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The Lorentzian metric structure used in any field theory allows one to implement the relativistic notion of

causality and to define a notion of time dimension. This article investigates the possibility that at the

microscopic level themetric is Riemannian, i.e., locally Euclidean, and that the Lorentzian structure, that we

usually consider as fundamental, is in fact an effective property that emerges in some regions of a four-

dimensional space with a positive definite metric. In such a model, there is no dynamics nor signature flip

across somehypersurface; instead, all the fields develop aLorentzian dynamics in these regions because they

propagate in an effective metric. It is shown that one can construct a decent classical field theory for scalars,

vectors, and (Dirac) spinors in flat spacetime. It is then shown that gravity can be included but that the theory

for the effective Lorentzianmetric is not general relativity but of the covariant Galileon type. The constraints

arising from stability, the equivalence principle, and the constancy of fundamental constants are detailed and

a phenomenological picture of the emergence of the Lorentzianmetric is also given. The construction, while

restricted to classical fields in this article, offers a new view on the notion of time.
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I. INTRODUCTION

When constructing a physical theory, there is a large
freedom in the choice of the mathematical structures. The
developments of theoretical physics taught us that some of
these structures are well suited to describe some classes of
phenomena (e.g., the use of a vector field for electromag-
netism, of spinors for some class of particles, the use of
some symmetries, etc.). However, these choices can only be
validated by themathematical consistency of the theory and
the agreement between the consequences of these structures
and experiments. It may even be that different structures are
possible to reproduce what we know about physics and one
may choose one over the other on the basis of less well-
defined criteria such as simplicity and economy.

At each step, some properties such as the topology of
space [1], the number of spatial dimensions, or the numeri-
cal values of the free parameters that are the fundamental
constants [2], may remain a priori free in a given frame-
work, or imposed in another framework (e.g., the number
of space dimensions is fixed in string theory [3]).

Among all these structures, and in the framework of
metric theories of gravitation, the signature of the metric
is in principle arbitrary. Indeed, it seems that on the scales
that have been probed so far there is the need for only one
time dimension and three spatial dimensions. In special
and general relativity, time and space are geometrically

different because the geometry of spacetime is locally
Minkowskian, i.e., it enjoys a Lorentzian metric with
signature ð�;þ;þ;þÞ, i.e., the line element is ds2 ¼
�dt2 þ d‘2 � ���dx

�dx�. While the existence of two

time directions may lead to confusion [4], it is not clear
if there are theoretical obstacles to have more than one time
direction, as even suggested by some framework [5] (see
the argument for such possibilities made by Ref. [6] and
detailed further in Ref. [7]). Several models for the birth of
the universe [8] are based on a change of signature via an
instanton in which a Riemannian and a Lorentzian mani-
fold are joined across a hypersurface which may be thought
of as the origin of time. While there is no time in the
Euclidean region, where the signature is ðþ;þ;þ;þÞ, it
flips to ð�;þ;þ;þÞ. Eddington even suggested [9] that it
can flip across some surface to ð�;�;þ;þÞ. Signature flip
also arises in brane-world scenarios [10] (see Ref. [7] for a
review of these possibilities) or in loop quantum cosmol-
ogy [11]. These discussions however let the problem of the
origin of the time direction open [12].
In Newtonian theory, time is a fundamental concept. It is

assumed to flow and is described by a real variable. It can
be measured by good clocks and any observers shall,
irrespective of their motion, agree on the time elapsed
between two events [13]. The laws of dynamics describe
the change of configurations of a system with time. In
relativity, first the notions of space and time are set on
the same footing and, second, the notion of time is no more
unique. One has to distinguish between a coordinate time,
with no physical meaning, and the proper time that can be
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measured by an observer. Quantum mechanics offers an-
other insight on time: there, while there may be operators
or observables corresponding to spatial positions, time is
not an observable, and thus not an operator [14]. As de-
tailed in Ref. [7], by an argument going back to Pauli,

commutation relations like ½x̂�; P̂�� ¼ i��
� are incompat-

ible with the spectrum of P̂� lying in the future light cone
and the notion of time is intimately related to the complex
(Hilbert space) structure of quantum mechanics [7].

