLlg; (8)

with k denoting each of the 35 elements of the set (there are
only 35 nonrepeated elements out of the total 125). By
performing a Gram-Schmidt orthogonalization with the
inner product

hJ r;J li ¼
Z

wðp0ÞJ rJ l

d3p

p0
; (9)

we construct the orthogonal polynomials,

J0k ¼ J k �
Xk�1

l¼0

hJ l;J ki
hJ l;J li J l; (10)

and finally obtain the orthonormal ones as follows:

Jk ¼ J0kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hJ0k; J0ki

q : (11)

The polynomials Jk, where the index k runs from 0 to 29
(there are only 30 linearly independent polynomials out
of 35), are reorganized in ascending order and shown
explicitly in Table I. Note that in this table, the
4-momentum has the notation p� ¼ ðp0; px; py; pzÞ.
Since these polynomials are orthonormal, there are no
normalization factors, and the Maxwell-Jüttner distribu-
tion can be approximated up to third order in the momen-
tum space by the following compact expansion:

feq ’ X29
k¼0

wðp0ÞakðT;U�ÞJkðp�Þ; (12)

where the projections ak are calculated by

ak ¼
Z

feqJkðp�Þd
3p

p0
: (13)

Since the Anderson-Witting model is only compatible
with the Landau-Lifshitz decomposition [14,20], we must

TABLE I. Polynomials Jk, orthonormal with the weight func-
tion wðp0Þ, in Cartesian coordinates ðx; y; zÞ.
Order Polynomial Jk k

0th 1 0

1st p0�2ffiffi
2

p , pxffiffi
2

p , pyffiffi
2

p , pzffiffi
2

p 1, 2, 3, 4

2nd ðp0�6Þp0þ6

2
ffiffi
3

p , ðp0�4Þpx

2
ffiffi
2

p , ðp0�4Þpy

2
ffiffi
2

p 5, 6, 7

ðp0�4Þpz

2
ffiffi
2

p , �ðp0Þ2þðpxÞ2þ2ðpyÞ2
4
ffiffi
2

p , 3ðpxÞ2�ðp0Þ2
4
ffiffi
6

p 8, 9, 10

pxpz

2
ffiffi
2

p , pypz

2
ffiffi
2

p , pxpy

2
ffiffi
2

p 11, 12, 13

3rd 1
12 ðp0 � 6Þ2p0 � 2, ððp0�10Þp0þ20Þpx

4
ffiffi
5

p 14, 15

� ðp0�6Þððp0Þ2�3ðpxÞ2Þ
24 , 5ðpxÞ3�3ðp0Þ2px

24
ffiffi
5

p 16, 17

ððp0�10Þp0þ20Þpy

4
ffiffi
5

p , ðp0�6Þpxpy

4
ffiffi
3

p , pxpypz

4
ffiffi
3

p 18, 19, 20

ðp0�6ÞððpxÞ2þ2ðpyÞ2�ðp0Þ2Þ
8
ffiffi
3

p 21

pxððpxÞ2þ2ðpyÞ2�ðp0Þ2Þ
8
ffiffi
3

p 22

pyð�3ðp0Þ2þ3ðpxÞ2þ4ðpyÞ2Þ
24

ffiffi
2

p , ððp0�10Þp0þ20Þpz

4
ffiffi
5

p 23, 24

ðp0�6Þpxpz

4
ffiffi
3

p , � pzððp0Þ2�5ðpxÞ2Þ
8
ffiffiffiffi
30

p , ðp0�6Þpypz

4
ffiffi
3

p 25, 26, 27

ðp0�6Þpypz

4
ffiffi
3

p , pzð�ðp0Þ2þðpxÞ2þ4ðpyÞ2Þ
24

ffiffi
2

p 28, 29
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calculate the energy density of the fluid by solving the
eigenvalue problem

T��U� ¼ 
U�; (14)

where 
 is the energy density of the fluid, and

T�� ¼
Z

fp�p� d
3p

p0
(15)

is the momentum-energy tensor. For the particle density,
we use the relation

n ¼ U�

Z
fp� d

3p

p0
; (16)

and by using the equation of state, 
 ¼ 3nT, we can
calculate the temperature of the fluid.

C. Discrete-velocity representation of the quadratures

Note that the above derivation using Cartesian coordi-
nates still refers to the continuous 4-momenta. In order to
discretize the above moment projection of the equilibrium
distribution, we must choose a set of discrete 4-momentum
vectors that satisfies the same orthonormality condition,
namely

Z
wðp0ÞJlðp�ÞJkðp�Þ d

3p

p0
¼ X

i

wiJlðp�
i ÞJkðp�

i Þ ¼ 
lk;

(17)

while at the same time, p�=p0 corresponds to lattice
points. Here, we choose to work with a cubic lattice,
although the procedure described here also applies to other
ones, e.g., the hexagonal closed packed lattice.

