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We study bound states of Abelian gauge theory in D ¼ 1þ 1 dimensions using an equal-time,

Poincaré-covariant framework. The normalization of the linear confining potential is determined by a

boundary condition in the solution of Gauss’ law for the instantaneous A0 field. As in the case of the Dirac

equation, the norm of the relativistic fermion-antifermion (f �f) wave functions gives inclusive particle

densities. However, while the Dirac spectrum is known to be continuous we find that regular f �f solutions

exist only for discrete bound-state masses. The f �f wave functions are consistent with the parton picture

when the kinetic energy of the fermions is large compared to the binding potential. We verify that the

electromagnetic form factors of the bound states are gauge invariant and calculate the parton distributions

from the transition form factors in the Bjorken limit. For relativistic states we find a large sea contribution

at low xBj. Since the potential is independent of the gauge coupling the bound states may serve as ‘‘Born

terms’’ in a perturbative expansion, in analogy to the usual plane wave in and out states.
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I. INTRODUCTION

The hadron spectrum is simpler than one would expect.
Deep inelastic scattering shows important contributions
from sea quarks and gluons, yet q �q mesons and qqq
baryons are successfully classified [1] in terms of only
their valence quark degrees of freedom. Dynamical fea-
tures such as masses and magnetic moments are consistent
with the nonrelativistic quark model [2], even though
(light) quarks are known to be ultrarelativistic. Models
which take into account relativistic effects have been
constructed and successfully compared with data [3–7].
Approaches based on relativistic Dyson-Schwinger equa-
tions capture many features of hadrons [8,9].

It is well established—and confirmed by numerical lat-
tice calculations [10,11]—that hadrons are bound states of
quantum chromodynamics (QCD). The relative simplicity
of the hadron spectrum and the success of quark models
motivates us to ask: Is there a systematic approximation
scheme of QCD which, at lowest (’’Born term’’) order, has
quark model features? Here our ambition is to refrain from
either introducing effective quantities (e.g., local fields for
hadrons) or postulate potentials beyond the gauge fields of
QCD. It may seem that under these conditions the answer
should be ‘‘no.’’ Our present results indicate, however, that
this answer is not obviously correct.

The similarities between the spectra of hadrons and
atoms induce us to take �s at small momentum transfer
as our expansion parameter. Several theoretical and
phenomenological studies [12–18] find that the strong
coupling freezes at a moderate value in the infrared.

Perturbation theory provides a well-constrained framework
for addressing the question we raised above. At lowest
order in �s our expansion should resemble quark models,
which typically use the Cornell potential [19]

VQMðxÞ ¼ cjxj � CF

�s

jxj : (1.1)

The second term is due to single gluon exchange and thus
arises naturally in our perturbative expansion. We shall not
endeavor to derive the color confining term cjxj in (1.1)—
but neither just postulate it. We rather ask if and how this
term is compatible with the QCD equations of motion.
The interaction (1.1) is instantaneous. Gluons propagate

in time, giving rise to intermediate states with one or several
gluons. The Coulomb field A0 of gauge theories is an
exception. It has no time derivative in the Lagrangian and
is thus instantaneous. We can avoid jq �qgi; . . . Fock states
related to the linear potential cjxj in (1.1) only if it is due to
Coulomb gluons.1 The absence of a time derivative on A0

also implies that the field equations of motion (‘‘Gauss’
law’’) allow us to express A0 in terms of the propagating
fields at each instant of time. In QED Gauss’ law specifies,
for an je�ðx1Þeþðx2Þi state and in r �A ¼ 0 gauge,

� r2A0ðxÞ ¼ e½�ðx� x1Þ � �ðx� x2Þ�; (1.2)

1The single gluon exchange term in (1.1) is instantaneous only
for nonrelativistic dynamics. Even photon exchange in QED
atoms involves higher Fock states, in frames where the atom
moves relativistically [20].
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with the standard solution

A0ðxÞ ¼ e

4�

�
1

jx� x1j �
1

jx� x2j
�
: (1.3)

The interaction potential is then 1
2 ½eA0ðx1Þ � eA0ðx2Þ� ¼

��=jx1 � x2j, the familiar Coulomb potential. However,
we may add a homogeneous solution of (1.2) to (1.3) [21],

A0
�ðxÞ ¼ �2‘̂ � x; A� ¼ 0: (1.4)

The constant � corresponds to a nonvanishing boundary
condition in the solution of Gauss’ law,

lim
jxj!1

F��F
��ðxÞ ¼ �2�4: (1.5)

The unit vector ‘̂ must be independent of x but can
otherwise be chosen freely. Rotational invariance requires

‘̂ k x1 � x2. The potential energy is then

Vðx1�x2Þ¼1

2
½eA0

�ðx1Þ�eA0
�ðx2Þ�¼

1

2
e�2jx1�x2j: (1.6)

An analogous, homogeneous solution of Gauss’ law
exists in QCD [21]. The parameter � should vanish
for QED to describe data, while in QCD ���QCD may

be related to the coefficient c of the quark model potential
(1.1). The homogeneous solution (1.4) exists for charges of
any momentum, whereas A0 dominates perturbative ex-
change only in the case of nonrelativistic dynamics. It is
clear from (1.6) that the potential V is invariant under
translations only for neutral (color singlet) states.
Poincaré invariance thus requires the bound states to be
neutral if � � 0.

We define a neutral fermion-antifermion bound state at
equal time (t ¼ 0) and of 4-momentum P ¼ ðE;PÞ by

jPi¼
Z
dx1dx2 �c 1ðt¼0;x1Þ

�exp½iP � ðx1þx2Þ=2��ðx1�x2Þc 2ðt¼0;x2Þj0iR:
(1.7)

Here c f is a fermion operator of flavor f in Abelian gauge

theory (see Ref. [21] for the generalization to QCD), and
the c-number wave function � has 4� 4 Dirac compo-
nents. The boundary condition (1.5) separates charged and
neutral states by an infinite (field) energy. This is similar to
D ¼ 1þ 1 dimensions, where the perturbative potential is
linear and physical states are neutral [22]. The subscript R
denotes that we are using the ‘‘retarded vacuum,’’ which

satisfies c 1ðxÞj0iR ¼ c y
2 ðxÞj0iR ¼ 0. This eliminates pair

production from the vacuum, Hj0iR ¼ 0, allowing us to
describe the bound state in terms of a two-particle Fock
state only [21]. It was observed previously [23] that scat-
tering amplitudes defined using the retarded vacuum give
inclusive cross sections.

Under a space translation x ! xþ d the state (1.7)
transforms by a phase exp ðiP � dÞ, as appropriate for a

state of total momentum P. Stationarity under time trans-
lations imposes

HjPi ¼ EjPi: (1.8)

At lowest order in the coupling e, neglecting all perturba-
tive contributions, the gauge field is given by (1.4). This
contribution can be taken into account by adding an
Oðe�2Þ instantaneous interaction term to the Hamiltonian,
H ! H þH�, which for neutral states is effectively [21]

H�¼�e�2

4

X
f;f0

Z
dxdyc y

fc fðt;xÞjx�yjc y
f0c f0 ðt;yÞ;

(1.9)

and thus is leading compared to the Oðe2Þ perturbative
interactions. For jPi to be an eigenstate of H at Oðe�2Þ
the wave function �ðx1 � x2Þ should satisfy the bound-
state equation

irx � f�0�;�ðxÞg�1

2
P � ½�0�;�ðxÞ�þm1�

0�ðxÞ
�m2�ðxÞ�0¼½E�VðxÞ��ðxÞ; (1.10)

with the potential VðxÞ given by (1.6).
The wave functions� and the energy eigenvalues E that

solve the bound-state equation (1.10) depend on the
3-momentum P. In this equal time, Hamiltonian formalism
boost invariance (as well as time translation invariance)
is a dynamical symmetry. Because the field theory is
Poincaré invariant and is solved at lowest order in
the coupling e, with the Poincaré invariant boundary con-
dition (1.5), we expect the state (1.7) to be covariant. In
Ref. [24] we verified this in D ¼ 1þ 1 dimensions using
the boost generator M01. The boosted state satisfies the
bound-state equation (1.10) with the appropriately shifted
momentum, i.e.,

ð1� id�M01ÞjP0;P1i¼ jP0þd�P1;P1þd�P0i: (1.11)

Also in D¼3þ1 dimensions the energy eigenvalues of
(1.10) have the required dependence on themomentum [25],

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

p
: (1.12)

This indicates that the states are Poincaré covariant also in
four-dimensional space-time.
So far we discussed bound-state solutions in the presence

of only the nonperturbative field (1.4), which gave the
linear potential (1.6). We conjecture that perturbative cor-
rections can be taken into account in the standard way. Then
a formally exact expression for an S-matrix element is

Sfi ¼ outhfjT
�
exp

�
�i

Z
d4xH I

��
jiiin: (1.13)

Usually the particles in the in and out states are taken to be
free fields. In the present framework they are (collections
of) the Oð�0Þ bound states (1.7) at asymptotic times
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t ¼ �1. In effect, the S matrix is perturbatively expanded
around Born states which are zeroth order approximations
of QCD hadrons, reminiscent of quark model states and
Poincaré covariant. We plan to study the properties of this
perturbative expansion in future work.

The present paper is a sequel to our study [24] of
Poincaré invariance. Here we examine other features of
the solutions to the bound-state equation (1.10) in D ¼
1þ 1. These wave functions have several unusual proper-
ties, some of which are shared with the (previously known)
solutions of the Dirac equation. The D ¼ 1þ 1 wave
functions can be expressed in terms of confluent hyper-
geometric functions, which allows detailed analytic
and numerical studies. We expect that the results in this
paper shed some light also on the properties of the solu-
tions of (1.10) in D ¼ 3þ 1.

In the next section we study the solutions of the Dirac
equation for a linear potential in D ¼ 1þ 1 dimensions.
We show how, for nearly nonrelativistic dynamics (m *
Ze), the solutions agree with those of the corresponding
Schrödinger equation at small fermion separations jxj, but
reflect pair production at separations where VðxÞ * 2m. In
Sec. III we find the analytic solutions of the f �f bound-state
equation (1.10) in D ¼ 1þ 1 dimensions. Similarly to the
Dirac wave functions they are not square integrable since
their norm tends to a constant at large jxj. The f �f
wave functions, however, are generally singular at VðxÞ ¼
E� P1. Solutions that are regular at these points2 exist
only for discrete bound-state masses [26]. This differs
qualitatively from the Dirac equation, whose solutions
are regular at all x, giving a continuous mass spectrum.
In Sec. IV we show that the normalization of the wave
function at x ¼ 0 can be determined by requiring duality
between the bound state (� distribution) and fermion-loop
contributions to the imaginary parts of current propagators.
A self-consistent normalization is obtained in all Lorentz
frames and for all currents. For highly excited bound states
the wave functions [at low jxj, hence small VðxÞ] turn into
plane waves of positive energy fermions as expected in
the parton model. In Sec. V we evaluate the electromag-
netic form factors and show that they are gauge invariant
(in any dimension). In Sec. VI we express deep inelastic
scattering in terms of transition form factors in the
Bjorken limit. For relativistic states (small fermion masses)
the D¼1þ1 parton distributions grow large at small xBj,

with xBjfðxBjÞ/ log2ðxBjÞ. Our conclusions are given in

Sec. VII.

II. DIRAC EQUATION IN D ¼ 1þ 1

Some of the novel properties of the f �f states that we
study in D¼1þ1 dimensions, notably the asymptotically

constant norm of their wave functions, are shared by elec-
trons bound in an external linear A0 potential. Soon after
Dirac first proposed his wave equation [27] it was realized
[28–30] that solutions of the Dirac equation generally can-
not be normalized. This contrasts with the solutions of the
Schrödinger equation, where the requirement of a finite
normalization integral leads to the quantization of the en-
ergy spectrum. Thus in Ref. [30] it was shown that the
solutions of the Dirac equation in D ¼ 1þ 1 have a con-
stant norm as jxj ! 1 for all potentials of the formA0ðxÞ ¼
xn (or combinations thereof), wheren � 0 is any positive or
negative integer. A similar result holds in D ¼ 3þ 1 di-
mensions when A ¼ 0, for central potentials A0ðrÞ which
are polynomials in r or in 1=r, with the interesting exception
of A0ðrÞ / 1=r [30]. The Dirac energy spectrum is thus
generally continuous, and the completeness relation in-
volves a continuous set of eigenfunctions [31].
The constant norm of the Dirac wave function reflects

pair production in a strong potential. The phenomenon is
related to the Klein paradox [32], which requires a multi-
particle framework for its resolution [33]. The pairs can be
seen to arise from Z diagrams when the scattering of an
electron in an external field is time ordered. In the case of
static A0 potentials the same bound-state energies are
obtained with retarded as with Feynman electron propa-
gators [21]. Using retarded propagators electrons of both
positive and negative energies propagate forward in time,
and the bound states are described by single particle Dirac
wave functions. Due to the retarded boundary conditions
the norm of the Dirac wave function is, however,
‘‘inclusive’’ in nature, in analogy with the more familiar
concept of inclusive scattering cross sections [23].
The analytic solution of the Dirac equation,

½�ir ��þe�0A0ðxÞþm�
�
’ðxÞ
�ðxÞ

�
¼M�0

�
’ðxÞ
�ðxÞ

�
; (2.1)

in D ¼ 1þ 1 for a linear potential was first given in
Ref. [29]. We include the derivation below for complete-
ness and to introduce our notation. We also discuss some
numerical properties of the solutions, which appear not to
be widely known.

A. General solution

We use a standard two-dimensional representation of the
Dirac matrices in terms of Pauli matrices,

�0 ¼ 	3; �1 ¼ i	2; �0�1 ¼ �5 ¼ 	1: (2.2)

In QED2 the potential generated by a static source of
charge Ze is VðxÞ ¼ eA0ðxÞ ¼ 1

2Ze
2jxj. We use units

where Ze2 ¼ 1, hence

VðxÞ ¼ 1

2
jxj: (2.3)

In the following all dimensionful quantities can be given
their physical dimensions through multiplication by the
appropriate power of Ze2.