The question of whether time does actually ‘‘exist’’ has
been widely debated in the context of classical physics
[15], relativity [16], and quantum mechanics [14]. The
debate on the nature of time has shifted with quantum
gravity where the recovery of a classical notion of time is
considered as a problem. In that case, the Schrödinger
equation becomes the Wheeler-DeWitt equation, of the

form Ĥj�i ¼ 0, so that the allowed states are those for
which the Hamiltonian vanishes. Thus, it determines in
which states the universe can be but does not give any
evolution through time. We refer to Refs. [17–19] for
general discussions on the nature of time. This has led to
numerous works on the emergence of time in different
versions of quantum gravity [20–25] (and indeed the re-
verse opinion has been argued [26]). Also, the thermody-
namical aspects of gravity, the existence of dualities
between gauge theories and gravity theories [27], and
holography [28] have led to the idea that the metric itself
may have to be thought of as the result of a coarse graining
of underlying more fundamental degrees of freedom [29].

The local Minkowski structure is an efficient way to
implement the notion of causality in realistic theories and
is today accepted as a central ingredient of the construction
of the relativistic theory of fields. When gravity is in-
cluded, the equivalence principle implies (this is not a
theoretical requirement, but just an experimental fact, re-
quired at a given accuracy) that all the fields are universally
coupled to the same Lorentzian metric. From the previous
discussion, we may wonder whether the signature of this
metric is only a convenient way to implement causality or
whether it is just a property of an effective description of a
microscopic theory in which there is no such notion.

This article proposes the view according to which the
fundamental physical theory is intrinsically purely
Euclidean so that its field equations determine a static
four-dimensional field configuration. The Lorentzian dy-
namics that we can observe in our universe has then to be
thought of as an emergent property, that is as an illusion
holding in a small patch of a Euclideanmathematical space.
This is thus an attempt to go further than early proposals
[30–32] and see to which extent this can be an open possi-
bility. We emphasize that it is different from the models
discussed above involving a signature change across a
boundary or obtained by rotating to an Euclidean space.
We consider it important to take the freedom to see how far
one can go in such a direction. As we shall later discuss, if

possible, such a setting may shed a new light on several
theoretical issues from the nature of singularities to quan-
tum gravity.
Our attitude is however more modest and we want to

start by constructing a decent classical field theory under
this hypothesis. Section II explains the basics of our
mechanism and then describes the construction of the
scalar, vector, and spinor sectors in flat spacetime. We
show that the whole standard model of particle physics
can be constructed from a Euclidean theory, at the classical
level. Section III addresses the more difficult question of
gravity. While general relativity is not recovered in gen-
eral, it shows that an extended K-essence theory of gravity
called covariant Galileon can be obtained. We then show in
Sec. IV that the dynamics of scalar and vector in curved
spacetime can also be obtained. We then discuss the ex-
perimental and theoretical constraint on our construction in
Sec. V and also propose a way to understand phenomeno-
logically the emergence of the effective Lorentzian dynam-
ics. It is however to be remembered that there is no
dynamics at the fundamental level and that this illusion is
restricted to a domain of a large Euclidean space.

II. FIELD THEORY IN FLAT SPACE

This section introduces the mechanism in the simple
case of a flat space (Sec. II A). It shows how scalars
(Sec. II B), vectors (Secs. II C and II D), and spinors
(Sec. II E) defined in Euclidean space can have an apparent
Lorentzian dynamics. We finish by pointing out the prop-
erties and limits of this mechanism in Sec. II G, many of
them being discussed in a more realistic version in the
following sections.

A. Clock field

In order to understand the basics of our model, let us
consider a four-dimensional Riemannian manifoldMwith
a positive definite Euclidean metric gE�� ¼ ��� in a

Cartesian coordinate system. As a consequence, the theory
we shall consider on this manifold does not have a natural
concept of time. In order to make such a notion emerge
locally, we introduce a scalar field � and assume that its
derivative has a nonvanishing vacuum expectation value
(vev) in a regionM0 of the Riemannian space (see Fig. 1).
To be more precise, we assume that @�� ¼ const � 0 in

M0. It follows that we can set

@�� ¼ M2n� in M0 (2.1)

with n� a unit constant vector (���n�n� ¼ 1). We have

introduced a mass scale M so that n� is dimensionless.