Since, due to its nature, p�=p0 leads to velocity vectors
which belong to a sphere of radius c in the space compo-
nents, using the procedure in Ref. [13] will generally result
in off-site lattice points. For this reason, we opt for another
quadrature based on this orthonormality condition, and
impose that the distribution function at rest frame should
satisfy the moments of the equilibrium distribution up to
sixth order. This is made to ensure that the fifth-order
moment of the equilibrium distribution is recovered
(at least at very low fluid velocities), which, in the context
of the Grad theory for the Anderson-Witting model [14], is
a requirement for the correct calculation of the transport
coefficients, namely the shear and bulk viscosities and
thermal conductivity. The condition for the sixth-order
moment is to choose from the multiple lattice solutions
the one that presents the highest symmetry to model the
Maxwell-Jüttner distribution. In order to use general fea-
tures of classical lattice Boltzmann models, like bounce-
back boundary conditions to impose zero velocity on solid
walls, we will also require that the weights wi correspond-
ing to the discrete 4-momentum vectors pk

i have the same

values as the ones corresponding to �pk
i (latin indices run

over spatial components).
In order to generate on-site lattice points, we first divide

the relativistic Boltzmann equation, Eq. (1), by p0, to
obtain

@tfþ va@af ¼ �p�U
�

�p0
ðf� feqÞ; (18)

where va ¼ pa=p0 are the components of the microscopic
velocity. In the ultrarelativistic regime, these microscopic
velocities have all the same magnitude but, in general,
different directions. In other words, the relativistic
Boltzmann equation can be cast into a form where the
time derivative and the propagation term become the
same as in the nonrelativistic case, at the price of an addi-
tional dependence on p0 in the relaxation term. However,
since this newly acquired dependence remains local, we
shall be able to find a discrete-velocity quadrature which
also allows for a lattice Boltzmann-type discretization in
time and space without any interpolation. Indeed, in a
cubic cell of length 
x ¼ 1 there are only six neighbors,
which are not sufficient to satisfy the orthogonality con-
ditions and the third-order moment of the equilibrium
distribution. However, by multiplying this equation by a
constant R on both sides, and performing a time trans-
formation (dilatation), 
t ! R
t0 and � ! R�0, we obtain

@t0fþ #a@af ¼ �p�U
�

�0p0
ðf� feqÞ; (19)

where we have defined #a ¼ Rva. Because of this trans-
formation, the 4-momentum vectors are reconstructed
through the relation

p� ¼ p0ð1; ~#=RÞ: (20)

At this stage, we can choose the radius of the sphere such
that the lattice points that belong to the surface of the
sphere and the cubic lattice exhibit enough symmetries to
satisfy both conditions. This is equivalent to solving the
Diophantine equation,

n2x þ n2y þ n2z ¼ R2; (21)

where nx, ny, and nz are integer numbers, being
~# ¼ ðnx; ny; nzÞ. Thus, we can determine the components

of the discrete version of the velocities ~# which are needed
for the streaming term in the Boltzmann equation, on the
lhs of Eq. (19). However, on the rhs of this equation, and
for the calculation of the discrete 4-momentum vectors via
Eq. (20), we also need to know the discrete values of p0.
The 4-vector p� is needed to compute the orthonormality
conditions given by Eq. (17) and the moments of the
equilibrium distribution.
Because of the fact that p0 is the magnitude of the

4-momentum, p0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
p�p�

p
, in (3þ 1)-dimensional

spacetime, it is natural to assume that its discrete values
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can be calculated by using the weight function in spherical
coordinates, wðp0Þ ¼ 4�Aðp0Þ2 exp ð�p0Þ, where the an-
gular components have been integrated out, and using the
zeros of its respective orthonormal polynomial of fourth
order. (This is because we are interested in an expansion up
to third order, so we need one more order to calculate the
zeros.) This fourth-order polynomial is given by

Rð4Þðp0Þ ¼ 1

24
ffiffiffi
5

p ½120þ p0ð�240

þ p0½120þ ðp0 � 20Þp0�Þ�: (22)

To summarize, in order to calculate the discrete p
�
i and

their respective wi, we first fix R and solve the equations

n2x þ n2y þ n2z ¼ R2; (23a)