2When the fermion masses are unequal, m1 � m2 in (1.10),
the wave functions are fully regular only in the infinite momen-
tum frame, P1 ! 1.
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The Dirac equation (2.1) implies

�i@x�¼ðM�V�mÞ’; �i@x’¼ðM�VþmÞ�: (2.4)

We choose the phases such that ’ðxÞ is real and �ðxÞ is
imaginary. This means that the solutions are characterized
by two real parameters, e.g.,’ð0Þ and�i�ð0Þ. By adding or
subtracting the equations at x and �x we may impose that

’ðxÞ ¼ 
’ð�xÞ; �ðxÞ ¼ �
�ð�xÞ; (2.5)

where 
 ¼ �1. This allows us to consider solutions in the
region x � 0 only. Continuity at x ¼ 0 requires �ð0Þ ¼ 0
for
 ¼ þ1, and’ð0Þ ¼ 0 for
 ¼ �1. The Eqs. (2.4) then
ensure that @x’ð0Þ ¼ 0 for 
 ¼ 1 and @x�ð0Þ ¼ 0 for

 ¼ �1.

The two first-order equations (2.4) give rise to a second-
order equation for ’ðxÞ,

@2x’ðxÞþ "ðxÞ
2ðM�VþmÞ@x’ðxÞþ½ðM�VÞ2�m2�’ðxÞ¼0;

(2.6)

where "ðxÞ 	 x=jxj is the sign function. For x ! 1 the
term V2’ðxÞ must be balanced by @2x’ðxÞ, hence

’ðx ! 1Þ � exp ð�ix2=4Þ: (2.7)

From (2.4) it follows that �ðxÞ has a similar asymptotic
behavior. Since the norms j’ðxÞj and j�ðxÞj tend to con-
stants for x ! 1 the Dirac wave functions are not normal-
izable [28–30], unlike the solutions of the nonrelativistic
Schrödinger equation. As we shall see, the solutions have
features which support the interpretation that their norm at
large VðxÞ reflects virtual pair contributions.

The coefficient of @x’ðxÞ in (2.6) is singular atM� V þ
m ¼ 0. Assuming ’ðxÞ � ðM� V þmÞ� as M� V þ
m ! 0 we find � ¼ 0 or 2. Hence the general solutions
’ðxÞ and �ðxÞ have no singularities at finite x. Since the
wave functions are not square integrable there is no re-
striction on the eigenvaluesM. In Sec. II B we discuss how
the discrete eigenvalues required by the Schrödinger equa-
tion emerge nevertheless in the nonrelativistic domain
(m 
 1). In Sec. II C we show that any two solutions
with different eigenvalues M are orthogonal.

Since only the combination M� VðxÞ appears in the
Dirac equation (2.4) it is convenient to replace x by the
variable3

	 ¼ ðM� VÞ2; @x ¼ d	

dx
@	 ¼ �ðM� VÞ@	: (2.8)

The Dirac equation then reads,4 in the region where
M� VðxÞ> 0,

i@	�ð	Þ¼
�
1� mffiffiffiffi

	
p

�
’ð	Þ; i@	’ð	Þ¼

�
1þ mffiffiffiffi

	
p

�
�ð	Þ:

(2.9)

We may combine ’ and � into the single complex
function

�ð	Þ 	 ½’ð	Þ þ �ð	Þ�ei	
and conversely

’ð	Þ¼Re½�ð	Þe�i	�; �ð	Þ¼ iIm½�ð	Þe�i	�: (2.10)

The second-order equation for �ð	Þ is then
2	@2	�þ ð1� 4i	Þ@	�� 2m2� ¼ 0; (2.11)

with the general solution

�ð	Þ ¼ ða1 þ ib1Þ1F1

�
� 1

2
im2;

1

2
; 2i	

�

þ ða2 þ ib2Þ
ffiffiffiffi
	

p
1F1

�
1

2
� 1

2
im2;

3

2
; 2i	

�
; (2.12)

where 1F1 is the confluent hypergeometric function and the
ai, bi are real constants. From (2.10) we find

’ð	 ! 0Þ ¼ a1 þ a2
ffiffiffiffi
	

p þOð	Þ;
�ð	 ! 0Þ ¼ ib1 þ ib2

ffiffiffiffi
	

p þOð	Þ: (2.13)

Matching the terms ofOð1= ffiffiffiffi
	

p Þ in (2.9) gives the relations
b2 ¼ 2ma1; a2 ¼ 2mb1: (2.14)

The general solution of theD ¼ 1þ 1Dirac equation (2.4)
with the linear potential (2.3) of QED2 is thus given by

c ð	Þ	’ð	Þþ�ð	Þ

¼
�
ðaþ ibÞ1F1

�
�im2

2
;
1

2
;2i	

�

þðbþ iaÞ2m"ðM�VÞ ffiffiffiffi
	

p
1F1

�
1� im2

2
;
3

2
;2i	

��

�expð�i	Þ; (2.15)

where a and b are real parameters and 	 ¼ ðM� VÞ2.
’ and � are given by the real and imaginary parts of the
right-hand side, respectively. The sign function "ðM� VÞ
ensures that the solution is valid also in the region where
M� VðxÞ< 0, since

ffiffiffiffi
	

p
in (2.9) changes sign at 	 ¼ 0.

This solution agrees with Eq. (14) of Ref. [29].
The solution (2.15) is valid for x � 0. The wave

functions for x < 0 are given by the symmetry relations
(2.5). Continuity at x ¼ 0 requires that the antisymmetric
(real or imaginary) part of the wave function vanishes at
x ¼ 0, which also ensures that the x derivative of the
symmetric part vanishes. The positions 	 ¼ 	0 where
either the real or imaginary part of the right-hand side in
(2.15) vanishes determine the mass eigenvaluesM ¼ ffiffiffiffiffiffi

	0
p

,

since continuity allows us to set x ¼ 0 at 	0. The eigen-
values M thus depend on the ratio a=b of the parameters.

3We consider solutions only for x � 0 in the following. The
parity condition (2.5) gives the solutions for x < 0.

4Here and in the following we use the shorthand notation
’ð	Þ 	 ’½	ðxÞ�, and similarly for �ðxÞ.
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The asymptotic behavior of the wave function at large x,

lim
x!1c ð	Þ ¼ ffiffiffiffi

�
p

e�m
2=4

�
aþ ib

�½12 ð1þ im2Þ� þ
a� ib

�ð1þ 1
2 im

2Þ
me�i�=4ffiffiffi

2
p

�
ð2	Þim2=2e�i	

þ
ffiffiffiffi
�

p
ffiffiffiffiffiffiffi
2	

p e�ðm2�iÞ=4
�

aþ ib

�ð� 1
2 im

2Þ �
a� ib

�½12 ð1� im2Þ�
mei�=4ffiffiffi

2
p

�
ð2	Þ�im2=2ei	 þO

�
1

	

�
; (2.16)

oscillates with 	 ’ x2=4 in agreement with the general
result (2.7). Hence the norm of the wave function tends
to a constant at high x. Unlike in the nonrelativistic limit
(the Schrödinger equation), the parameters of the solution
cannot be determined by a normalizability condition.

B. The nonrelativistic limit

The fact that the eigenvalues M of the Dirac equation
(2.4) depend on the ratio a=b of the parameters in (2.15)
raises the question about the approach to the nonrelativistic
limit. In D ¼ 1þ 1 dimensions for a fixed potential this
limit is equivalent to taking m ! 1, scaling simulta-
neously coordinates and momenta appropriately. For a
linear potential the scaling of the coordinate and the bind-
ing energy Eb ¼ M�m is

x� Eb �m�1=3: (2.17)

In the nonrelativistic limit the Dirac equation reduces to the
Schrödinger equation

� 1

2m
@2x�ðxÞ þ 1

2
jxj�ðxÞ ¼ Eb�ðxÞ; (2.18)

whose normalizable solutions are given by theAiry function,

�ðxÞ ¼ NAi½m1=3ðx� 2EbÞ� ðx > 0Þ; (2.19)

with �ð�xÞ ¼ ��ðxÞ. The solutions are differentiable at
x ¼ 0 only for discrete binding energies. How are the same
eigenvalues selected in the Dirac equation at large m?
It turns out that the two independent solutions in (2.15)

become degenerate at largem. SettingM¼mþEb in (2.8)
and noting the scaling (2.17) we have

	 ¼ ½m2 þmð2Eb � jxjÞ� þOðm�2=3Þ: (2.20)

At largemwemay use a stationary-phase approximation in
the integral representation of the hypergeometric functions
in (2.15), giving

c ð	Þ¼ ð1þ iÞðaþbÞ ffiffiffiffi
�

p
m1=3e�m

2=2þiðm2��=4Þ

�Ai½m1=3ðjxj�2EbÞ�½1þOðm�2=3Þ�; (2.21)

which agrees with the standard solution (2.19) of the
Schrödinger equation. Consequently the nonrelativistic
limit of the general solution (2.15) does not depend on
the ratio a=b.
As seen from Fig. 1 the Dirac eigenvalues are insensitive

to a=b already for m * 1, where they merge with the
bound-state mass given by the Schrödinger equation. At
largem there is a very narrow range of a=b where the (real
or imaginary parts of the) two terms on the right-hand side
of (2.15) nearly cancel. Only in this range does the position

0.25 0.5 0.75 1.25 1.5 1.75 2

0.5

1.5

2

0.5 1 1.5 2 2.5 3 3.5 4

0.00001

0.0001

0.001

0.01

0.1

m

∆M

m2

|M(b=0) – M(a=0)|

|M(b=0) – M(NR)|

Dirac (b=0)

Dirac (a=0)

Schrödinger

(a) (b)

M

FIG. 1 (color online). Ground state massesM as a function of the constituent fermion mass m (in units of
ffiffiffiffiffiffiffiffi
Ze2

p
). (a) The dark (light)

blue solid curves correspond to the Dirac wave function (2.15) with b ¼ 0 (a ¼ 0). The dashed red curve showsM ¼ mþ Eb, with Eb

the eigenvalue given by the Schrödinger equation (2.18) (which is reliable for m * 1 only). (b) Absolute values of the ground state
mass differences plotted versusm2 on a logarithmic scale. The mass difference between the Dirac solutions for b ¼ 0 and a ¼ 0 (solid
blue line) decreases exponentially with m2, much faster than the difference of the b ¼ 0 and Schrödinger masses (dashed red curve).
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of the zero, 	 ¼ 	0, depend on the precise value of a=b.
For, e.g., m ¼ 2:5 this occurs for the ground state near
a=b ¼ �1:041, and the width of the interval in a=b that
gives a continuum range of masses M is of Oð10�6Þ. The
approximate cancellation in (2.15) then makes the wave
function grow very rapidly near 	 ¼ 	0, mimicking the
exponential growth of the Schrödinger solutions for gen-
eral M. For generic values of a=b and m * 1 the bound-
state masses given by the Dirac equation agree with those
of the normalizable solutions to the Schrödinger equation
as indicated in Fig. 1.

The issue of the approach to nonrelativistic dynamics
was also addressed in Ref. [31]. A measure of the relativ-
istic effects was provided by the distance from the real axis
of certain poles related to the Dirac eigenvalues, which was
found to be � exp ð�m2Þ, with � �  � 2�. In view of
this it is interesting to note that the (typical) difference
between the Dirac eigenvalues obtained with different a=b
decreases similarly with m (here  ¼ �), as shown by the
solid (blue) line in Fig. 1(b).

As expected, the Dirac wave function is similar to the
Schrödinger one only for values of x such that VðxÞ � m,
i.e., for weak binding. Thus the (upper component of) the
Dirac wave function agrees with the Schrödinger wave
function in the nonrelativistic regime, as seen in Fig. 2
(wherem ¼ 2:5 and b ¼ 0). Following its decrease to very
small values the Dirac wave function begins to increase at a
value of x where VðxÞ ’ M, and becomes Oð1Þ again,
initiating its asymptotic oscillations (2.7) when VðxÞ ’
2M. This is because the wave function depends on x
through the variable 	 ¼ ½M� VðxÞ�2, which takes the
same value at x ¼ 0 as at V ¼ 2M. The start of the oscil-
lations at a potential energy corresponding to pair produc-
tion is indicative of the relation between the nonvanishing
asymptotic norm and multiparticle effects (the Z diagrams
mentioned above).

C. Orthogonality

Two distinct solutions of the Dirac equation (2.4),�k ¼
ð’k�kÞT and �‘ with eigenvalues Mk � M‘ satisfy

�i	1@x�k þm	3�k ¼ ðMk � VÞ�k;

i@x�
y
‘	1 þm�y

‘	3 ¼ ðM‘ � VÞ�y
‘ :

(2.22)

Multiplying the first equation by �y
‘ from the left and the

second by �k from the right and subtracting, we find

� i@xð�y
‘	1�kÞ ¼ ðMk �M‘Þð�y

‘�kÞ: (2.23)

In terms of the solution c ðxÞ ¼ ’ðxÞ þ �ðxÞ in (2.15)
this is

@x½Imðc 
‘c kÞ� ¼ ðMk �M‘ÞReðc 

‘c kÞ: (2.24)

Recalling that ’ðxÞ ¼ 
’ð�xÞ is real and �ðxÞ ¼
�
�ð�xÞ is imaginary both sides of (2.24) are odd func-
tions of x if 
k ¼ �
‘. Since wave functions of opposite
parity are trivially orthogonal it suffices to consider the
case 
k ¼ 
‘. Integrating both sides from x ¼ 0 to x ¼ X
and noting that the insertion at x ¼ 0 of the left-hand side
vanishes we find

Im ½c 
‘c kðx ¼ XÞ� ¼ ðMk �M‘Þ

Z X

0
dxRe½c 

‘c kðxÞ�:
(2.25)

The leading term in the asymptotic limit of (2.16) is of the
form

c ðx ! þ1Þ ¼ 
c ðx ! �1Þ ¼ C	im2=2e�i	; (2.26)

where 	 ¼ M2 �Mxþ x2=4, and the complex constant C
depends on m as well as on a and b, which need not be the
same for each bound-state level. For a sufficiently large X
that the asymptotic form (2.26) of the wave functions
applies we have

c 
‘c kðx ¼ XÞ ’ Ck‘e

iðMk�M‘ÞX; (2.27)

whereCk‘ ¼ C
‘Cke

iðM2
‘
�M2

k
Þ. If (to simplify the discussion)

we choose X such that5

cos ½ðMk �M‘ÞX� ¼ 0 (2.28)

(2.25) gives, taking into account that the integrand on the
right-hand side is symmetric in x,

Z X

�X
dxRe½c 

‘c kðxÞ� ’ 2ReðCk‘Þ sin ½ðMk �M‘ÞX�
Mk �M‘

:

(2.29)

We recognize the right-hand side as a standard representa-
tion of the � distribution. Taking X ! 1 we have

2 4 6 8 10 12 14

-0.5

-0.25

0.25

0.5

0.75

1

m = 2.5
x

Dirac (x) (b=0)

Schrödinger (x)

FIG. 2 (color online). The upper component ’ðxÞ of the Dirac
wave function (continuous blue line) and the Schrödinger wave
function �ðxÞ of (2.19) (dashed red line). The fermion mass is
m ¼ 2:5 and the parameter b ¼ 0 in the analytic solution (2.15).
Both solutions are normalized to unity in the range 0 � x � 6.