By construction, its norm XE � ���@��@�� ¼ M4 is

constant and satisfies

XE > 0 in M0: (2.2)
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Now, under this assumption, one of the coordinates can be
chosen as

dt ¼ n�dx
�: (2.3)

This accounts for choosing

t � �

M2
(2.4)

up to a constant that can be set to zero without loss of
generality. The metric of the four-dimensional Riemannian
space (with Euclidean geometry) can be rewritten as

ds2E ¼ ���dx
�dx� ¼ ðn�dx�Þ2 þ ð��� � n�n�Þdx�dx�

¼ dt2 þ �ijdx
idxj; (2.5)

by introducing a set of three independent coordinates xi

(i ¼ 1; . . . ; 3) on the hypersurfaces �t normal to n�. Note
that the geometry on �t would not be Euclidean if n� were

not constant. As we shall now discuss, the scalar field �
will be related to what we usually call ‘‘time,’’ so that we
shall call such a scalar field a clock field.

B. Scalar field

The Euclidean configuration of a scalar field � can be
obtained by combining the usual action for a scalar field,
with a kinetic term and a potential,

�
Z

d4x

�
1

2
���@��@��þ Vð�Þ

�
;

with a coupling to the clock field � asZ
d4xð���@��@��Þ2:

Let us consider the action obtained by the following
combination:

S� ¼
Z

d4x

�
� 1

2
���@��@��� Vð�Þ

þ 1

M4
ð���@��@��Þ2

�
: (2.6)

It is straightforward to conclude that since ���@��@�� ¼
ð@t�Þ2 þ �ij@i�@j� and, when restricted to M0,

ð���@��@��Þ2 ¼ M4ð@t�Þ2, the action (2.6) reduces to

S� ¼
Z

dtd3x

�
1

2
ð@t�Þ2 � 1

2
�ij@i�@j�� V

�
(2.7)

in M0. This can indeed be rewritten as

S� ¼
Z

dtd3x

�
� 1

2
���@��@��� V

�
: (2.8)

The action (2.6) thus describes, when restricted toM0, the
dynamics of a scalar field propagating in a four-dimensional
Minkowski spacetime with metric ���¼diagð�1;þ1;þ1;

þ1Þ. The apparent Lorentzian dynamics, with a preferred
time direction, is thus the result of the coupling to the
scalar clock field.

C. Vector field

Usually, the dynamics of a vector field A� is dictated by

the action F��F
��
E , where F�� is the Faraday tensor defined

asF�� ¼ @�A� � @�A� andwhere the subscriptE indicates

that the indices are raised with the Euclidean metric ���.
The standard action of the vector field can be extended to

include a coupling to the clock field of the form
F��
E F�

E�@��@�� so that the action for the vector field

we consider is

SA ¼ 1

4

Z
d4x

�
�F��F

��
E þ 4

M4
F
��
E F�

E�@��@��

�
: (2.9)

Since F��F
��
E ¼ 2�ijF0iF0j þ �ik�jlFijFkl and since

F��
E F�

E�@��@�� ¼ M4�ijF0iF0j in M0, it is easily con-

cluded that this action can be rewritten as

SA ¼ 1

4

Z
dtd3x½2�ijF0iF0j � �ik�jlFijFkl�; (2.10)

or more simply as

SA ¼ � 1

4

Z
dtd3x�����	F��F�	: (2.11)

Because of the coupling of the Faraday tensor to the clock
field in the Euclidean theory, the vector field propagates
effectively in a Minkowski metric and we recover the
standard Maxwell action for a vector field. The general-
ization to a non-Abelian group is straightforward.

FIG. 1 (color online). Example of a spatial configuration of the
clock field. Locally, one can define regions such as M0, M0

0,

and M00
0 , in each of which a time direction emerges. Indeed this

direction does not preexist at the microscopic level and can be
different from patches to patches.
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D. Charged scalar field

The construction of Sec. II B can easily be generalized
to a complex scalar field charged under a Uð1Þ.
Considering a complex scalar field !, we add to the
standard kinetic term ���ðD�!Þ�ðD�!Þ a coupling to the

clock field of the form ���j@��D�!j2, whereD� � @� �
iqA�. The Euclidean action is then chosen to be

S! ¼
Z

d4x

�
� 1

2
���ðD�!Þ�ðD�!Þ �Uðj!j2Þ

þ 1

M4
���j@��D�!j2

�
: (2.12)

Following the same arguments as for the real scalar field �,
this action takes the form

S! ¼
Z

dtd3x

�
� 1

2
���ðD�!Þ�ðD�!Þ �U

�
: (2.13)

Again, the coupling to the clock field implies that the
Euclidean dynamics leads to an effectively Minkowskian
dynamics for !.