Rð4Þðp0Þ ¼ 0 (23b)

to obtain the solutions for nx, ny, nz, and p. With these

values, we build the discrete 4-vectors

p�
lm ¼ p0

l ð1; nx;m=R; ny;m=R; nz;m=RÞ; (24)

where l ¼ 1; . . . ; 4 denotes the four zeros of the polyno-

mial Rð4ÞðpÞ, and m ¼ 0; . . . ;M denotes the triplets
ðnx; ny; nzÞm that satisfy the Diophantine equation, assum-

ing thatM is the number of solutions. Here, for simplicity,
we regroup the pair of indexes lm to i, so that we can label
the discrete 4-momentums as p

�
i , where i ¼ 1; . . . ;N

with N ¼ 4�M.
Next, we replace these values into the equations

Z
wðp0ÞJlðp�ÞJkðp�Þd

3p

p0
¼XN

i

wiJlðp�
i ÞJkðp�

i Þ ¼ 
lk;

(25a)

Z
wðp0Þp�p�p�p� d

3p

p0
¼XN

i

wip
�
i p

�
i p

�
i p

�
i ; (25b)

Z
wðp0Þp�p�p�p�p� d

3p

p0
¼XN

i

wip
�
i p

�
i p

�
i p

�
i p

�
i ;

(25c)

Z
wðp0Þp�p�p�p�p�p� d

3p

p0
¼XN

i

wip
�
i p

�
i p

�
i p

�
i p

�
i p

�
i ;

(25d)

wi ¼wj ðif pk
i ¼�pk

jÞ; (25e)

wi � 0 (25f)

and look for any solution for wi that fulfills the above
relations. Should none be found, we repeat the procedure
with a different value of R. By performing this iteration

process, we found that R ¼ ffiffiffiffiffiffi
41

p
is sufficient to recover up

to the third-order moment of the Maxwell-Jüttner distribu-
tion, and up to the sixth order of this distribution in the
Lorentz rest frame.

The corresponding discrete velocity vectors ~#m are
(� 6, �2, �1), (� 6, � 1, � 2), (� 2, � 6, � 1), (� 1,
�6, �2), (� 1, �2, � 6), (� 2, � 1, � 6), (� 5, 0, �4),
(� 5,�4, 0), (0,�5,�4), (� 4,�5, 0), (0,�4,�5), (� 4,
0,�5), (� 4,�3,�4), (� 3,�4,�4), and (� 4,�4,�3);
with the values p0

l ’ 0:743, 2.572, 5.731, and 10.95.

Consequently, this gives a total of 4-momentum vectors
N ¼ 384. However, the last condition in Eq. (25) allows
some weights to become zero. Therefore, in our iteration
procedure, we have taken the minimal number of
4-momentum vectors p�

i by requiring the maximum num-
ber of wi to be zero. For this reason, there are only 128
vectors p

�
i needed to fulfill the conditions in Eq. (25). In

principle, all the velocity vectors ~#m are needed, but only
some of the combinationswithp0

l are required. The detailed

list of ~#m, p
0
l , and p

�
i , and their respective discrete weight

functions wi are given in the Supplemental Material [21].
In Fig. 1, we report the configuration of the velocity

vectors ~# to achieve the third-order moment of the
Maxwell-Jüttner distribution function. The points corre-
spond to lattice nodes of a cubic lattice that, at the same
time, belong to the surface of the respective sphere of

radius R ¼ ffiffiffiffiffiffi
41

p
. The relatively large number of discrete

velocities should not come as a surprise; in the case of
nonrelativistic lattice Boltzmann, the number of discrete
velocities also becomes high (at least 41 for achieving
complete Galilean invariance in the nonthermal case and
125 in the thermal case; see Refs. [18,19]). Note that the
specified values of p0 play the same role in defining the

FIG. 1 (color online). Directions of the velocity vectors ~#i to
recover up to the third-order moment of the Maxwell-Jüttner
distribution. The radius of the sphere is R ¼ ffiffiffiffiffiffi

41
p

. The points
represent lattice sites belonging to the sphere surface.
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quadrature as the reference temperature (energy) in the
nonrelativistic case [18,19].

Finally, we can write the discrete version of the equilib-
rium distribution up to third order,

feqi ¼ wi

X29
n¼0

anðT;U�ÞJnðp�
i Þ; (26)

which is shown in detail in Eq. (B2) of Appendix B. Note
that this distribution function recovers the first three
moments of the Maxwell-Jüttner distribution in the ultra-
relativistic regime:

Z
feqp� d3p

p0
¼ X128

i¼1

feqi p�
i ¼ N�

E ; (27)

Z
feqp�p� d

3p

p0
¼ X128

i¼1

f
eq
i p

�
i p

�
i ¼ T

��
E ; (28)

Z
feqp�p�p� d

3p

p0
¼ X128

i¼1

f
eq
i p

�
i p

�
i p

� ¼ P
���
E ; (29)

where

N�
E ¼ nU� (30)

and

T��
E ¼ �nT��� þ 4nTU�U�; (31)

being the number of particles 4-flow and the energy-
momentum tensor, respectively, and

P���
E ¼ �4nT2ð���U� þ ���U� þ ���U�Þ

þ 24nT2U�U�U�; (32)

with n ¼ 2T3, and ��� the Minkowski spacetime metric
tensor. However, the extension to the case of massive
particles is straightforward by changing the coefficients
an in Eqs. (13) and (26). Here, the subscript E denotes
macroscopic quantities calculated with the equilibrium
distribution.