5Relaxing this assumption leads to an extra term in Eq. (2.29),
which is singular atMk ¼ M‘ but does not contribute to the final
result.
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Z 1

�1
dx�y

‘�k ¼
Z 1

�1
dxRe½c 

‘c kðxÞ�
¼ ReðCk‘Þ2��ðMk �M‘Þ: (2.30)

The freedom in choosing the parameter a=b in the
general solution (2.15) allows bound-state solutions for a
continuous range of massesM. Since all these solutions are
orthogonal a completeness sum must include them all, as
shown in Ref. [31]. The spectrum of the Dirac equation
with a linear potential is thus continuous, similar to the
case of noninteracting plane waves.

III. SOLUTIONS OF THE TWO-FERMION
BOUND-STATE EQUATION IN D ¼ 1þ 1

In this section we give the general solution for the wave
functions� ¼ ei’� that describe the bound states (1.7) of
two fermions in D ¼ 1þ 1 dimensions,

jE; Pi 	
Z

dx1dx2 exp

�
1

2
iPðx1 þ x2Þ

�
�c 1ð0; x1Þ

� ei’�ðx1 � x2Þc 2ð0; x2Þj0iR: (3.1)

The 2-momentum of the bound state is denoted ðE; PÞ, and
the Dirac matrices are defined as in (2.2). The bound-state
equation (1.10) is then [21,24]

i@xf	1;�ðxÞg�ð@x’Þf	1;�ðxÞg�1

2
P½	1;�ðxÞ�

þm1	3�ðxÞ�m2�ðxÞ	3¼½E�VðxÞ��ðxÞ: (3.2)

The linear potential imposed by the boundary condition
(1.5) is of the form (1.6). We take the coefficient of 1

2 jxj as
our energy scale and thus have the same potential (2.3) as
in the Dirac equation, now with x ¼ x1–x2.

We showed in Ref. [24] that E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
and worked

out the P dependence of the wave function. It turned out to
be convenient to introduce the variable

	 	 ðE� VÞ2 � P2 ¼ M2 � 2EV þ V2 	 �2; (3.3)

which in the rest frame (P ¼ 0) coincides with the variable
	 defined in (2.8), which we used in the Dirac equation.6

The expression for 	 suggests to define7 the ‘‘kinematical
2-momentum’’ �� ¼ P� � eA�, where P� ¼ ðE;PÞ� is
the bound-state momentum and eA� ¼ ðV; 0Þ�,

�ðxÞ ¼ ðE� VðxÞ; PÞ 	 ðcosh �; sinh �Þ ffiffiffiffi
	

p
: (3.4)

Here the last equality holds when 	 ¼ �2 > 0. The vari-
able 	ðxÞ ¼ 	ð�xÞ first decreases with increasing x > 0,
from 	 ¼ M2 down to 	 ¼ �P2 at VðxÞ ¼ E, and then
increases with x, behaving asymptotically as 	 ’ x2=4.

The common phase ’ðxÞ, which for convenience is ex-
tracted from the 2� 2wave function� in the state (3.1), is

’ðxÞ ¼ "ðxÞðm2
1 �m2

2Þð� � �Þ

¼ 1

2
"ðxÞðm2

1 �m2
2Þ log

��
M

Eþ P

�
2
��������E� V þ P

E� V � P

��������
�
:

(3.5)

Here � is defined8 in (3.4), and � is the rapidity of the bound
state, e� ¼ ðEþ PÞ=M.
Taking the complex conjugate of the bound-state equa-

tion and changing x ! �x we see that �ðxÞ and �ð�xÞ
satisfy the same equation. Consequently we may define
solutions of definite parity 
 ¼ �1 by

�
ðxÞ¼�ðxÞþ
�ð�xÞ; �
ð�xÞ¼
�
ðxÞ: (3.6)

In the following we first construct solutions for x � 0 and
then complete them to the region x < 0 according to (3.6),
requiring continuity at x ¼ 0.
The general structure of a 2� 2wave function�ðxÞ that

satisfies (3.2) is [24]

�ðxÞ ¼ �þ 1

	
ðm1�

y��m2��yÞ;
�ðxÞ 	 �0ðxÞ þ�1ðxÞ	1;

(3.7)

where �0 and �1 are scalar functions of x. Inserting these
expressions into the bound-state equation (3.2) and sub-
stituting the variable 	 of (3.3) for x using

@x ¼ �ðE� VÞ@	 ðx � 0Þ; (3.8)

we find that �0 and �1 satisfy

�2i@	�1ð	Þ ¼
�
1� ðm1 �m2Þ2

	

�
�0ð	Þ;

�2i@	�0ð	Þ ¼
�
1� ðm1 þm2Þ2

	

�
�1ð	Þ:

(3.9)

The explicit dependence on E and P has disappeared,
which means that �0 and �1 are the same functions of 	
in any frame. They are, however, P dependent when
viewed as functions of x due to the relation (3.3) between
	 and x. The full 2� 2 wave function � is expressed in
terms �0 and �1 by (3.7). The relation between the wave
function in a frame where the center-of-mass momentum is
P to the rest frame (P ¼ 0) wave function is given by

�ð	Þ ¼ e�	1�=2�ðP¼0Þð	Þe	1�=2; (3.10)

with � defined by (3.4) and 	 � 0.
6The invariant mass M is now that of the f �f system. The

present variable 	 is related to the variable s of Ref. [24] through
	 ¼ M2 � 2"ðxÞsðxÞ.

7Here the space component of � has the opposite sign
compared to its definition in Ref. [24].

8Notice that (3.4) defines � only for 	> 0. The last expression
in (3.5) can be taken as the definition of ’ for 	 � 0, and this is
enough to make the wave function � well defined.
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A. f �f solutions for m1 ¼ m2 ¼ m

We first consider the equal-mass case, m1 ¼ m2 ¼ m.
Then the phase ’ ¼ 0 in (3.5) and the coupled equations
(3.9) reduce to a second-order equation for �1ð	Þ, which
has the form of a Coulomb wave equation,

4@2	�1 þ
�
1� 4m2

	

�
�1 ¼ 0: (3.11)

The solution will oscillate asymptotically, �1ð	 ! 1Þ �
exp ð�i	=2Þ, analogously to the behavior of the Dirac
wave function (2.7). The general solution for �1 is

�1ð	Þ¼	e�i	=2½a1F1ð1� im2;2;i	ÞþbUð1� im2;2;i	Þ�;
(3.12)

where a and b are constants and Uð�;�; zÞ is the confluent
hypergeometric function of the second kind.

The behavior of the U function for small argument,

Uð�; 2; z ! 0Þ ¼ 1

�ð�Þ
1

z
þOðlog zÞ; (3.13)

causes the 2� 2wave function�ðxÞ in (3.7) to be singular
at 	 ¼ 0 if b � 0 in (3.12): Then lim 	!0�1ð	Þ ¼
�ib=�ð1� im2Þ is nonvanishing, and the singular factor
1=	 is uncanceled in (3.7). Such a singularity at 	 ¼ 0
prevents even a local normalizability of the wave function,
and causes the orthogonality integrals (3.35) (Sec. III C
below) to diverge.
The f �f bound-state equation thus differs significantly

from the Dirac equation (2.4), even though both wave
functions are oscillatory at large jxj. The general solution
for the Dirac wave function is regular for finite x and thus
locally normalizable, whereas this is true for the f �f wave
function only provided b ¼ 0 in (3.12).
If we express the bound-state mass as M ¼ 2mþ Eb

then in the limit of large fermion masses (m ! 1) the
binding energy Eb and the coordinate x scale as in (2.17)
(in the rest frame, P ¼ 0). Substituting 	 ’ 4m2 þ
2mðEb � 1

2 jxjÞ in the solution (3.12) and using a

stationary-phase approximation in the integral representa-
tion of the hypergeometric functions they turn into solu-
tions of the nonrelativistic Schrödinger equation,

	e�i	=2
1F1ð1� im2; 2; i	Þ ¼

�
2

m

�
2=3

e�m
2
Ai

��
1

2
m

�
1=3ðjxj � 2EbÞ

�
;

	e�i	=2Uð1� im2; 2; i	Þ ¼ �ð2m2Þ2=3 �e��m2

�ð1� im2Þ
�
Ai

��
1

2
m

�
1=3ðjxj � 2EbÞ

�
þ iBi

��
1

2
m

�
1=3ðjxj � 2EbÞ

��
;

(3.14)

up to Oðm�4=3Þ corrections. The result for the U function involves the non-normalizable Airy Bi function.
In order to ensure local normalizability,9 orthogonality of the lowest-order solutions as well as the correct behavior in the

nonrelativistic limit we set b ¼ 0 and thus consider

�1ð	Þ ¼ N	e�i	=2
1F1ð1� im2; 2; i	Þ ¼ N sinh ð�m2Þ

�m2
	e�i	=2

Z 1

0
duei	uu�im2ð1� uÞim2 ¼ �

1ð	Þ;
�0ð	Þ ¼ ��1ð	Þ � 2iNe�i	=2

1F1ð1� im2; 1; i	Þ ¼ ��
0ð	Þ;

(3.15)

where we assumed the normalization constant N to be real. This makes �1ð	Þ real for all 	, as may be seen by a
u ! 1� u transformation of its integral representation. Correspondingly, �0ð	Þ is purely imaginary according to (3.9).

The asymptotic behavior for large j	j is

�1ð	 ! �1Þ ’
ffiffiffiffi
2

�

s
N

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�m

2 � 1
p

e��m2�ð�	Þ sin
�
	

2
�m2 log ðj	jÞ þ arg �ð1þ im2Þ

�
½1þOð	�1Þ�;

�0ð	 ! �1Þ ’ �i

ffiffiffiffi
2

�

s
N

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�m

2 � 1
p

e��m2�ð�	Þ cos
�
	

2
�m2 log ðj	jÞ þ arg �ð1þ im2Þ

�
½1þOð	�1Þ�;

(3.16)

where �ð�	Þ ¼ 0ð¼ 1Þ for 	> 0 (	< 0). Due to the oscillatory behavior of the wave functions, the magnitude
of N cannot be fixed by a normalization integral. In Sec. IV we show that the normalization of highly excited
states may be determined using duality between the contributions of bound states and free fermions to current
propagators.

9The requirement of local normalizability was previously used in Ref. [26].
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So far we neglected an �ðxÞ factor in (3.8) and thus
assumed10 x � 0. When the solutions for x < 0 are defined
according to the parity constraint (3.6) the choice of phase
indicated in (3.15) implies that

�1ð�xÞ¼
�1ðxÞ; �0ð�xÞ¼�
�0ðxÞ;
�1ðx¼0Þ¼0 ð
¼�1Þ; �0ðx¼0Þ¼0 ð
¼þ1Þ:

(3.17)

The latter conditions ensure the continuity at x ¼ 0 of
�1ðxÞ, �0ðxÞ and their derivatives. They also determine
the discrete bound-state masses M by the positions of the

zeros of �0ð	Þ and �1ð	Þ for 
 ¼ �1, respectively,
through 	ðx ¼ 0Þ ¼ M2 according to (3.3).
In Fig. 3(a) we compare the symmetric (
 ¼ 1) ground

state mass as a function of the constituent fermion mass m
with the solutions of the Schrödinger equation (2.19)
(at the reduced mass m=2). As expected there is good
agreement for m * 1. The mass difference decreases
strictly monotonously with m, as shown on a logarithmic
scale in Fig. 3(b).
In Fig. 4 we compare the shape of the (P ¼ 0) symmetric

�1ðxÞ ground state wave function in (3.15) for m ¼ 4 with
the correspondingSchrödingerwave function (2.19). The two
wave functions are nearly equal at low x where VðxÞ � m.
The relativisticf �fwave function increases from small values
in the intermediate x region to begin its asymptotic oscilla-
tions near V ¼ 2M. �1ðxÞ is symmetric in the region 0 �
VðxÞ � 2M since it depends on x onlyvia	 ¼ ½M� VðxÞ�2.
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M(ff) – M(NR)

∆M

m m

M

(a) (b)

FIG. 3 (color online). The ground state massM as a function of the fermion mass m [in units of the coefficient of the linear potential
(2.3)]. (a) The solid blue curve is for the f �f wave function (3.15). The dashed red curve shows M ¼ 2mþ Eb, with Eb the eigenvalue
given by the Schrödinger equation (2.18) (with reduced mass 1

2m). (b) The difference of the ground state masses in (a), plotted versusm

on a logarithmic scale.
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1

Φ
1
(x)  (m=4)

ρ(x)  (m=2)

xx

Wf

FIG. 4 (color online). The ground state f �f wave function �1ðxÞ in (3.15) for P ¼ 0 and m ¼ 4 (solid blue line) compared to the
nonrelativistic Schrödinger wave function �ðxÞ in (2.19) with the reduced mass m ¼ 2 (dashed red line). The argument of �1 is
	 ¼ ½M� VðxÞ�2 withM ¼ 8:4100 while the binding energy for �ðxÞ is Eb ¼ 0:4043. Both wave functions are normalized to unity in
the region 0 � x � 5.