E. Spinor fields

The next step is to include fermions in such a way that
the standard Dirac dynamics emerges from a Euclidean
action. Let us start by comparing the standard Dirac alge-
bra in Minkowski spacetime (Sec. II E 1) and that in
Euclidean space (Sec. II E 2) before we propose a choice
of Euclidean action for the fermions (Sec. II E 3).

1. Dirac matrices in Minkowski spacetime

In a Minkowski spacetime with signature ð� þþþÞ,
Dirac matrices are 4� 4 matrices satisfying the anticom-
mutation relation

f
�; 
�g ¼ �2���: (2.14)

For concreteness, throughout this section we shall adopt
the following form of the Dirac matrices in Minkowski
spacetime:


0 ¼ �0 � �1 ¼
0 �0

�0 0

 !
;


i ¼ i�i � �2 ¼
0 �i

��i 0

 !
;

(2.15)

where �0 is the 2� 2 unit matrix and �i (i ¼ 1, 2, 3) are
Pauli matrices,

�1¼
0 1

1 0

 !
; �2¼

0 �i

i 0

 !
; �3¼

1 0

0 �1

 !
: (2.16)

While 
0 is Hermitian, 
i are anti-Hermitian. One then
defines 
5 by


5 ��i
0
1
2
3 ¼�0��3 ¼
�0 0

0 ��0

 !
; (2.17)

which satisfies

ð
5Þ2 ¼ 1; f
5; 
�g ¼ 0 ð� ¼ 0; . . . ; 3Þ: (2.18)

The matrices

S�� � i

4
½
�; 
�� (2.19)

satisfy the algebra of Lorentz generators

½S��;S��� ¼ ið���S������S������S��þ���S��Þ:
(2.20)

Hence, the Lorentz transformation for a Dirac field c is

c ! �1
2
c ; �1

2
¼ exp

�
� i

2
!��S

��

�
; (2.21)

where !�� are real numbers. Concretely,

S0i ¼ � i

2

�i 0

0 ��i

 !
; Sij ¼ 1

2

X3
k¼1

�ijk
�k 0

0 �k

 !
:

(2.22)

While Sij are Hermitian, S0i are anti-Hermitian. As a
consequence, �1

2
is not unitary in general. In particular

this means that

c y ! c y�y
1
2

� c y��1
1
2

(2.23)

and that c yc is not a scalar under Lorentz transformation.
However, it is easy to check that

�c ! �c��1
1
2

; �c � c y
0 (2.24)

so that �c c is a scalar under Lorentz transformations. This
is the reason why the Dirac action in Minkowski spacetime
is usually constructed as

SMc ¼
Z

d4x �c ð
�@� �mÞc : (2.25)

2. 
 matrices in Euclidean space

In a four-dimensional Euclidean space with metric ���,

one can also define matrices 

�
E according to


0
E � i
5; 
i

E � 
i (2.26)

so that they obey the anticommutation relation

f
�
E ; 


�
Eg ¼ �2���: (2.27)

Then, we can define


5
E � 
0

E

1
E


2
E


3
E ¼ 
0; (2.28)

which satisfies

ð
5
EÞ2 ¼ 1; f
5

E; 

�
E g ¼ 0 ð� ¼ 0; . . . ; 3Þ: (2.29)

It follows that the matrices

S
��
E � i

4
½
�

E ; 

�
E� (2.30)

satisfy the algebra of SOð4Þ rotation generators
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½S��
E ; S

��
E � ¼ ið���S

��
E � ���S��E � ���S

��
E þ ���S

��
E Þ:

(2.31)

Hence, the SOð4Þ rotation for the Dirac field c is

c ! �E;12
c ; �E;12

¼ exp

�
� i

2
!E

��S
��
E

�
; (2.32)

where !E
�� are real numbers. Since all S

��
E are Hermitian,

�E;12
is unitary. In particular, this implies that

�c ! �c��1
E;12
; c y ! c y��1

E;12
; (2.33)

and that both �c c and �c
5
Ec ð¼ c yc Þ are scalars under a

SOð4Þ transformation (see e.g., Refs. [33,34]). Note also
that �c ¼ c y
0 can be written as