D. Discrete relativistic Boltzmann equation

The Landau-Lifshitz decomposition [14] implies fulfill-
ment of the following relations:

U�N
�¼U�

Z
fp�d

3p

p0
¼U�N

�
E ¼

Z
feqp�d

3p

p0
; (33a)

U�T
��¼U�

Z
fp�p�d

3p

p0
¼U�T

��
E ¼

Z
feqp�p�d

3p

p0
;

(33b)

also called matching or fitting conditions, which are needed
to obtain, upon integrating Eq. (1) in momentum space, the
conservation of the number of particles 4-flow:

@�N
� ¼ 0; (34)

and, multiplying by p� and integrating, the conservation of
the momentum-energy tensor:

@�T
�� ¼ 0: (35)

In order to calculate the transport coefficients, we need the
third-order moment, so that upon multiplying Eq. (1) by
p�p� and integrating, we obtain

@�P
��� ¼ � 1

�
ðU�P

��� �U�P
���
E Þ: (36)

Note that the lhs of this equation depends on the nonequi-
librium third-order moment. However, by performing the
Chapman-Enskog expansion [14] and reorganizing the
terms, we can approximate Eq. (36) as

U�P
��� �U�P

���
E ¼ ��@�P

���
E ; (37)

so that we need at least the third-order moment of the

equilibrium distribution, P���
E , to compute the dissipation

coefficients (namely, bulk and shear viscosities and heat
conductivity). This requirement is fulfilled in our discrete
and continuum expansions of the equilibrium distribution
via Eqs. (27)–(29). However, to recover full dissipation,
we would also need to recover the first three moments
of the nonequilibrium distribution, which according to the
14-moment Grad’s theory, can be written as

N� ¼ ð1� aÞN�
E þ b�T

��
E þ d��P

���
E ; (38a)

T�� ¼ ð1� aÞT��
E þ b�P

���
E þ d��P

����
E ; (38b)

P��� ¼ ð1� aÞP���
E þ b�P

����
E þ d��P

�����
E ; (38c)

where a, b�, and d�� are coefficients that carry the infor-
mation on the transport coefficients [14]. Note that we need
to recover terms up to the fifth order of the equilibrium
distribution. In principle, this could be done by the proce-
dure described on this paper, but the resulting value for R
could be unpractically large. Nevertheless, at low veloc-
ities,U� � ð1; 0; 0; 0Þ, theMaxwell-Jüttner distribution can
be approximated by the weight function wðp0Þ, and in
analogy to the discrete case, by wi, and the fourth and fifth
orders are recovered via Eq. (25). As a result, at relatively
low velocities, we expect the nonequilibrium third-order
tensor also to be fulfilled. Therefore, the transport coeffi-
cients for an ultrarelativistic gas, i.e., � ¼ 0 for the bulk
viscosity, � ¼ ð2=3ÞP� for the shear viscosity, and � ¼
ð4=5TÞP� for the thermal conductivity, also apply to our
model.
To discretize the relativistic Boltzmann equation, we

first implement the time transformation described in the
previous section and integrate in time Eq. (1) between t0
and t0 þ 
t0. This yields
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fðxa þ #a
t0; t0 þ 
t0Þ � fðxa; t0Þ
¼ �p�U�

�0p0
ðf� feqÞ
t0: (39)

By changing p� ! p
�
i , f ! fi, and #a ! #a

i , we obtain

fiðxa þ #a
i 
t

0; t0 þ 
t0Þ � fiðxa; t0Þ

¼ �p�
i U�

�0p0
i

ðfi � feqi Þ
t0: (40)

This relativistic lattice Boltzmann equation presents an
exact streaming on the left-hand side, and the collision
operator at the right-hand side looks exactly like its
continuum version. Therefore, the conservation laws for
the number of particles density 4-flow and the momentum-
energy tensor are also fulfilled, as long as they are obtained
by using the Landau-Lifshitz decomposition. This means
that first, we need to calculate the momentum-energy
tensor,