10The solutions actually take the form of (3.15) also for x < 0
when m1 ¼ m2, but the extension to negative x is still nontrivial
as the mapping 	 ¼ 	ðxÞ has a kink at x ¼ 0.
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The spectrum of f �f states is shown in the form of ‘‘Regge
trajectories’’ in Fig. 5(a), where the square of the bound-
state masses M2

n are shown as a function of the excitation
number n. The trajectories of the symmetric and antisym-
metric (
 ¼ �1) solutions are degenerate, and in the case
of small constituent massm ¼ 0:1 almost linear. Form ¼ 4
the trajectory initially has a smaller slope.

Notice that the lowest antisymmetric (
 ¼ �1) state
has M ¼ 0 for any m, since �1ð	 ¼ 0Þ ¼ 0. This state
was not included in Fig. 5(a). Figure 5(b) shows that the
wave function�0ðxÞ of this state is essentially nonvanishing
only in the relativistic region, VðxÞ * 2m. In the nonrela-
tivistic limit the wave function thus tends to zero.

The mass spectrum can be solved analytically for high
excitations, since then 	ðx ¼ 0Þ ¼ M2 is large at the posi-
tions x ¼ 0, where the wave functions (3.15) must vanish
according to (3.17), and their asymptotic expressions (3.16)
may be used. The zeros are thus approximately at

	

2
�m2 logð	Þþarg�ð1þ im2Þ¼

�
�ðnþ 1

2Þ ð
¼þ1Þ
�n ð
¼�1Þ:

(3.18)

This may be combined into the asymptotic mass spectrum

M2
n ¼ �nþ 2m2 log ð�nÞ � 2 arg �ð1þ im2Þ þOðn�1Þ;

(3.19)

where n is odd (even) for 
 ¼ þ1 (
 ¼ �1).
On the other hand, in the limit of small fermion mass,

m ! 0, we have u�im2ð1�uÞim2 ’1þ im2 log½ð1�uÞ=u�
in the integral representation (3.15) for �1. Hence we
find to Oðm2Þ,

�1ð	Þ¼N

�
1�1

2
�m2

��
2sin

�
	

2

�
þ im2	e�i	=2

�
Z 1

0
duei	u log

�
1�u

u

�
þOðm4Þ

�
: (3.20)

For 	> 0 the integral can be expressed in terms of sine
and cosine integral functions as

i	e�i	=2
Z 1

0
duei	u log

�
1� u

u

�

¼ 2 cos

�
	

2

�
½Cið	Þ � log ð	Þ � �E� þ 2 sin

�
	

2

�
Sið	Þ;
(3.21)

where �E ¼ 0:577216 is Euler’s constant, and

Si ðzÞ¼�

2
�
Z 1

z
du

sinðuÞ
u

; CiðzÞ¼�
Z 1

z
du

cosðuÞ
u

:

(3.22)

Imposing the continuity conditions (3.17) at x ¼ 0 we find
the spectrum

M2
n ¼ �nþ 2m2½log ð�nÞ � Cið�nÞ þ �E� þOðm4Þ;
n ¼ 0; 1; 2; . . . ; (3.23)

where n is odd (even) for 
 ¼ þ1 (
 ¼ �1). The case
n ¼ 0 should be understood by taking the limit n ! 0,
which gives M2

0 ¼ 0, the solution shown in Fig. 5(b),

which is exact for any m.
For m exactly equal to zero the full wave function (3.7)

reduces to �ð	Þ ¼ �2iN exp ði	1	=2Þ, which is regular
at all 	. Hence there is no constraint on the spectrum when
m ¼ 0. On the other hand, (3.23) gives M2

n ¼ �n in the
m ! 0 limit. The discrete spectrum obtained for regular
solutions when m � 0 thus differs, even in the m ! 0
limit, from the continuous spectrum found with m ¼ 0.
Furthermore, the original bound-state equation (3.2) im-
plied parity doubling when m1 ¼ m2 ¼ 0: The parity
transformed wave function �0�ð�xÞ�0 is a solution
(with P ! �P) having the same eigenvalue E as �ðxÞ.
To the contrary, them ! 0 states have parity 
 ¼ ð�1Þnþ1

and are not parity degenerate.
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FIG. 5 (color online). (a) Regge trajectories for f �f bound states with equal constituent masses, m ¼ 0:1 (upper curve) and m ¼ 4:0
(lower curve). The excitation number n of the first five symmetric (
 ¼ þ1, n ¼ 0; 2; . . . 8, blue lines) and antisymmetric (
 ¼ �1,
n ¼ 1; 3; . . . 9, dashed red lines) states are plotted versus M2

n � ð2mÞ2. (b) The wave function �0ðxÞ of the 
 ¼ �1 state with M ¼ 0
[not included in (a)] for m ¼ 0:1 and m ¼ 4:0. The normalization is chosen arbitrarily such that �0 ¼ �1 at the first minimum.
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B. f �f solutions for m1 �m2

The general solution of (3.9) when

�m2 	 m2
1 �m2

2 � 0 (3.24)

is

�1ð	Þþ�0ð	Þ¼ei	=2fj	j�i
2�m

2ðaþ ibÞm11F1ðim2
2;1� i�m2;�i	Þ�j	ji2�m2ða� ibÞm21F1ðim2

1;1þ i�m2;�i	Þg;
�1ð	Þ��0ð	Þ¼e�i	=2fj	ji2�m2ða� ibÞm11F1ð�im2

2;1þ i�m2;i	Þ�j	j�i
2�m

2ðaþ ibÞm21F1ð�im2
1;1� i�m2; i	Þg;

(3.25)

where a and b are complex constants.11 The parametriza-
tion of the constants was chosen such that for real a and b,
�1 is real and �0 is imaginary as in the case of equal
masses above. We may assume that x > 0, with the solu-
tions of definite parity defined as in (3.6).

The 2� 2 wave function� is generally singular at 	 ¼
0 according to (3.7), which may be expressed as

� ¼ �0

�
1þm1 �m2

	
½ðE� VÞ	3 þ Pi	2�

�

þ�1

�
	1 þm1 þm2

	
½P	3 þ ðE� VÞi	2�

�
: (3.26)

Noting that 1F1ð�;�;0Þ¼1 we find that for 	¼
½ðE�VÞþP�½ðE�VÞ�P�!0, the most singular terms
of the full bound-state wave function in (3.1) are

ei’�ðE�V!�PÞ�E�V
	

�m2j	j�i�m2ða�ibÞð	3�i	2Þ:
(3.27)

No choice of the parameters a, b can eliminate the 1=	
singularity at both E� V ¼ P and E� V ¼ �P. The

phase j	j�i�m2
, however, ensures the integrability of the

wave function when multiplied by any regular function.
For example, the orthogonality relations to be discussed
below are well defined.

It is interesting to note that in the infinite momentum
frame, P ! þ1, the full wave function is regular if aþ
ib ¼ 0. This choice removes the 1=	 singularity in (3.27)
at E� V ¼ P, while in the infinite momentum frame
E� V � �P at finite x. As P ! 1 both square brackets in
(3.26) approach Eð	3 þ i	2Þ 	 E�þ and the full 2� 2
wave function becomes, for b ¼ ia in (3.25),

ei’�P!1ð	Þ¼�2iaMi�m2 m1m2

1þ i�m2

�E�þe�i	=2
1F1ð1� im2

2;2þ i�m2; i	Þ;
(3.28)

which is indeed regular at 	 ¼ 0, and also square inte-
grable in x. While b ¼ ia thus appears to be the most

physical choice of parameters, we anyhow continue the
discussion assuming generic a and b.
By using known identities for the 1F1 functions it is

straightforward to check that in the equal-mass limit m1,
m2 ! m the wave function �1ð	Þ in (3.25) reduces to

�1ðm1¼m2¼mÞ¼ ibm½ei	=21F1ðim2;1;�i	Þ
�e�i	=2

1F1ð�im2;1;i	Þ�
¼�bm	e�i	=2

1F1ð1� im2;2; i	Þ;
(3.29)

which agrees with our previous expression (3.15)
when N ¼ �bm. The m1 ! 0 limit is also simple since

1F1ð� ¼ 0; �; zÞ ¼ 1. Thus

�jðm1 ¼ 0Þ ¼ 1

2
m2½�ða� ibÞj	j�i

2m
2
2ei	=2

þ ð�1Þjðaþ ibÞj	ji2m2
2e�i	=2� ðj ¼ 0; 1Þ:

(3.30)

The definition (3.6) of �ðx < 0Þ requires continuity of
�0ðx ¼ 0Þ and �1ðx ¼ 0Þ for the bound-state equation
(3.9) to be satisfied at all x,

�


j ðx ¼ 0Þ ¼ 
�



j ðx ¼ 0Þ ðj ¼ 0; 1Þ: (3.31)

@x�


j ðx ¼ 0Þ ¼ �
@x�



j ðx ¼ 0Þ ðj ¼ 0; 1Þ: (3.32)

The condition (3.31) requires that both�0ð0Þ and�1ð0Þ are
real (imaginary) for 
 ¼ þ1 (
 ¼ �1). In general, this
can be satisfied by adjusting the overall phase in (3.25)
provided the phase difference of�0ð0Þ and�1ð0Þ is 0 or�.
This constraint determines the mass spectrum for fixed
a=b. The continuity of the derivatives (3.32) follows from
(3.31) and the fact that the wave functions satisfy the
bound-state equation (3.9) for x > 0.
As m1 ! m2 the phase difference between �0 and �1

approaches ��=2 as seen from Eqs. (3.9) and (3.29).
Therefore, in the equal-mass case these wave functions
cannot have the same phase, instead one of them has to
vanish as we found in (3.17). As pointed out above, the
same happens if a and b are both real (or, more generally, if
they have the same phase, i.e., a=b is real). For m1 � m2

the wave functions have a relative phase of nearly ��=2

11The absolute values in j	j�i�m2=2 specify the branch choices
for positive and negative 	. This choice is natural in view of our
definition of the phase ’ in (3.5), which behaves as ei’ �
j	j�i�m2=2 for E� V ! �P.
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everywhere except close to a zero of one of them. Thus the
spectrum depends smoothly on m1 �m2.

In Fig. 6 we illustrate some properties of the solutions
in terms of the density j�0j2 þ j�1j2 for the choice b ¼
ia. The fermion masses m1 ¼ 1:0, m2 ¼ 1:5 are fairly
high compared to V 0ðxÞ ¼ 0:5, ensuring that the multipair
contributions to the wave functions are well separated in
the ground state rest frame [solid red curve in (a)]. The
wave function of the excited state [dashed blue curve
in (a)] extends to larger fermion separations x before
decreasing to small values, but its multipair contributions
shift correspondingly in x, approximately preserving the
extent of the gap. The same densities are shown in (b) for
the case of nonvanishing center-of-mass momentum,
P ¼ 5. The wave functions Lorentz contract at low x,
whereas the length of the gap to the multiparticle contri-
butions grows.

C. Orthogonality of the f �f states

If we include the phase ’ in the definition of the 2� 2
wave function in the state (3.1),

�ðxÞ 	 ei’ðxÞ�ðxÞ; (3.33)

the inner product of two states k, ‘ reduces to

hE‘;P‘jEk;Pki¼2��ðPk�P‘Þ
Z
dxTr½�y

‘ ðxÞ�kðxÞ�
(3.34)

when only the anticommutators of the fields contribute.
Thus orthogonality of the states requires

Z
dxTr½�y

‘ ðxÞ�kðxÞ�¼0 ðPk¼P‘	P;Ek�E‘Þ: (3.35)

The bound-state equations for �kðxÞ and �y
‘ ðxÞ are

i@xf	1;�kg�1

2
P½	1;�k�þm1	3�k�m2�k	3

¼½Ek�V��k;

� i@xf	1;�
y
‘ gþ

1

2
P½	1;�

y
‘ �þm1�

y
‘	3�m2	3�

y
‘

¼½E‘�V��y
‘ : (3.36)

Multiplying the first equation by �y
‘ from the left, the

second by �k from the right and then taking the trace of
their difference gives

i@x Trð	1f�y
‘ ;�kgÞ ¼ ðEk � E‘ÞTrð�y

‘�kÞ: (3.37)

Integrating both sides over all x the left-hand side gets a
contribution only from x ¼ �1 [only the �0 and �1

components of the 2� 2 wave function� in (3.7) contrib-
ute on the left-hand side]. To leading order in the x ! þ1
limit we have from (3.5) and (3.25)

’ðx!1Þ’�m2 log½M=ðEþPÞ�;
�jð	!1Þ’�1

2
½ð�1ÞjC1	

iðm2
1
þm2

2
Þ=2e�i	=2

þC2	
�iðm2

1
þm2

2
Þ=2ei	=2� ðj¼0;1Þ; (3.38)

C1 ¼ m1ða� ibÞ�ð1þ i�m2Þ
�ð1þ im2

1Þ
e�m

2
2
=2

�m2ðaþ ibÞ�ð1� i�m2Þ
�ð1þ im2

2Þ
e�m

2
1
=2; (3.39)
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FIG. 6 (color online). (a) The density j�0j2 þ j�1j2 as a function of the distance x between the constituents for the ground state
(M ¼ 3:15, solid red line) and for an excited state (M ¼ 5:11, dashed blue line). The constituent masses are m1 ¼ 1:0 and m2 ¼ 1:5.
(b) The densities in (a) plotted in the case of nonvanishing center-of-mass momentum, P ¼ 5:0. The densities are symmetric under
x ! �x and normalized to unity at x ¼ 0.
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C2 ¼ m2ða� ibÞ�ð1þ i�m2Þ
�ð1� im2

2Þ
e�m

2
1
=2

�m1ðaþ ibÞ�ð1� i�m2Þ
�ð1� im2

1Þ
e�m

2
2
=2: (3.40)

The result in the x ! �1 limit is given by the complex
conjugate of the above, since �ð�xÞ ¼ 
�ðxÞ according
to (3.6). The product �y

‘�k in (3.37) oscillates asymptoti-

cally, and its integral may be defined analogously to that of

plane waves, e.g., by adding a factor e��jxj with infinitesi-
mal � > 0. Then the integral of the left-hand side of (3.37)
vanishes, and the orthogonality (3.35) is ensured.