�c ¼ c y
5
E: (2.34)

3. Euclidean action and emergence
of the Lorentzian Dirac action

As in the previous sections, we will need to couple the
spinor field c to the clock field� in order for the spinor to
have an apparent Lorentzian dynamics. Starting from the
Euclidean Dirac action in flat space with the metric ���,Z

dx4 �c

�
i

2


�
E @
$
� �m

�
c ;

and assuming that the clock field � has derivative
couplings to the Euclidean Dirac field c of the form

Z
dx4���ði �c
5

E@
$
�c Þ@��;

Z
dx4���ði �c
�

E@
$
�c Þ@��@��;

we can consider a Euclidean action for the Dirac spinor of
the form

Sc ¼
Z

dx4
�
�c

�
i

2

�
E @
$
� �m

�
c þ 1

2M2
���½ði �c
5

E@
$
�c Þ

� ði �c
�
E@
$
�c Þ@���@��

�
: (2.35)

As in the previous sections, the action Sc reduces to

Sc ¼
Z

dx4 �c

�
i

2

0@

$
0 þ i

2

i@

$
i �m

�
c : (2.36)

The coupling to the clock field implies that c effectively
propagates in an effective Lorentzian metric and we re-
cover the standard Minkowskian Dirac action (2.25) with
the usual algebra (2.14) for the 
 matrices.

F. Massive point particle

The dynamics of massive object is usually derived from
an action defined from the length of their worldline. In

order to recover a proper dynamics, we start from the
Euclidean action for a point particle

1

2

Z �
N �1���

dx�

d

dx�

d
�Nm2

�
d

to which we add the coupling to the clock field of the formZ
N �1@��@��

dx�

d

dx�

d
d:

The Euclidean action for a point particle is thus given by

Spp ¼ 1

2

Z �
N �1

�
��� � 2

M4
@��@��

�
dx�

d

dx�

d

�Nm2

�
d: (2.37)

The equation of motion is thus simply given by the geo-

desic equation for the effective metric gðmÞ
�� ¼ gE�� �

2
M4 @��@��. It is obvious that in M0 this effective metric

reduces to the Minkowski metric ���.

G. Discussion

This section has provided the general construction of a
mechanism that allows for scalar, vector, and spinor fields to
actually propagate in an effective Lorentzian metric even
though the underlying theory is purely Euclidean and writ-
ten in terms of the Euclidean metric ���. This general

construction assumes the existence of a scalar field �,
called clock field, that couples to all fields (scalar, vector,
and spinor fields). In particular, this implies that we can
construct the whole standard model of particle physics.
Let us now discuss some properties and limitations of

such a construction.
(1) It requires that the clock field satisfies @�� ¼

const � 0 in a region M0 of the Euclidean space.
It follows that the effective Lorentzian description is
local and holds inM0. The properties of this model
when @�� is not constant will be discussed in

Sec. VC below. As we shall see in the next section
the clock field should enjoy a shift symmetry in order
for the system to exhibit the time translation symme-
try after the emergence of time. InM0, both the shift
symmetry and the translational symmetry along the
direction of @�� are spontaneously broken, but a

combination of them remains unbroken and is re-
sponsible for the existence of a conserved quantity
that reduces inM0 to the usual notion of energy.

(2) It is limited to classical field theory in flat space. The
extension to curved space is discussed in Secs. III
and IV below and the quantum aspects are left for
future investigations.

(3) The origin of the effective Lorentzian dynamics in
M0 can be intuitively understood for scalars and
vectors. For scalars, the action (2.6) is equivalent to
the coupling to the effective metric
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ĝ�� ¼ ��� � 2

M4
�����	@��@	�: (2.38)

For vectors, one could have simply used a
coupling to ĝ�� and a Lagrangian of the form
ĝ��ĝ�	F��F�	 since the extra term quartic in

@�� compared to the action (2.9) is of the form

4M�8������0
����	�0

@��@�0�@��@�0�F��F�	

and does not contribute (note that it reduces to
4F2

00 ¼ 0 in M0). Hence, the apparent Lorentzian

dynamics for scalars and vectors boils down to the
fact that ĝ��jM0

¼ ���. Massive point particles

also propagate in this metric.
(4) This interpretation cannot be extended to spinors

mostly because of the 
 matrices, at least
straightforwardly.