T�� ¼ X128
i¼1

fip
�
i p

�
i ; (41)

and with this tensor, we solve the eigenvalue problem,

T��U� ¼ T��
E U� ¼ 
U�; (42)

obtaining the energy density 
 and the 4-vectors U�.
Subsequently, the particle density can be calculated by

n ¼ U�N
�
E ¼ U�N

� ¼ X128
i¼1

fip
�
i U�: (43)

The temperature T is obtained by using the equation of
state for the ultrarelativistic gas, 
 ¼ 3nT. The transport
coefficients are the same as in the continuum case, with
the lattice correction resulting from second-order Taylor
expansion of the streaming term. All factored in, the
coefficients take the following expression: � ¼ 0, � ¼
ð2=3ÞPð�0 � 
t0=2Þ, and � ¼ ð4=5TÞPð�0 � 
t0=2Þ. Note
that by reverting the time transformation, we can write
the transport coefficients as � ¼ ð2=3ÞPð�� 
t=2Þ=R
and � ¼ ð4=5TÞPð�� 
t=2Þ=R.

Summarizing, the present model does not present spu-
rious dissipation in the number of particle conservation
equation, in contrast to previous RLB schemes [7,8,10],
and it also improves the dissipative terms given by the
multi-relaxation-time scheme [17]. In addition, it realizes
the expansion of the Maxwell-Jüttner distribution on a
cubic lattice, in contrast to Ref. [13]. We can also construct
a relativistic lattice Boltzmann model that recovers only up
to second order (the momentum-energy tensor), to com-
pare with the third-order model and determine the influ-
ence of the third-order moment in the expansion. Details of
the second-order model can be found in Appendix A.

III. NUMERICAL VALIDATION

In order to validate our model, we solve the Riemann
problem for a quark-gluon plasma and compare the results
with BAMPS and two previous relativistic Boltzmann
models. The first one, proposed by Mendoza et al. [7,8]
and later improved by Hupp et al. [10], we will denote
simply by RLB; and the second one, which is a recent
extension of RLB developed by Li et al. [17] to include
multi-relaxation-time, we will denote by MRT RLB.
BAMPS was developed by Xu and Greiner [11] and ap-
plied to the Riemann problem in quark-gluon plasma by
Bouras et al. [12]. Since BAMPS solves the full relativistic
Boltzmann equation, we take its result as a reference to
access the accuracy of our model. However, we keep in
mind that BAMPS also produces approximate solutions.
The present model is hereafter denoted by RLBD (RLB
with dissipation).
For small ratios �=s, where s is the entropy density,

RLB and MRT RLB reproduced BAMPS results to a
satisfactory degree of accuracy. However, for higher
�=s � 0:1 and moderately fast fluids, �� 1:3, RLB failed
to reproduce the velocity and pressure profiles [10]. MRT
RLB yielded good agreement with the results at �=s ¼
0:1, but presented notable discrepancies for �=s ¼ 0:5.
The failure of both RLB and MRT RLB to solve the
Riemann problem for high-viscosity fluids can be ascribed
to their inability to recover the third-order moment of the
distribution [10,17].
In this section, we will study the case of high �=s � 0:1

in a regime of moderate velocities. We perform the simu-
lations on a lattice with 1� 1� 1600 cells, only half of
which are represented in our domain owing to symmetry
conditions (the other half is a mirror, in order to use
periodic boundary conditions for simplicity). Therefore,
our simulation consists of 1� 1� 800 lattice sites, with


x ¼ 0:008 fm and 
t ¼ ffiffiffiffiffiffi
41

p
0:008 fm=c for RLBD third

order, and 
t ¼ 0:024 fm=c for RLBD second order.
The initial conditions for the pressure are P0 ¼

5:43 GeV=fm3 and P1 ¼ 0:339 GeV=fm3. In numerical
units, they correspond to 1.0 and 0.062, respectively. The
initial temperature z � 0 is T1 ¼ 200 MeV (in numerical
units 0.5), and T0 ¼ 400 MeV for z < 0, which corre-
sponds to 1.0 in numerical units. The entropy density s is
calculated according to the relation s ¼ 4n� n ln ðn=neqÞ,
where neq is the density calculated with the equilibrium
distribution, neq ¼ dGT

3=�2, with dG ¼ 16 being the de-
generacy of the gluons.
The velocity and pressure profiles at t ¼ 3:2 fm=c with

viscosity-entropy density ratios of �=s ¼ 0:1 are shown in
Fig. 2. In this figure, we compare the results with BAMPS
and RLB, where we can see that RLB presents a disconti-
nuity at z ¼ 0, while both second-order and third-order
RLBD get closer to the BAMPS solution. Since the only
difference between second- and third-order RLBD is the
third-order moment of the distribution, we conclude that at
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relatively low �=s, the third order does not play a crucial
role in either the conservative dynamics or the dissipative
dynamics of the system. However, note that at z� 3 fm,
the third-order model provides an outstanding fit of the
numerical results by BAMPS.