IV. DUALITY

A. Wave function normalization

The bound-state equation does not determine the overall
normalization (or phase) of the wave functions. Due to
contributions from an infinite number of particle pairs the
integral of the norm of the Dirac-type wave functions
diverges. The relative normalization of high-mass states is

needed to determine the parton distributions of the bound
states in Sec. VI. Here we shall use an approximate duality
relation to determine their normalization. For simplicity we
limit ourselves to the equal-mass case in the following,
m1¼m2¼m.
In our present approximation the bound-state spectrum

is a sequence of zero-width resonances. The (properly
averaged) bound-state contribution to the imaginary part
of a current propagator is expected to equal the contribu-
tion of a free fermion loop, as illustrated in Fig. 7. This
allows us to express the wave function at the origin in terms
of a calculable perturbative loop contribution. We get
consistent normalizations in all frames for scalar, pseudo-
scalar, vector and pseudovector currents. Furthermore, in
the next subsection we show that the bound-state wave
functions of highly excited states agree with those of free
fermions also for finite separations provided that the po-
tential is much smaller than the energy, V � E.
Denoting the 2-momentum of the current by P¼

ðP0>0;P1Þ the fermion-loop amplitude in Fig. 7 is for a
vector current

L��ðPÞ ¼ i
Z

d2zh0jT½j�ðzÞj�ð0Þ�j0ieiP�z ¼ i
Z d2k

ð2�Þ2 Tr

� 6kþm

k2 �m2 þ i"
�� 6k� 6Pþm

ðk� PÞ2 �m2 þ i"
��

�
: (4.1)

The imaginary parts of the loop contribution for this as well as the scalar, pseudoscalar, and pseudovector currents are12

ImL��ðPÞ ¼
�
�g�� þ P�P�

P2

�
2m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2ðP2 � 4m2Þp ðvector: j� ¼ �c��c Þ; (4.2)

ImLSðPÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � 4m2

p

2
ffiffiffiffiffiffi
P2

p ðscalar: jS ¼ �c c Þ; (4.3)

ImL5ðPÞ ¼
ffiffiffiffiffiffi
P2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � 4m2

p ðpseudoscalar: j5 ¼ �c�5c Þ; (4.4)

ImL��
5 ðPÞ ¼ P�P�

P2

2m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2ðP2 � 4m2Þp ðpseudovector: j�5 ¼ �c�5�

�c Þ: (4.5)

The contribution of a bound state jni, with P̂�jni ¼ P�
n jni, to the imaginary part of the vector current with

P0 > 0 is

ImL��
n ðPÞ ¼ Im i

Z
d2xeiðP�PnÞ�xh0jj�ð0Þjn; t¼ 0ihn; t¼ 0jj�ð0Þj0i�ðx0Þ ¼ 2�2�2ðP�PnÞh0jj�ð0Þjnihnjj�ð0Þj0i: (4.6)

n0 z P

k–P

k

FIG. 7 (color online). Duality between resonance and fermion-loop contributions to the imaginary part of a current propagator. The
relation should hold in a semi-local sense, and become more accurate at high excitations.

12InD ¼ 1þ 1 dimensions the pseudovector and vector currents are related, �c�5�
�c ¼ ��� �c��c , where �5 ¼ �0�1 and �01 ¼ 1.

For completeness we anyhow give results for both.
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The expressions (3.1) and (3.7) for an equal-mass bound
state are

jni¼
Z
dx1dx2e

iP1
nðx1þx2Þ=2 �c ð0;x1Þ�ðx1�x2Þc ð0;x2Þj0iR;

(4.7)

�ðxÞ ¼ �0ðxÞ þ�1ðxÞ�5

�
1� 2m

	
�y

�
; (4.8)

where �5 ¼ �0�1. Using Trð�5�
���Þ ¼ 2���, where

�01 ¼ 1, we get

Rh0jj�ð0Þjni ¼ Rh0j �c ð0Þ��c ð0Þjni ¼ Tr½���0�ð0Þ�0�
¼ � 4m

P2
�1ð0Þ���P�: (4.9)

We note that Rh0jj�ð0ÞjniP� ¼ 0 as required by gauge
invariance. The sum over intermediate states

P
njnihnj

includes an integral over the momentum P1
n of the single

bound state considered in (4.6). The (local) average over
the energy P0

n of this bound-state contribution should be
dual to the loop contribution (4.2),

1

�M2
n

Z d2Pn

ð2�Þ2 ImL
��
n ðPÞ ’ ImL��ðPÞ: (4.10)

According to (3.19) the bound-state separation �M2
n¼

M2
nþ1�M2

n’2� at large masses [for states with
�1ð0Þ�0]. Equation (4.10) then gives

j�1ðx¼0Þj2’�

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n

M2
n�4m2

s
ðvector currentÞ: (4.11)

Based on the form of the bound-state equation (3.9) we
previously noted that �1ð	Þ is frame independent. Since
	ðx ¼ 0Þ ¼ M2 is also frame independent this implies that
�1ðx ¼ 0Þ cannot depend on P1

n. The duality relation
(4.11) satisfies this constraint.

We may determine the normalization analogously using
currents with other Lorentz structures. Thus

Rh0j �c ð0Þc ð0Þjni¼Tr½�0�ð0Þ�0�¼2�0ð0Þ ðscalarÞ;
(4.12)

Rh0j �c ð0Þ�5c ð0Þjni¼Tr½�5�
0�ð0Þ�0�¼�2�1ð0Þ

ðpseudoscalarÞ; (4.13)

Rh0j �c ð0Þ�5�
�c ð0Þjni

¼ Tr½�5�
��0�ð0Þ�0�

¼ � 4m

P2
�1ð0ÞP� ðpseudovectorÞ: (4.14)

The duality relation for the scalar current gives

j�0ð0Þj2 ’ �

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n � 4m2

M2
n

s
ðscalar currentÞ: (4.15)

According to (3.17) either �0ð0Þ ¼ 0 or �1ð0Þ ¼ 0 for
any given bound state, so (4.15) is consistent with and
complements the condition (4.11) for �1ð0Þ. The duality
conditions on �1ð0Þ obtained using the pseudoscalar and
pseudovector currents agree with the vector current
relation (4.11).
For highly excited states we thus find that j�0ð0Þj2 ’ �

2

[j�1ð0Þj2 ’ �
2 ] if �1ð0Þ ¼ 0 [�0ð0Þ¼0]. Using the

asymptotic formula (3.16) we find that, up to an irrelevant
phase,

N ¼ �m

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�m

2 � 1
p (4.16)

in (3.15).

B. Wave function in momentum space at large M

It is interesting to consider the duality indicated in Fig. 7
also more differentially: Does the wave function of highly
excited bound states resemble the free fermion distribution
given by the imaginary part of the loop, as expected in
the parton model? For large masses, M 
 m, we may set
m ¼ 0. In the rest frame (P1 ¼ 0) the free fermion mo-
menta are k ¼ 1

2Mð1;�1Þ.
The bound state (3.1) is in the rest frame

jM; 0i ¼
Z

dx1dx2
Z dk1dk2

ð2�Þ24jk1jjk2j
½ �uðk1Þe�ik1x1byk1

þ �vðk1Þeik1x1dk1��ðx1 � x2Þ½uðk2Þeik2x2bk2
þ vðk2Þe�ik2x2dyk2�j0iR: (4.17)

The m ¼ 0 spinors

uðkÞ ¼ jkj	3 � ki	2ffiffiffiffiffiffijkjp 1
0

� �
;

vðkÞ ¼ � jkj	3 � ki	2ffiffiffiffiffiffijkjp 0
1

� �
¼ 	1uðkÞ;

(4.18)

satisfy

�uðkÞuðkÞ¼ �uðkÞ	1uðkÞ¼ �vðkÞvðkÞ¼ �vðkÞ	1vðkÞ¼0;

�uðkÞvð�kÞ¼� �vðkÞuð�kÞ¼�2k;

�uðkÞ	1vð�kÞ¼� �vðkÞ	1uð�kÞ¼2jkj:
(4.19)

In terms of the Fourier transform of the wave function,

�ðkÞ 	
Z

dx�ðxÞe�ikx ¼
Z

dx½�0ðxÞ þ 	1�1ðxÞ�e�ikx;

(4.20)
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the state (4.17) becomes

jM; 0i ¼
Z dk

2�2jkj f½�"ðkÞ�0ðkÞ þ�1ðkÞ�byk dy�k

� ½"ðkÞ�0ðkÞ þ�1ðkÞ�d�kbkgj0iR; (4.21)

where "ðkÞ is the sign function. It appears to contain both

positive (byk d
y
�k) and negative (d�kbk) energy modes. The

wave function of the negative energy modes, however,
turns out to vanish.

For m1¼m2¼0 and P1¼0 the bound-state equation
(3.9) is

i@x�0ðxÞ¼1

2
ðM�VÞ�1ðxÞ; i@x�1ðxÞ¼1

2
ðM�VÞ�0ðxÞ:

(4.22)

The solutions with a continuous derivative at x ¼ 0 are

�1ðxÞ þ�0ðxÞ ¼
ffiffiffiffi
�

2

r
exp

�
� i

2
Mxþ i

8
x2"ðxÞ

�
;

�1ðxÞ ��0ðxÞ ¼ 


ffiffiffiffi
�

2

r
exp

�
i

2
Mx� i

8
x2"ðxÞ

�
;

(4.23)

with�jð�xÞ¼ð�1Þjþ1
�jðxÞ as in (3.17). The normaliza-

tionwas determined (up to a phase) by the duality conditions
(4.11) and (4.15). In momentum space (4.20) we get

�1ðkÞþ�0ðkÞ¼
ffiffiffiffi
�

2

r Z
dxexp

�
� i

�
1

2
Mþk

�
xþ ix2"ðxÞ=8

�

’1

2
ð2�Þ3=2�

�
kþ1

2
M

�
;

�1ðkÞ��0ðkÞ’1

2

ð2�Þ3=2�

�
k�1

2
M

�
; (4.24)

where the approximation is valid in the large mass limit,
M 
 1. Consequently

"ðkÞ�0ðkÞ þ�1ðkÞ ¼ 0; (4.25)

and the bound state (4.21) reduces to

jM; 0i ¼
ffiffiffiffiffiffiffi
2�

p
2M

ð
byM=2d
y
�M=2 þ by�M=2d

y
M=2Þj0iR; (4.26)

with a momentum distribution of free fermions, in agree-
ment with the parton model. The approximation made in
(4.24) breaks down at large fermion separations where

VðxÞ * M and the effects of confinement set in. Thus the
fermions are approximately free only at shorter distances.
An analogous study of duality may be made in a frame

with nonvanishing center-of-mass momentum P. The par-
ton state corresponding to (4.26) is then

jE;Pi¼
ffiffiffiffiffiffiffi
2�

p
2M

ð
byE=2þP=2dy�E=2þP=2þby�E=2þP=2d
y
E=2þP=2Þj0iR:

(4.27)

V. ELECTROMAGNETIC FORM FACTORS

A. Definition (m1 � m2)

The electromagnetic current is

j�ðzÞ ¼ X2
f¼1

ef �c fðzÞ��c fðzÞ ¼ eiP̂�zj�ð0Þe�iP̂�z; (5.1)

where ef is the electric charge of flavor f and P̂ ¼ ðP̂0; P̂1Þ
is the generator of time and space translations. We consider
the matrix element of j�ðzÞ between bound states of the
form (3.1)

jAðPaÞi¼
Z
dx1dx2 exp

�
1

2
iP1

aðx1þx2Þ
�

� �c 1ð0;x1Þ�Aðx1�x2Þc 2ð0;x2Þj0iR; (5.2)

where we used the notation (3.33) for the 2� 2 wave func-
tion�A, whose structure is given by (3.5) and (3.7). Since the
bound states are eigenstates of energy and momentum,

P̂�jAðPaÞi¼P�
a jAðPaÞi, the form factor can be expressed as

F�
ABðzÞ¼ hBðPbÞjj�ðzÞjAðPaÞi

¼eiðPb�PaÞ�zhBðPbÞjj�ð0ÞjAðPaÞi; (5.3)

where only anticommutators between the fields of the current
with those of the states contribute. In effect, the states jAi and
hBj replace the free jini and houtj states of standard perturba-
tion theory. Here the asymptotic states are bound by the
instantaneous Coulomb potential (1.6) arising from the
boundary condition (1.5) on A0 and have noOðe2Þ contribu-
tions. We expect that a perturbative expansion can be for-
mulated as in (1.13). In the following we restrict ourselves to
the lowest-order contribution.
Since the potential is confining we consider only neutral

bound states, and thus set e1 ¼ e2 ¼ 1 in (5.1). Then the
current couples equally to both flavors,

F�
ABðzÞ ¼

X2
f¼1

FðfÞ�
AB ðzÞ ¼ eiðPb�PaÞ�z

Z
dx1dx2dy1dy2e

iðx1þx2ÞP1
a=2�iðy1þy2ÞP1

b
=2

Rh0jc y
2 ð0; y2Þ�y

Bðy1 � y2Þ�0c 1ð0; y1Þ

� X2
f¼1

�c fð0; 0Þ��c fð0; 0Þ �c 1ð0; x1Þ�Aðx1 � x2Þc 2ð0; x2Þj0iR

¼ eiðPb�PaÞ�z
Z

dxeiðP1
b
�P1

aÞx=2fTr½�y
BðxÞ���0�AðxÞ� � 
a
b Tr½�BðxÞ�0���y

AðxÞ�g; (5.4)

where, in the second (f¼2) term,weused ð��ÞT�0¼�0�� (since�0 ¼ 	3,�
1¼i	2) and�ð�xÞ¼
�ðxÞ according to (3.6).
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B. Gauge invariance (D ¼ 3þ 1)

Gauge invariance of the form factor (5.3) requires that

GðfÞ
ABðzÞ 	 @z�F

ðfÞ�
AB ðzÞ ¼ 0 ðf ¼ 1; 2Þ (5.5)

separately for the current of each flavor f. We shall show
that (5.5) is a consequence of the bound-state equations
satisfied by �A and �B. Since the derivation is essentially
independent of the masses and of the number of space-time
dimensions we here consider m1 � m2 and D ¼ 3þ 1.
Then

F
ð1Þ�
AB ðzÞ¼eiðPb�PaÞ�z

Z
dxeiðPb�PaÞ�x=2Tr½�y

BðxÞ���0�AðxÞ�;

Gð1Þ
ABð0Þ¼ i

Z
dxeiðPb�PaÞ�x=2Tr½�y

BðxÞð6PB� 6PAÞ�0�AðxÞ�:
(5.6)

Due to translation invariance we set z ¼ 0 in GABðzÞ with-
out loss of generality. The bound-state equations (1.10) for

�AðxÞ and �y
BðxÞ are

irx � f�0�;�Ag�1

2
Pa � ½�0�;�A�þm1�

0�A�m2�A�
0

¼ðEa�VÞ�A;

� irx � f�0�;�y
Bgþ

1

2
Pb � ½�0�;�y

B�þm1�
y
B�

0�m2�
0�y

B

¼ðEb�VÞ�y
B: (5.7)

Multiplying the first equation by ��y
B from the left, the

second by �A from the right, and taking the trace of their
sum gives

� irx �Trð�0�f�y
B;�AgÞþ1

2
ðPb�PaÞ �Trð�0�½�y

B;�A�Þ
¼ðEb�EaÞTrð�y

B�AÞ: (5.8)

Using ½�y
B;�A� ¼ f�y

B;�Ag � 2�A�
y
B and multiplying

both sides by exp ½iðPb � PaÞ � x=2� we find
� irx � ½eiðPb�PaÞ�x=2 Trð�0�f�y

B;�AgÞ�
¼ eiðPb�PaÞ�x=2 Tr½�y

BðxÞð6PB � 6PAÞ�0�AðxÞ�: (5.9)

Integrating both sides over x the right-hand side becomes

�iGð1Þ
ABð0Þ and the left-hand side vanishes (assuming that

the integral over the oscillating wave functions is regular-
ized as jxj ! 1, similarly as for plane waves). This proves
the gauge condition (5.5) for f ¼ 1. For f ¼ 2 the gauge
term corresponding to (5.6) is

Gð2Þ
ABð0Þ¼� i

Z
dxe�iðPb�PaÞ�x=2Tr½�0ð6PB�6PAÞ�y

BðxÞ�AðxÞ�;
(5.10)

and the proof that it vanishes is analogous to the above.