(5) It is however important to realize that despite this,
when restricted to M0 all fields propagate in the
same effective Minkowski metric so that the equiva-
lence principle is safe in first approximation.

(6) The couplings to the clock field have been tuned in
order to recover the exact Minkowski actions. For
instance, the action (2.6) for a scalar field could have
been chosen as

S� ¼
Z

d4x

�
���

2
���@��@��� Vð�Þ

þ ��

2M4
ð���@��@��Þ2

�
: (2.39)

In such a case, a Lorentzian signature is recovered
only if �� > �� > 0. In the case where these

constants are not tuned, different fields can have
different light cones. This will be discussed in
Sec. V.

(7) In the bosonic sector, since the theory is invariant
under the Euclidean parity (x� ! �x�) as well as
the field parity (� ! ��), both P and T invariances
in the emergent Lorentzian theory are ensured.
Without the field parity invariance, the T invariance
would be spontaneously broken by a nonvanishing
vacuum expectation value (vev) of the derivative of
the clock field. This explains the reason why we
have included only quadratic terms in @�� in the

actions for scalars and vectors.
(8) In the fermionic sector, let us first remark that one

could have constructed 16 independent Euclidean 

matrices, explicitly given by

1; 
5
E; 


�
E ; 


5
E


�
E ; S

��
E : (2.40)

From the Dirac spinor c , we can thus construct
bilinear combinations that transform as scalars
under SOð4Þ rotations. Among them, Hermitian bi-
linears that do not include more than one derivative
acting on spinors are the following ten possibilities:

�c c ; �c
5
Ec ;

i �c

�
E @
$
�c ; �c
5

E

�
E @
$
�c ;

ð �c

�
E c Þ@��; ði �c
5

E

�
E c Þ@��;

���ði �c @
$
�c Þ@��; ���ði �c
5

E@
$
�c Þ@��;

���ði �c
�
E@
$
�c Þ@��@��; ���ð �c
5

E

�
E@
$
�c Þ@��@��:

The first two of the left column correspond to the
standard mass and kinetic terms while six among the
eight others describe possible couplings to the clock
field. Among these six couplings, we have only used
the two which were sufficient as an existence proof
of our mechanism for Dirac spinors, namely
���ði �c
5

E@
$
�c Þ@�� and ���ði �c


�
E@
$
�c Þ@��@��.

It has to be remarked that the second term is notCPT
invariant after the clock field has a vev. Hence, unless
the coefficient of this term is exactly the value shown
in (2.35), the CPT invariance is violated. We also
need to emphasize that we have been able to con-
struct the Dirac spinor but that we also need to
construct Majorana and Weyl spinors. This is an
open problem at the moment.

(9) The mass scaleM is related to @�� and is arbitrary.

It is important to realize that it does not appear in the
final expressions of the effective Lorentzian actions.

(10) XE may not be constant if gE�� � ��� (curved

space) and/or if @�� is not strictly constant in

M0. This will be discussed in Secs. III and V
(11) The configuration of the clock field is not arbitrary

but should be determined by solving the equation
of motion. Since the action for the clock field
enjoys a shift symmetry, its equation of motion
takes the form of a current conservation. This
will be addressed in Sec. III, where we will show
that @�� ¼ const � 0 can be a solution, e.g., with

gE�� ¼ ���.

III. GRAVITATION AND CURVED SPACE

So far, our description has been restricted to the classical
dynamics of standard fields in flat spacetime. The first
natural generalization we must consider is the way to
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include gravity, i.e., a theory that will mimic or be close to
general relativity.

For this purpose, we now consider a general four-
dimensional Riemannian1 manifold M with a positive
definite metric gE��. Again, the theory we shall consider

on this manifold does not have a microscopic concept of
time. As previously, we introduce a clock field � and
assume it enjoys a shift symmetry that, as we have already
seen, is necessary for the system to exhibit the time trans-
lation symmetry after the emergence of time.