On the other hand, by increasing the ratio �=s, we see
from Fig. 3 that, while RLB gets worse and the second-
order RLBD fixes the discrepancy only in part, the third-
order RLBD improves significantly the accuracy of the
velocity and pressure profiles.

In Fig. 3, we also compare the results obtained with
MRT RLB and BAMPS, for �=s ¼ 0:5. Here, a signifi-
cant improvement is again appreciated, including the
attainment of the right value of the maximum velocity
(at z� 1:5 fm). In the pressure profile, RLBD gets closer
to BAMPS than MRT RLB in the region of the disconti-
nuity in the initial condition (z� 0).

Note that there is a staircase shape in the results of
RLBD for �=s ¼ 0:5 in Fig. 3. This is due to the large
values taken by the single relaxation time in order to
achieve such shear viscosity-entropy density ratios,
�� 20–40 (in numerical units), which is beyond the
hydrodynamic approximation.

As a result, higher-order moments (fourth and higher
orders) of the distribution function would be required,
which is not fulfilled in our RLBDmodel. In order to prove
this statement, we have performed separate simulations
(see Fig. 4), where we observe that by increasing the value
of the reference temperature of the lattice (typically set at
T ¼ 1), so as to achieve the same shear viscosity, � ¼
ð2=3ÞnTð�� 1=2Þ=R, the value of � decreases and the
staircase disappears. In particular, for T � 2:5, the results
come closer to the ones with BAMPS, and become inde-
pendent of the reference temperature. However, due to the
discretization procedure used to develop this model, when-
ever the reference temperature T > 4, the model becomes
unstable, most likely because in such a parameter range,
the expanded equilibrium distribution function is no longer
positive definite.
We can also study the viscous pressure tensor and the

heat flux for both cases, �=s ¼ 0:1 and 0.5, which gives
more insights on the dissipative properties of the model. In
the Landau-Lifshitz decomposition, the viscous pressure
tensor, ���, can be calculated directly from the distribu-
tion function as
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FIG. 3 (color online). Velocity (top) and pressure (bottom)
profiles as functions of the z coordinate for the case of a shock
wave in quark-gluon plasma, with �=s ¼ 0:5.
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��� ¼ X128
i¼1

ðfi � feqi Þp�
i p

�
i ; (44)

and the heat flux with the relation

q� ¼ 4TðnU� � N�Þ: (45)

Note that according to Eq. (43), we have q�U� ¼ 0. In
Figs. 5 and 6, we observe that the component �33 presents
good agreement with the results from BAMPS, but the heat
flux exhibits a larger deviation. The reason for this dis-
crepancy is as follows: We are fixing the value of �=s; i.e.,
we calculate � locally and at each time step, such that �=s
remains constant. Therefore, even if the simulations take
place at the same shear viscosity, they are not, in general,
for the same thermal conductivity, thereby providing
different results for the heat flux. Furthermore, since
the present single-relaxation-time model has only one
relaxation time �, we cannot fix the shear viscosity and
the thermal conductivity independently. On the other hand,
the small differences in the viscous pressure tensor
between RLBD and BAMPS are most likely due to the
fact that we are not reproducing correctly the fourth- and
fifth-order moments of the equilibrium distribution.
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FIG. 5 (color online). Viscous pressure tensor (top) and heat
flux (bottom) profiles as functions of the z coordinate for the case
of a shock wave in quark-gluon plasma, with �=s ¼ 0:1. Here,
RLBD denotes the present third-order model.
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IV. CONCLUSIONS AND DISCUSSIONS

We have introduced a new relativistic lattice Boltzmann
model with improved dissipation, as compared to RLB and
MRT RLB. To this purpose, we have performed an expan-
sion of the Maxwell-Jüttner distribution onto an orthonor-
mal basis of polynomials in the 4-momentum space. In
addition, in order to make the model compatible with a
regular cubic lattice, we have performed the expansion in
Cartesian coordinates and applied a time transformation,
such that particles travel just the distance necessary to
reach lattice nodes, always at the speed of light. The time
transformation generates a sphere of radius R which inter-
sects the cubic lattice, the intersection points being lattice
nodes by construction. In addition, we have reproduced up
to second-order moments of the equilibrium distribution,

and up to third-order moments, finding R ¼ 3 and R ¼ffiffiffiffiffiffi
41

p
for second- and third-order moment compatibility,

respectively.
The discrete energy component of the 4-momentum,

p0, has been calculated by using Gaussian quadrature,
the nodes corresponding to the zeros of the next-order
polynomial. With this configuration, we need 90 vectors
for recovering second order and 384 for the third-order
moment case. However, only 66 and 128, respectively, are
actually needed to calculate the moments correctly.