C. Form factor for m1 ¼ m2 (D ¼ 1þ 1)

The expression (5.4) for the form factor simplifies in the
case of equal masses, m1 ¼ m2 ¼ m. Since ’ ¼ 0 the
structure (3.7) of the wave function � ¼ � becomes

�ðxÞ ¼ �0ðxÞ þ�1ðxÞ�0�1 þ 2m�1ðxÞ�
y

	
�0�1; (5.11)

where �ðxÞ¼ðP0�VðxÞ;P1Þ is the kinematical
2-momentum (3.4). The traces in (5.4) are now

1

2
Tr½�y

B�A�

¼�
0B�0Aþ�

1B�1A

�
1þ 4m2

	a	b

~�a ��b

�
;

�1

2
Tr½�y

B�
1�0�A�

¼�
0B�1Aþ�

1B�0Aþ�
1B�1A

4m2

	a	b

"��
~��

a�
�
b;

(5.12)

where ~�a ¼ ðP0
a � VðxÞ;�P1

aÞ and "01 ¼ �1.
The constraint (5.5) of gauge invariance implies that the

form factor in D ¼ 1þ 1 can be expressed as

F�
ABðqÞ 	

Z
d2zF�

ABðzÞe�iq�z

¼ ð2�Þ2�2ðPb � Pa � qÞ"��q�FABðQ2Þ; (5.13)

where Q2 ¼ �q2. Solving this for FABðQ2Þ with � ¼ 0,
using Eq. (5.4) for the left-hand side, and inserting the
traces of (5.12), we obtain

FABðQ2Þ¼�4i
1�
a
b

q1

Z 1

0
dxsin

�
q1x

2

��
�

0BðxÞ�0AðxÞ

þ�
1BðxÞ�1AðxÞ

�
1þ 4m2

	a	b

~�a ��b

��
: (5.14)

The form factor vanishes unless 
a
b ¼ �1. Therefore
the factor in the square brackets could be taken to be
antisymmetric in x, which allowed us to restrict the inte-
gration to positive x.

VI. DIS AND PARTON DISTRIBUTIONS

We consider the cross section for eðk1Þ þ AðPaÞ !
eðk2Þ þ BðPbÞ in the limit where xBj ¼ Q2=ð2Pa � qÞ is

fixed, with q ¼ k1 � k2 and Q2 ¼ �q2. The ‘‘inclusive’’
system is thus a discrete bound state B. The cross section is
proportional to the square of the form factor FABðQ2Þ
defined in (5.13), with Mb / Q.
There are some peculiarities with deep inelastic scatter-

ing (DIS) in D ¼ 1þ 1 as compared to D ¼ 3þ 1:
(i) The very concept of a ‘‘cross section’’ is related to

transverse size. We may nevertheless define a
Lorentz-invariant cross section by analogy to the
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usual case and then compare parton and bound-state
cross sections.

(ii) The virtual photon has a finite longitudinal
(’’Ioffe’’) coherence length in the target rest frame,
LI ’ Q�1�=Q ¼ 1=ð2maxBjÞ. In the absence of

transverse dimensions DIS photons can be coherent
on several partons at leading twist. The fractional
momentum of a struck parton is kinematically con-
strained to be xBj.

(iii) In D ¼ 1þ 1 the scattering angle can be � ¼ 0
(forward) or � ¼ � (backward scattering). At the
parton level, forward (elastic) scattering implies
Q2 ¼ 0 and thus is irrelevant for the Bjorken (Bj)
limit. In backward scattering ŝ ’ �t̂ ¼ Q2, which
is analogous to standard DIS in the Breit (or brick-
wall) frame.

(iv) Since the coupling e has the dimension of energy in
D ¼ 1þ 1, the parton-level cross section will on
dimensional grounds be suppressed (compared to
D ¼ 3þ 1) by a factor e4=Q4.

(v) The backward scattering amplitude of elementary
spin- 12 fermions is proportional to the fermion

masses. This further suppresses their scattering
cross section.

A. The parton distribution

The kinematics of DIS in D ¼ 1þ 1 is discussed in
Appendix A. We find that the parton distribution may be
expressed as

fðxBjÞ ¼ 1

8�m2

1

xBj
jQ2FABðQ2Þj2; (6.1)

where m is the mass of the target parton and the invariant
form factor FABðQ2Þ is given in (5.14) (for a neutral f �f
state with m1 ¼ m2 ¼ m). The mass of the inclusive sys-
tem in the Bj limit is

M2
b ¼ Q2

�
1

xBj
� 1

�
: (6.2)

In order to calculate the leading twist parton distribution
for a neutral two-body state we analyze the expression
(5.14) at large Q2 and Mb. We work in the Breit frame
where q0 ¼ P0

b � P0
a ¼ 0 and q1 ¼ �Q is large. The basic

expectation is that the Fourier phase in (5.14) limits the
integration to x & 1=Q, which is the Lorentz contracted
equivalent of a finite (Ioffe) distance in the target rest
frame. The integrand is OðQ0Þ in this region, and the
measure adds a factor of 1=Q, so we obtain a contribution
at leading order FABðQ2Þ � 1=Q2. Leading contributions
can, however, arise also for larger (typically �Q0) values
of x, if the oscillations of the wave functions should cancel
the Fourier phase such that a stationary phase arises. Such
contributions are analyzed in detail in Appendix B and
shown not to affect the leading result.

It is convenient to introduce a rescaled variable

v ¼ xQ

2
: (6.3)

In the Bj limit, taking v ¼ OðQ0Þ and using the expres-
sions (A18) for the momenta, the variable 	 defined in
(3.3) is of OðQ0Þ for the target,

	a ¼ M2
a � Q

2xBj
jxj þ 1

4
x2 ’ M2

a � jvj
xBj

	 �a; (6.4)

while it is of OðQ2Þ for the final state,

	b ¼ Q2

�
1

xBj
� 1

�
� Q

2xBj
jxj þ 1

4
x2

’ Q2

�
1

xBj
� 1

�
� jvj

xBj
	 �b: (6.5)

Thus we may use the asymptotic forms (3.16) for �Bð	bÞ.
(i) 
b ¼ �1

The condition @v�0Bðv ¼ 0Þ ¼ 0 of (3.17) deter-
mines Mb such that cos ½12 �b �m2 log ð�bÞ þ
arg �ð1þ im2Þ� ¼ 1 at v ¼ 0 (up to an irrelevant
phase). The v dependence of the logarithm is of
OðQ�2Þ and may be ignored. As the state is highly
excited, we may use the normalization from (4.16).
Thus

�0Bð�bÞ ’ � i
ffiffiffiffiffiffiffi
2�

p
2

cos

�
v

2xBj

�
;

�1Bð�bÞ ’ �
ffiffiffiffiffiffiffi
2�

p
2

sin

� jvj
2xBj

�
:

(6.6)

The expression (5.14) for the DIS form factor
becomes

Q2FABð
b¼�Þ
’�4i

ffiffiffiffiffiffiffi
2�

p ð1þ
aÞ
Z 1

0
dvsinv

�
cos

�
v

2xBj

�
i�0Að�aÞ

�sin

�
v

2xBj

�
�1Að�aÞ

�
1þ 2m2

xBj�a

��
: (6.7)

For large v, �a ! �1 and we may use13 the asymp-
totic expressions (3.16) also for �A:

�0Að�aÞ’�i
ffiffiffi
2
�

q
N
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�m

2 �1
p

e��m2
cos

�
�ðvÞ� v

2xBj

�
;

�1Að�aÞ’
ffiffiffi
2
�

q
N
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�m

2 �1
p

e��m2
sin

�
�ðvÞ� v

2xBj

�
;

ðv!1Þ (6.8)

where

13Recall that we already took Q ! 1, thus more precisely, the
asymptotic expressions hold for Q 
 v 
 1.
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�ðvÞ¼�m2 log
v

xBj
þM2

2
þarg�ð1þ im2Þ; (6.9)

and M ¼ Ma is the target mass. The term in the
square brackets in (6.7) behaves as

cos

�
v

2xBj

�
i�0Að�aÞ�sin

�
v

2xBj

�
�1Að�aÞ

�
1þ 2m2

xBj�a

�

’
ffiffiffiffi
2

�

s
N

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�m

2 �1
p

e��m2
cos�ðvÞ (6.10)

for v ! 1. Because the integrand of (6.7) oscillates
asymptotically, the integral does not converge.
It can, however, be defined in the standard fashion
by adding a ‘‘convergence factor,’’ e.g., a factor
e��v in the integrand, and by taking � ! 0 in
the end.
Recall that we assumed that FABðQ2Þ only receives
leading contributions from the region x� 1=Q in
order to derive the result (6.7). The fact that the
regularization procedure works suggests that this
assumption was correct. We analyze this in detail
in Appendix B.

(ii) 
b ¼ 1
The condition �0Bðv ¼ 0Þ ¼ 0 of (3.17) determines
Mb such that sin½12�b�m2logð�bÞþarg�ð1þim2Þ�¼1

at v ¼ 0. Hence,

�0Bð�bÞ ’ � i
ffiffiffiffiffiffiffi
2�

p
2

sin

� jvj
2xBj

�
;

�1Bð�bÞ ’
ffiffiffiffiffiffiffi
2�

p
2

cos

�
v

2xBj

�
:

(6.11)

The expression (5.14) of the DIS form factor becomes

Q2FABð
b ¼ þÞ
’ �4i

ffiffiffiffiffiffiffi
2�

p ð1� 
aÞ
Z 1

0
dv sinv

�
�
sin

�
v

2xBj

�
i�0Að�aÞ þ cos

�
v

2xBj

�
�1Að�aÞ

�
�
1þ 2m2

xBj�a

��
: (6.12)

B. Numerical evaluation of the parton distribution

Let us insert the explicit results (3.15) in the expression
(6.7) and evaluate the integral numerically. We limit our-
selves to the case 
a ¼ �
b ¼ þ1. The case of opposite
parities can be analyzed similarly. Since the integral does
not converge we need to subtract the divergent term and
treat it separately. We write

Q2FABð
a ¼ þÞ ¼ I1 þ I2; (6.13)

where

I1¼�8i
ffiffiffiffiffiffiffi
2�

p Z 1

0
dvsinv

�
cos

�
v

2xBj

�
i�0Að�aÞ

�sin

�
v

2xBj

�
�1Að�aÞ

�
1þ 2m2

xBj�a

�

�
ffiffiffiffi
2

�

s
N

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�m

2 �1
p

e��m2
cos�ðvÞ

�
; (6.14)

I2¼�16iN

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�m

2 �1
p

e��m2
Z 1

0
dvsinvcos�ðvÞ: (6.15)

The divergence now only appears in the second integral,
which may be calculated analytically. The standard regu-
larization yields

I2 ¼ �16i
N

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�m

2 � 1
p

e��m2
cosh

�
�m2

2

�

� cos

�
M2

2
þm2 log xBj

�
j�ð1þ im2Þj: (6.16)

The first integral I1 can be calculated numerically.14

The parton distribution can then be found by using the
formula (6.1).
We show numerical results for the parton distribution

in Fig. 8. The target wave function was chosen to be the
one with lowest nonzero mass, which indeed has
a ¼ þ1.
We used Eq. (4.16) for the normalization of the target
wave function, and chose two reference values m ¼ 0:1
andm ¼ 1:0 for the fermionmasses. Form ¼ 0:1 the target
is highly relativistic, such that M ’ 1:78 
 2m, whereas
for the second choice m ¼ 1 we find that M ’ 2:70, i.e., a
binding energy smaller than the constituent masses. This is
reflected in the low-xBj behavior of fðxBjÞ, which is quali-

tatively different in the two cases. The red curves show the
xBj ! 0 expansion of fðxBjÞ, which is calculated in

Appendix C.
One can check numerically that the integral I2, which

arises from asymptotic oscillations of the wave functions,
dominates the result for small xBj and m. Therefore

approximately

xBjfðxBjÞ � cos 2ðM2=2þm2 log xBjÞ (6.17)

in this region. Inserting the result for the bound-state mass
at small m with n ¼ 1 from (3.23) we find

14This integral is still not absolutely convergent, which makes
the numerical integration rather tricky. We found the best results
by using the ExtrapolatingOscillatory method of NIntegrate in
Mathematica. One can also introduce a cutoff at large v and use
standard algorithms for the numerical integration.
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xBjfðxBjÞ � sin 2½m2ðlog xBj þ log�� Cið�Þ þ �EÞ�
’ m4ðlog xBj þ 1:648Þ2: (6.18)

Thus the contribution from the oscillations has a node at15

relatively small xBj ’ 0:19 when m is small, and grows

logarithmically �ðlog xBjÞ2 as xBj ! 0, until the distribu-

tion ‘‘saturates’’ at xBj � e�1=m2
.

VII. CONCLUDING REMARKS

Analytical studies of bound-state dynamics are usually
based on summing Feynman diagrams, e.g., using Dyson-
Schwinger techniques [8,9]. In the weak coupling limit the
dynamics is nonrelativistic and determined by the
Schrödinger equation. Relativistic, confined states like
hadrons may then emerge only when the coupling is strong.
In D ¼ 1þ 1 dimensions some exact (all-orders) results
have been obtained, notably for QED at zero fermion mass
(the Schwinger model [34]) and for QCD in the limit of a
large number of colors, Nc ! 1 (the ’t Hooft model [35]).
Their study has led to valuable insights—see, e.g.,
Refs. [36–38] and references therein. Bosonization of the
massive Schwinger model furthermore allowed us to ob-
tain some approximate results in the strong-coupling limit
[39]. No analogous results have been found in D ¼ 3þ 1
dimensions. Approximations based on a truncation of
the Dyson-Schwinger equations have allowed analytical
studies of hadrons in QCD [8,9], which complement
first-principles numerical results using lattice methods.

Currently holographic approaches to QCD motivated by
the AdS/CFT correspondence [40,41] are under intense
study as a means of obtaining results in the strong-coupling
limit of the theory.
In this paper we explored a rather different approach to

relativistic bound states in gauge field theory. It may be
relevant provided the QCD coupling remains perturbative
even in the long-distance regime governing hadron bind-
ing. Our approach is motivated by features of the data
discussed in the Introduction, as well as by phenomeno-
logical and theoretical studies which indicate that �s

freezes at a moderate value in the infrared [12–17]. This
possibility merits attention since it allows us to bring the
powerful techniques of perturbation theory to bear on
bound-state dynamics.
In our scenario the confining potential arises from a

boundary condition imposed on the solution of Gauss’
law [21]. This gives an exactly linear A0 potential even
in D ¼ 3þ 1 dimensions, with strength determined by a
parameter � related to the boundary condition. Since � is
independent of �s the potential is of leading order com-
pared to the perturbativeOð�sÞ interactions. We conjecture
that perturbative corrections can be systematically in-
cluded by expanding the time-ordered exponential in the
expression (1.13) of the S matrix. This amounts to devel-
oping the perturbative expansion around states bound ex-
clusively by the nonperturbative linear potential. In
analogy to the Taylor expansion of ordinary functions,
the complete sum formally gives the exact S matrix, inde-
pendently of the zeroth order configuration.
Previously [24] we verified that the f �f Born states are

Poincaré covariant in D ¼ 1þ 1, as expected because the
linear potential arises from a boundary condition which is

FIG. 8 (color online). The parton distribution of the target ground state. We plot the result for xBjfðxBjÞ as a function of xBj in linear
scale (top) and in logarithmic scale for low xBj (bottom). We usedm ¼ 1 (left) andm ¼ 0:1 (right) for the fermion masses. The dashed

red curves show the asymptotic behavior of fðxBjÞ up to next-to-leading order as xBj ! 0 [see Eq. (C14)].

15The approximation for the location of the node is poor since
terms suppressed by xBj were neglected.

TOWARDS A BORN TERM FOR HADRONS PHYSICAL REVIEW D 87, 065021 (2013)

065021-19



compatible with the field equations of motion. The wave
functions turned out to depend on the separation x between
the fermions through the frame-invariant square �2 ¼ 	
of the ‘‘kinematical momentum’’ � ¼ ðE� V; PÞ, where
ðE; PÞ is the 2-momentum of the bound state and VðxÞ is the
linear potential. An earlier study [25] indicated that
Poincaré invariance is preserved also in D ¼ 3þ 1.

In this paper we found the analytic expressions of the
Born level f �f wave functions in D ¼ 1þ 1 and studied
their properties. Their norm tends to a constant at large x.
The nearly nonrelativistic case shown in Fig. 4 makes it
clear that the constant norm reflects fermion pair produc-
tion at large values of the potential. The norm of the Dirac
wave function behaves similarly (Fig. 2), which in that case
implies a continuous Dirac mass spectrum16 [28–31]. The
f �f wave function is, however, generally singular at
the value of x where the ‘‘kinematical mass’’ vanishes,
�2 ¼ 0. Requiring the wave function to be regular gives
a discrete spectrum. A manifestation of the virtual fermion
pairs in the bound states is provided by the parton distri-
butions measured by deep inelastic lepton scattering. For
relativistic states the parton distribution grows as xBj ! 0,

qualitatively in agreement with data on sea quarks.
We found that the wave functions of highly excited

bound states agree with parton model expectations in the
range of x where the potential is small compared to the
bound-state mass: Only fermions and antifermions of posi-
tive energy contribute to the bound state, having the mo-
menta of nearly free particles. Duality allows us to
determine the overall normalization of the wave functions
through the condition that the (average) contribution of the
bound states to the imaginary part of current propagators
agrees with that of free fermions. The duality relation
works in all frames and for all currents.
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APPENDIX A: DIS IN D ¼ 1þ 1

1. Units and kinematics in D ¼ 1þ 1

The dimension of the Lagrangian is ½L� ¼ E2 in energy

units. Hence the fermion and photon fields have ½c � ¼
E1=2 and ½A�� ¼ E0, while the electron charge17 ½e� ¼ E1.
With standard spinor normalizations �uu ¼ � �vv ¼ 2m the
fermion operators have ½b� ¼ ½d� ¼ E0 and satisfy
fbðk1Þ; byðp1Þg ¼ 2Ep2��ðk1 � p1Þ. The states have the

same dimensions as their creation operators, ½je�i� ¼ E0.
For our bound-state definition (5.2) this implies ½�� ¼ E1.
Consequently the invariant form factor defined in (5.13) is
dimensionless, ½FABðQ2Þ� ¼ E0.
The 2 ! 2 scattering amplitudes

Aðe�!e�Þ¼ he�jTje�i
¼Mðe�!e�Þð2�Þ2�2ðPi�PfÞ (A1)

have ½A� ¼ E0 and ½M� ¼ E2. Defining the 2 ! 2 cross
section in analogy to D ¼ 3þ 1 as

	scatðe� ! e�Þ ¼ 1

2s

Z dp1
1dp

1
2

ð2�Þ24E1E2

jMj2ð2�Þ2

� �2ðp1 þ p2 � PiÞ (A2)

gives ½	scat� ¼ E0 as expected. The phase space factor is

	scat ¼ 1

2s

Z dp1
1

4E1E2

�ðE1 þ E2 � P0
i ÞjMj2

¼ 1

2s

jMj2
4���p

�
1 p

�
2

; (A3)

where �01 ¼ 1, and we used

dðE1 þ E2Þ
dp1

1

¼ p1
1

E1

þ p1
1 � P1

i

E2

¼ 1

E1E2

½p1
1P

0
i � p0

1P
1
i �

¼ ���p
�
1 p

�
2

E1E2

: (A4)

The invariant kinematic factor may be evaluated in the
Breit frame where, for Q 
 m1, m2,

p1 ¼ Q

2
ð1; 1Þ; p2 ¼ Q

2
ð1;�1Þ; (A5)

giving
16The Dirac spectrum is continuous for almost all potentials in
both two and four dimensions. Curiously, textbooks rarely
mention this fact, even though the exceptional case of the 1=r
potential in D ¼ 3þ 1 is treated in detail.

17For clarity we display the charge e explicitly in this appendix,
taking VðxÞ ¼ 1

2 e
2jxj.
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	scat ’ jMj2
4Q4

for Q2 ! 1 with fixed m1; m2: (A6)

We may evaluate the electron vertex as

V�
e ¼ �uðk2Þ��uðk1Þ

¼ ð 1 0 Þ 6k2 þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þm

p �� 6k1 þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þm

p 1

0

 !

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE1 þmÞðE2 þmÞp
�
�
ðE1 þmÞk�2 þ ðE2 þmÞk�1 þ 1

2
g�0ðk1 � k2Þ2

�

	 ���q�VðQÞ; (A7)

where q ¼ k1 � k2. For backward scattering, taking the
incoming electron momentum k11 < 0 and thus k12 > 0, we
may evaluate V1

e explicitly as

V1
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 þmÞðE2 �mÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 �mÞðE2 þmÞ

q

¼ ðE1 þmÞðE2 �mÞ � ðE1 �mÞðE2 þmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE1 þmÞðE2 �mÞp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE1 �mÞðE2 þmÞp
¼ �2m

q0

Q
; (A8)

which implies

VðQÞ ¼ 2m

Q
(A9)

for the invariant part of the vertex in (A7). Using

���q��
�	q	 ¼ Q2

�
g�� � q�q�

q2

�
(A10)

the backward scattering amplitude for e� ! e� is

Mðe�!e�Þ¼�e2VeðQÞV�ðQÞ¼�4mem�

e2

Q2
: (A11)

Using this in the expression (A6) for the cross section at
large Q2 gives

	scatðe� ! e�Þ ¼ 4m2
em

2
�

e4

Q8
; (A12)

which is suppressed by m2
em

2
�=Q

4 compared to the

‘‘scaling’’ behavior �e4=Q4.
We may compare the fermion cross section with that for

elementary scalars, which do not have a mass suppression.
The scalar vertex is

V
�
s ¼ ðk1 þ k2Þ� 	 ���q�VsðQÞ: (A13)

We can determine VsðQÞ from the space component
(taking k11 < 0)

V1
s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
2 �m2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
1 �m2

q
¼ E2

2 � E2
1

k12 � k11
¼ q0

E1 þ E2

q1

¼ �q0VsðQÞ (A14)

implying

VsðQÞ ¼ �E1 þ E2

k11 � k22
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

Q2

s
: (A15)

Consequently the scalar 2 ! 2 amplitude analogous to
(A11) is of OðQ0Þ, giving a scaling cross section in (A6),
	scat / e4=Q4.

2. eðk1ÞAðPaÞ ! eðk2ÞBðPbÞ in the Bj limit

The Bj limit is defined as usual,

Q2¼�ðPb�PaÞ2!1 with xBj¼ Q2

2Pa �q fixed: (A16)

The massMa of the target A is kept fixed, while the mass of
the produced bound state grows with Q,

M2
b ¼ ðPa þ qÞ2 ’ Q2

�
1

xBj
� 1

�
: (A17)

In the Breit frame,

q ¼ ð0;�QÞ; k1 ¼ 1

2
Qð1;�1Þ; k2 ¼ 1

2
Qð1; 1Þ;

Pa ¼ Q

2xBj
ð1; 1Þ; Pb ¼ Q

2xBj
ð1; 1� 2xBjÞ: (A18)

Using the expression (5.13) for the bound-state vertex
we find

M ðeA ! eBÞ ¼ �e2
2me

Q
FABðQ2Þ: (A19)

The kinematic factors in the expression (A3) of the cross
section are

s ¼ Q2

xBj
and ���k

�
2 P

�
b ¼ 1

2
Q2: (A20)

Hence the DIS cross section is

	scatðeA ! eBÞ ¼ e4
m2

e

Q6
xBjjFABðQ2Þj2 	 2�e2

d	scat

dM2
b

;

(A21)

where the second equality implies an average over the
bound-state peaks, whose separation inM2

b is 2�e
2 accord-

ing to (3.19). Converting dM2
b ¼ �Q2dxBj=x

2
Bj we find the

parton distribution fðxBjÞ of the target as
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d	scat

dxBj
¼ e2m2

e

2�xBjQ
4
jFABðQ2Þj2 	 	̂scatðe� ! e�ÞfðxBjÞ;

fðxBjÞ ¼ 1

8�e2m2

1

xBj
jQ2FABðQ2Þj2; (A22)

where m is the mass of the struck fermion in the target A.

APPENDIX B: DETAILS ON THE Q2 ! 1 LIMIT

The leading OðQ�2Þ result (6.7) and (6.12) for the DIS
form factor FABðQ2Þ in the Bj limit was found by calculat-
ing the contribution to the integral (5.14) for x� 1=Q
explicitly. Leading contributions can, in principle, arise
also for larger values of x, if the oscillations of the wave
functions cancel the Fourier phase such that a stationary
phase arises. In this appendix we check that such extra
contributions are absent.

The form factor was given in (5.14) and becomes

FABðQ2Þ¼�4i
1�
a
b

Q

Z 1

0
dxsin

�
Qx

2

��
�

0BðxÞ�0AðxÞ

þ�
1BðxÞ�1AðxÞ

�
1þ 4m2

	a	b

~�a ��b

��
(B1)

in the Breit frame. It is necessary to check the behavior of
the expression in the square brackets of (B1) by using the
asymptotic expressions for�j. The wave functions depend

on x through the variables	a;b. The variable corresponding

to the final state is

	b ’ Q2

�
1

xBj
� 1

�
� Q

2xBj
jxj þ 1

4
x2; (B2)

which is large for x � 0 except very close to the roots

x� ¼ Q

�
1

xBj
�
�
1

xBj
� 2

��
: (B3)

The asymptotic expansion of �B can thus be used unless
jx� x�j & 1=Q. The target wave function depends on

	a ¼ M2 � Q

2xBj
jxj þ 1

4
x2: (B4)

The asymptotic formulas for �A can be used unless
x & 1=Q (which was already discussed in the main text)
or jx� 2Q=xBjj & 1=Q.

We shall discuss the asymptotics of the wave functions
as 	 ! �1. To next-to-leading order we find [compare
to (3.16)]

�1ð	Þ ¼
ffiffiffiffi
2

�

s
N

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�m

2 � 1
p

e��m2

�
sin

�
	

2
�m2 log ð�	Þ þ arg�ð1þ im2Þ

�

þm4 cos ½	2 �m2 log ð�	Þ þ arg�ð1þ im2Þ� þm2 sin ½	2 �m2 log ð�	Þ þ arg�ð1þ im2Þ�
	

þOð	�2Þ
�
;

�0ð	Þ ¼ �i

ffiffiffiffi
2

�

s
N

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2�m

2 � 1
p

e��m2

�
cos

�
	

2
�m2 log ð�	Þ þ arg�ð1þ im2Þ

�

�m4 sin ½	2 �m2 log ð�	Þ þ arg�ð1þ im2Þ� þm2 cos ½	2 �m2 log ð�	Þ þ arg�ð1þ im2Þ�
	

þOð	�2Þ
�
: (B5)

Also, the expression appearing in the last term in the square
brackets of (B1) can be written as

4m2

	a	b

~�a ��b¼2m2
	aþ	bþð1�xBjÞ2Q2=x2Bj

	a	b

: (B6)

Notice that the apparent singularities of this term as
	a;b!0 are regularized by the zeroes of �1A;B in (B1).