In order to validate the model, we have compared our
results with BAMPS, as well as previous RLB models. We
have found that for �=s ¼ 0:1, our model accurately
describes the Riemann problem in quark-gluon plasma,
including the expansion up to second order. However, for
the case of �=s ¼ 0:5, the second-order model, although
better than RLB, is less accurate than both MRT RLB and
the third-order model. The third-order model yields better
results than the previous RLB, but it develops a staircase
shape as a consequence of the large value of the single
relaxation time, which lies beyond the hydrodynamic
regime. We have shown that the staircase pathology can
be tamed by increasing the reference temperature in the
model. Nevertheless, increasing the reference temperature
beyond T ¼ 4 hits against stability limits of the model.
Furthermore, we have also compared the viscous pressure
tensor, ���, and the heat flux, q�, for both simulations,
RLBD and BAMPS, finding good agreement for the case of
��� but not so good for q�. This is because our model has
one relaxation time, and we cannot set the shear viscosity
and the thermal conductivity simultaneously for the same
simulation. However, our model is several orders of mag-
nitude faster than models based on the full Boltzmann
equation, and 1 order of magnitude faster than hydrocodes.

We may envisage that a multi-relaxation-time extension
of the present model would further improve the accuracy of
the results. A similar improvement may be anticipated by
implementing higher-order expansions of the equilibrium
distribution. However, since the transport coefficients
depend on the collision operator, their calculation within

a multi-relaxation-time model becomes increasingly
involved. On the other hand, by performing expansions
to include higher-order moments, the value of R might
become unpractically large, with several ensuing discreti-
zation issues. Notwithstanding such potential difficulties,
these extensions are surely worth being analyzed in depth
for the future.
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APPENDIX A: SECOND-ORDER RELATIVISTIC
LATTICE BOLTZMANN MODEL

To construct the second-order lattice Boltzmann model,
we use the procedure described in this paper. We have
obtained that R ¼ 3 presents enough symmetries to fulfill

the conditions in Eq. (25), and the velocity vectors ~# are
given by (� 3, 0, 0), (0,�3, 0), (0, 0,�3), (� 2,�1,�2),
(� 1, �2, �2), and (� 2, �2, �1). The values for the
discrete p0 come from the solution of the equation

Rð3Þ ¼ 1

12
p0ðp0 � 6Þ2 � 2 ¼ 0; (A1)

FIG. 7 (color online). Directions of the velocity vectors ~#i to
recover up to the second-order moment of the Maxwell-Jüttner
distribution, namely the momentum-energy tensor. The radius of
the sphere is R ¼ 3. The points represent lattice sites belonging
to the surface of the sphere.
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instead of Rð4Þ for the case of the third-order expansion.
This gives the values p0

l ’ 0:936, 3.305, and 7.759. The

discrete 4-momentum vectors p
�
i are constructed with

Eqs. (20) and (24), and they are, in total, N ¼ 3� 30 ¼
90. However, as in the third-order expansion, we have
retained the minimal number out of 90 that are necessary
to recover the second-order moment, by imposing the
maximum number of wi to be zero. This gives only 66
4-momentum vectors. The value of the weight functions
for every momentum vector and the relations with the 30
directions are given in the Supplemental Material [21]. In

Fig. 7, we report the spatial configuration of the vectors ~#i.
The discrete version of the relativistic Boltzmann equa-

tion, Eq. (40), still applies, and the discrete equilibrium
distribution function is written in detail in Eq. (B1) of
Appendix B. However, due to the fact that the third-order
moment is not satisfied, an analytical theory to calculate
the transport coefficients would be very complicated and
goes beyond the scope of this work. Therefore, we have
calculated numerically only the shear viscosity, by match-
ing the results for low velocity with the third-order moment
model, in order to compare the results of both expansions

with other models in the literature. This gives a shear
viscosity �2nd � ð1=7ÞPð�� 
t=2Þ=R. We could, in prin-
ciple, calculate the third-order moment associated with
the equilibrium distribution given by Eq. (B1) and, by
applying the Grad method, compute the other transport
coefficients. However, this procedure would need to be
performed entirely numerically, since the weights wi and
4-momentum vectors p

�
i are only known numerically.

Since the main purpose of this paper is to improve the
description of dissipative effects by performing the third-
order expansion and placing it on a cubic lattice, we are not
interested in the bulk viscosity and the thermal conductiv-
ity for this case, and leave this task for future work.