We start by discussing the contributions from the regions
where x * OðQ0Þ and the asymptotic formulas (B5) work.
Then the 	a;b are OðQÞ or larger. Thus the factor (B6) is

suppressed by 1=Q, at least. Neglecting this factor, let us
first consider the leading terms of the asymptotic expansion
(B5). The leading terms in (B1) then combine, through
sinð�aÞsinð�bÞþcosð�aÞcosð�bÞ¼ cosð�a��bÞ, to give

FABðQ2Þ � �i
1� 
a
b

Q

Z
dx sin

�
Qx

2

�

� cos

�
	aðxÞ
2

� 	bðxÞ
2

þm2 log
	bðxÞ
	aðxÞ

�
; (B7)

where, for P0
a ¼ P0

b ¼ E,

	aðxÞ � 	bðxÞ ¼ M2
a �M2

b (B8)

is fixed and x independent. The remaining x dependence
is logarithmic and cannot cancel the rapidly oscillating
Fourier phase.18 Hence no stationary phase can arise from
the leading behavior of the first two terms in the integrand,
which suggests that the integral is limited to xQ of Oð1Þ.
Notice also thatwe used the approximation of (6.4) and (6.5)
in the main text, which is valid when x� 1=Q. The varia-
tion of (B7) due to this approximation is

18Notice that this argument does not work when 	a or 	b is
close to zero, and the logarithmic term varies rapidly. This
happens, however, only in the regions where the asymptotic
expansions are not reliable to start with.
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� 1

Q

Z
dx sin

�
Qx

2

�
x

Q
� 1

Q4
(B9)

and thus indeed subleading.
Let us then discuss the inclusion of the next-to-leading

terms in (B5) or the term proportional to the factor (B6).
These terms are suppressed by at least one power of 	a or
	b, i.e., a power of 1=Q. As the integral in (B1) is only
multiplied by 1=Q, they could still contribute atOðQ�2Þ to
the form factor if a suitable stationary phase arises. A
stationary phase at a generic x�Q is not relevant, because
then 	a;b �Q2, which leads to a suppression of at least

Q�3. As we shall see below, the stationary phases only
occur for a range of x with length OðQ0Þ, so additional
powers ofQ cannot arise from the integration. A stationary
phase at x�Q0 would, however, lead to an extra contri-
bution to the form factor at leading order.19

Using the expressions (B5) and (B6) to expand the factor
in the square brackets of (B1) to next-to-leading order in
1=	, we observe that all possible combinations of the
Fourier phase and the phases of �A;B appear. Neglecting

constant and slowly varying factors, they are proportional
to Qx� 	a � 	b, where the signs of 	a and 	b can be
different. If they are, however, the situation is as in the case
of the leading order analysis in (B7), and no stationary
phases arise. Therefore, we discuss only the phases Qx�
ð	a þ 	bÞ, which were absent at leading order. The loca-
tions of the stationary phases are found by solving

d

dx
½Qx� ð	a þ 	bÞ� ¼ 0: (B10)

The solutions are given by

x ’ Q

�
1

xBj
� 1

�
	 x̂�; (B11)

i.e., they occur at generic OðQÞ values. Near these points
the phases behave as� 1

4 ðx� x̂�Þ2, such that the stationary
phases are limited to regions having lengths �Q0, as
expected. We conclude that the next-to-leading terms do
not contribute to the form factor at leading order.20

Finally, let us discuss the contributions to FABðQ2Þ from
the regions where the asymptotic formulas do not hold for
either of the wave functions �A;B [so that 	a ¼ OðQ0Þ or
	b ¼ OðQ0Þ]. The case x� 1=Q was discussed in the
main text. The other regions are the neighborhoods of
x ¼ x� in (B3) and x ¼ 2Q=xBj, respectively. Let us dis-

cuss, for definiteness, x ¼ 2Q=xBj. Near this point the

asymptotic formulas for �B are valid, and we can write
down an expression similar to (6.7) and (6.12),

FABðQ2Þ � 1

Q

Z
jx�2Q=xBjj�1=Q

dx sin

�
Qx

2

�
½� � ��; (B12)

where . . . stands for a function of xQ which is nontrivial
but regular within the region of integration. Shifting the
integration variable we obtain

FABðQ2Þ � 1

Q

Z
jxj�1=Q

dx sin

�
Qx

2
þ Q2

xBj

�
½� � ��

� 1

Q2

Z
jvj�1

dv sin

�
vþ Q2

xBj

�
½� � ��: (B13)

The contribution from this region has thus the leading
power behavior �1=Q2, but also involves the large phase
factor Q2=xBj. We interpret that the basically arbitrary

phase averages the result to zero. Analogous results are
found in the neighborhoods of x ¼ x�.

APPENDIX C: ASYMPTOTICS OF THE PARTON
DISTRIBUTION AT SMALL xBj

It is possible to calculate the xBj ! 0 limit of the parton

distribution analytically. We again assume that 
a ¼
�
b ¼ þ1 and start by separating the two contributions
in Eq. (6.7) as

Q2FABð
a ¼ þÞ ¼ J1 þ J2; (C1)

J1 ¼ �8i
ffiffiffiffiffiffiffi
2�

p Z 1

0
dv sinv

�
cos

�
v

2xBj

�
i�0Að�aÞ

� sin

�
v

2xBj

�
�1Að�aÞ

�
; (C2)

J2 ¼ 16im2
ffiffiffiffiffiffiffi
2�

p
xBj

Z 1

0
dv sinv sin

�
v

2xBj

�
�1Að�aÞ

�a
; (C3)

where �a in (6.4) is a function of v=xBj. It would seem that

the expansions can be calculated by substituting v ! xBjv

in each integral and then developing the factor sin ðxBjvÞ as
a series at xBj ¼ 0. This, however, leads to integrals that

are divergent for v ! 1. Instead we expand the wave
functions up to next-to-leading order for �a ! �1,

�0ð�aÞ¼�i
ffiffiffiffiffiffiffi
2�

p
2

e��m2
cos

�
�ðvÞ� v

2xBj

�

� im2
ffiffiffiffiffiffiffi
2�

p
2

e��m2

�
cos

�
�ðvÞ� v

2xBj

�

þðm2�M2Þsin
�
�ðvÞ� v

2xBj

��
xBj
v

þO
�x2Bj
v2

�
;

(C4)

19Stationary phases near the roots x� of (B3) or near
x ¼ 2Q=xBj would also be special.
20Notice that if 1� xBj �Q�2 so that the final state has a finite
mass, one of the stationary phases moves to x�Q0 signaling the
breakdown of the results (6.7) and (6.12).
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�1ð�aÞ¼
ffiffiffiffiffiffiffi
2�

p
2

e��m2
sin

�
�ðvÞ� v

2xBj

�
�m2

ffiffiffiffiffiffiffi
2�

p
2

�e��m2

�
sin

�
�ðvÞ� v

2xBj

�
þðm2�M2Þ

�cos

�
�ðvÞ� v

2xBj

��
xBj
v

þO
�x2Bj
v2

�
; (C5)

where�ðvÞ is given in (6.9), and we usedN from (4.16) for
the target wave function.

Let us discuss the integral J1 first. Using the expansions
of the wave functions we find

J1¼�8i�e��m2
Z 1

0
dvsinv

�
cos�ðvÞ

þm2

�
cos

�
�ðvÞ� v

xBj

�
þðm2�M2Þsin�ðvÞ

�

�xBj
v

þO
�x2Bj
v2

��
: (C6)

The integral arising from the first term in the wavy brackets
was already evaluated in Eq. (6.16). The second term can
also be calculated analytically. The first term in the square
brackets contains a rapidly oscillating phase as xBj ! 0.

Hence its leading contribution arises from the region
v� xBj, and is of OððxBjÞ2Þ. The dominant contributions

to the second term have v� ðxBjÞ0, and therefore the result
is of OðxBjÞ. The Oðx2Bj=v2Þ term converges fast enough

both as v ! 0 and as v ! 1 for us to develop the sine
factor as a series at v ¼ 0 and see that this contribution is
of OððxBjÞ2Þ. Altogether we get

J1 ¼ �8i�e��m2 j�ð1þ im2Þj
�
cosh

�
�m2

2

�

� cos

�
M2

2
þm2 log xBj

�
þ xBjðm2 �M2Þ

� sinh

�
�m2

2

�
sin

�
M2

2
þm2 log xBj

��
þOððxBjÞ2Þ:

(C7)

The integral J2 can be analyzed similarly. There are,
however, complications due to the explicit factor of 1=xBj
appearing in the coefficient in (C3). First, we need to study
the terms of the asymptotic expansion of the integrand up
to Oðx2Bj=v2Þ. This is necessary in order to determine all

OðxBjÞ contributions to the form factor from the region of

asymptotically high v� ðxBjÞ0. Second, also the region

with small v� xBj, where the wave function �1A cannot

be estimated in terms of elementary functions, contributes
to the form factor atOðxBjÞ. It is hard to find a closed form

expression for this contribution, but we will write it down
as an integral below.
Let us start with the contributions arising from the region

with v� ðxBjÞ0. Developing the integrand at v ! 1 gives

J2¼8im2�e��m2
Z 1

0
dvsinv

�
�
�
cos

�
�ðvÞ� v

xBj

�

�cos�ðvÞ
�
1

v
þðm2�M2Þ

�
cos

�
�ðvÞ� v

xBj

�

�cos�ðvÞ�m2 sin

�
�ðvÞ� v

xBj

�
þm2 sin�ðvÞ

�
xBj

v2

þO
�x2Bj
v3

��
: (C8)

The integral over the Oð1=vÞ and OðxBj=v2Þ terms can be

done analytically.21 This contribution is given by

J2A ¼ 8ie2�e��m2 j�ð1þ im2Þj
�
sinh

�
�m2

2

�

� cos

�
M2

2
þm2 log xBj

�

� xBje
��m2=2

�
ð2m2 �M2Þ sin

�
M2

2

�

þm2ðm2 �M2Þ cos
�
M2

2

��

þ xBjðm2 �M2Þ cosh
�
�m2

2

�

� sin

�
M2

2
þm2 log xBj

��
þOððxBjÞ2Þ: (C9)

The remaining contribution comes from small
v� xBj

22. It can be isolated by subtracting from the inte-

grand its leading terms given in (C8), which leads to

J2B¼8i�m2

xBj

Z 1

0
dvsinv

8<
:

ffiffiffiffi
2

�

s
sin

�
v

2xBj

�
�1Að�aÞ

�a

þe��m2

�
cos

�
�ðvÞ� v

xBj

�
�cos�ðvÞ

�
xBj
v

�ðm2�M2Þe��m2

�
cos

�
�ðvÞ� v

xBj

�
�cos�ðvÞ

�m2 sin

�
�ðvÞ� v

xBj

�
þm2 sin�ðvÞ

�x2Bj
v2

�
: (C10)

After scaling the integration variable by xBj the integral

reads

21Notice that the integral over theOðxBj=v2Þ term is convergent
at v ! 0 despite the factor of 1=v2 thanks to cancellations in the
numerator.
22To be precise, Eq. (C9) already contains some OðxBjÞ con-
tributions from the region v� xBj. These are the terms without
logarithmic phases.
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J2B¼8i�m2
Z 1

0
dvsinðxBjvÞ

8<
:2

ffiffiffiffi
2

�

s
sin

�
v

2

�
�1Að�a¼M2�vÞ

M2�v
þe��m2½cosð ~�ðvÞ�vÞ�cos ~�ðvÞ�1

v

�ðm2�M2Þe��m2½cosð ~�ðvÞ�vÞ�cos ~�ðvÞ�m2 sinð ~�ðvÞ�vÞþm2 sin ~�ðvÞ� 1
v2

9=
;; (C11)

where ~�ðvÞ ¼ �ðxBjvÞ ¼ M2=2�m2 logv, and therefore the whole expression in the curly brackets is independent of
xBj. The leading term as xBj ! 0 is then found by expanding the factor sin ðxBjvÞ at small xBj and v,

J2B ¼ iCðm;MÞxBj þOððxBjÞ2Þ; (C12)

where

Cðm;MÞ ¼ 8�m2
Z 1

0
dv

8<
:2

ffiffiffiffi
2

�

s
v sin

�
v

2

�
�1AðM2 � vÞ

M2 � v
þ e��m2½cos ð ~�ðvÞ � vÞ � cos ~�ðvÞ�

� ðm2 �M2Þe��m2½cos ð ~�ðvÞ � vÞ � cos ~�ðvÞ �m2 sin ð ~�ðvÞ � vÞ þm2 sin ~�ðvÞ� 1
v

9=
;: (C13)

Collecting the results,

Q2FABð
a ¼ þÞ ¼ J1 þ J2A þ J2B

¼ �8i�e�3�m2=2j�ð1þ im2Þj
�
cos

�
M2

2
þm2 log xBj

�
� xBjðm2 �M2Þ sin

�
M2

2
þm2 log xBj

�

þ xBj

�
ð2m2 �M2Þ sin

�
M2

2

�
þm2ðm2 �M2Þ cos

�
M2

2

���
þ iCðm;MÞxBj þOððxBjÞ2Þ: (C14)

The xBj ! 0 expansion for xBjfðxBjÞ obtained by using this formula in (6.1) is shown by the dashed red curves in Fig. 8.
Notice that the contribution from the asymptotic oscillations is suppressed by the factor e�3�m2=2 in the nonrelativistic limit
m ! 1. Such a suppression factor is absent in Cðm;MÞ of (C13), which mostly arises from small v� xBj, i.e., the region
where the wave function �1A is nonvanishing in the nonrelativistic limit.
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