APPENDIX B: EQUILIBRIUM
DISTRIBUTION FUNCTIONS

The equilibrium distribution function capable of recov-
ering the first- and second-order moments of the equilib-
rium distribution is calculated by using up to the second
order polynomials in Eq. (12), namely the 14 polynomials
Jk with k ¼ 0; . . . ; 13, obtaining

f
eq
i ¼ nwi

4T
½p02

i ðT2ð2U02 �Ux2 �Uy2 � 1Þ � 2TU0 þ 1Þ þ 2p0
i ðTðTðU0ðpx

iU
x þ py

iU
y þ pz

iU
z � 4U0Þ þ 1Þ

� px
iU

x � py
iU

y � pz
iU

z þ 7U0Þ � 4Þ þ T2ðpx2
i ð�U02 þ 2Ux2 þUy2 þ 1Þ

þ 2px
iU

xðpy
iU

y þ pz
iU

z � 4U0Þ þ py2
i ð�U02 þUx2 þ 2Uy2 þ 1Þ þ 2py

iU
yðpz

iU
z � 4U0Þ

þ 8U0ðU0 � pz
iU

zÞ � 2Þ þ 2Tð5ðpx
iU

x þ py
iU

y þ pz
iU

zÞ � 8U0Þ þ 12�: (B1)

For the case of the third-order moment expansion, we repeat the same procedure, using all the polynomials (k ¼ 0; . . . ; 29).
This leads to the following expressions:

f
eq
i ¼ nwi

12T
½p03

i ðTU0 � 1ÞðT2ð4U02 � 3ðUx2 þUy2 þ 1ÞÞ � 2TU0 þ 1Þ
� p02

i ðT3ð�2U02ð3px
iU

x þ 3py
iU

y þ 2pz
iU

zÞ þ ðUx2 þUy2 þ 1Þð3px
iU

x þ 3py
iU

y þ pz
iU

zÞ
þ 36U03 � 6U0ð3Ux2 þ 3Uy2 þ 4ÞÞ þ 3T2ð2U0ðpx

iU
x þ py

iU
y þ pz

iU
zÞ � 22U02 þ 7ðUx2 þUy2Þ þ 9Þ

� 3Tðpx
iU

x þ py
iU

y þ pz
iU

z � 14U0Þ � 15Þ � 3p0
i ðT3ðU03ðpx2

i þ py2
i � 24Þ �U0ðpx2

i ð2Ux2 þUy2 þ 1Þ
þ 2px

iU
xðpy

iU
y þ pz

iU
zÞ þ py

i ðpy
iU

x2 þ 2py
iU

y2 þ py
i þ 2pz

iU
yUzÞ � 12Þ þ 12U02ðpx

iU
x þ py

iU
y þ pz

iU
zÞ

� 2ðpx
iU

x þ py
iU

y þ pz
iU

zÞÞ þ T2ðpx2
i ð�U02 þ 2Ux2 þUy2 þ 1Þ þ 2px

iU
xðpy

iU
y þ pz

iU
z � 11U0Þ

þ py2
i ð�U02 þUx2 þ 2Uy2 þ 1Þ þ 2py

iU
yðpz

iU
z � 11U0Þ � 22pz

iU
0Uz þ 56U02 � 14Þ

þ 2Tð6ðpx
iU

x þ py
iU

y þ pz
iU

zÞ � 25U0Þ þ 20Þ þ Tðpx3
i T2Uxð�3U02 þ 4Ux2 þ 3Uy2 þ 3Þ

þ px2
i Tð3ðU02 � 2Ux2 �Uy2 � 1Þð�py

i TU
y þ 6TU0 � 7Þ þ pz

iTU
zð�U02 þ 4Ux2 þUy2 þ 1ÞÞ

þ 3px
iU

xðTðTðpy2
i ð�U02 þUx2 þ 2Uy2 þ 1Þ þ 2py

iU
yðpz

iU
z � 6U0Þ � 12pz

iU
0Uz þ 24U02 � 4Þ

þ 14py
iU

y þ 14pz
iU

z � 48U0Þ þ 30Þ þ py3
i T2Uyð�3U02 þ 3Ux2 þ 4Uy2 þ 3Þ

þ py2
i Tðpz

iTU
zð�U02 þUx2 þ 4Uy2 þ 1Þ þ 3ð6TU0 � 7ÞðU02 �Ux2 � 2Uy2 � 1ÞÞ

þ 6py
iU

yðTð2Tð�3pz
iU

0Uz þ 6U02 � 1Þ þ 7pz
iU

z � 24U0Þ þ 15Þ þ 6pz
iU

zð2T2ð6U02 � 1Þ � 24TU0 þ 15Þ
� 24U0ðT2ð2U02 � 1Þ � 5TU0 þ 5ÞÞ � 30ðT2 � 2Þ�: (B2)
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