A. Generic couplings to the clock field

In order to minimize the number of physical degrees of
freedom, we demand that the equation of motion for � is a
second-order differential equation. Hence, the action for �
is restricted to the Riemannian version of the Horndeski
theory [35] with shift symmetry. Equivalently, it is given
by the shift-symmetric generalized Galileon [36] as

Sg ¼
Z

dx4
ffiffiffiffiffiffi
gE

p ðL2 þ L3 þ L4 þ L5Þ; (3.1)

where the Lagrangians are explicitly given by

L2 ¼ KðXEÞ;
L3 ¼ �G3ðXEÞr2

E�;

L4 ¼ G4ðXEÞRE � 2G0
4ðXEÞ½ðr2

E�Þ2 � ðrE
�rE

��Þ2�;
L5 ¼ �g5G

��
E @��@��þ ~G5ðXEÞG��

E rE
�rE

��

þ 1

3
~G0
5ðXEÞ½ðr2

E�Þ3 � 3ðr2
E�ÞðrE

�rE
��Þ2

þ 2ðrE
�rE

��Þ3�: (3.2)

Here, rE
�, RE, and G

��
E are the covariant derivative asso-

ciated with the Riemannian metric gE��, its Ricci scalar,

and Einstein tensor. The coefficient g5 is a constant and

KðXEÞ, G3;4ðXEÞ, and ~G5ðXEÞ are arbitrary functions of XE

and a prime refers to a derivative with respect to XE that is
defined as

XE � g��
E @��@��: (3.3)

We use the following short-hand notations:

r2
E� � g��

E rE
�rE

��;

ðrE
�rE

��Þ2 � g��E g��E ðrE
�rE

��ÞðrE
�rE

��Þ;
ðrE

�rE
��Þ3 � g

��
E g��E g

	�
E ðrE

�rE
��ÞðrE

�rE
��ÞðrE

�rE
	�Þ;
(3.4)

where g
��
E is the inverse of gE��.

For the effective equations, i.e., once the Lorentzian
structure and the notion of time have emerged, we would
like to ensure that the system is invariant not only under
time translation but also under CPT.2

For this reason, we require that besides the shift sym-
metry (� ! �þ const) the theory also enjoys a Z2 sym-
metry (� ! ��) for the clock field action. With these
symmetries, the action reduces to

Sg ¼
Z

dx4
ffiffiffiffiffiffi
gE

p fG4ðXEÞRE � g5G
��
E @��@��þKðXEÞ

� 2G0
4ðXEÞ½ðr2

E�Þ2 � ðrE
�rE

��Þ2�g; (3.5)

since only L2, L4, and the first term of L5 can contribute.
It is easy to show that the constant g5 in the action (3.5)

can be absorbed into the redefinition of G4ðXEÞ up to a
boundary term. Hence, by setting g5 ¼ 0, hereafter we
consider the Riemannian gravity action of the form

Sg ¼
Z

dx4
ffiffiffiffiffiffi
gE

p fG4ðXEÞRE þKðXEÞ
� 2G0

4ðXEÞ½ðr2
E�Þ2 � ðrE

�rE
��Þ2�g: (3.6)

B. Action for the gravitational sector

Following the logic developed in Sec. II, we restrict our
analysis to a region M0 in which XE > 0 so that we can
define a preferred direction, that we shall call t, defined as
in Eq. (2.4),

t � �

M2
; (3.7)

that is chosen as one of coordinates of the four-dimensional
Riemannian manifold.We refer to such a coordinate choice
(3.7) as unitary gauge.

1. Decomposition of the Riemannian metric

One can then introduce a set of three other independent
coordinates xi (i ¼ 1, 2, 3) so that the Riemannian metric is
decomposed as

gE��dx
�dx� ¼ N2

Edt
2 þ 
ijðdxi þ NidtÞðdxj þ NjdtÞ;

(3.8)

where the lapse NE is given, thanks to Eq. (3.7), by

NE � 1ffiffiffiffiffiffi
gttE

p ¼ M2ffiffiffiffiffiffi
XE

p : (3.9)

The 3-metric 
ij is given by

1We use the term Riemannian for a curved spacetime with a
positive definite metric and Lorentzian for a curved spacetime
with a Lorentz signature. We keep the terms Euclidean and
Minkowskian for the analog in flat space. However, for simplic-
ity, we use the same subscript E for the Riemannian and
Euclidean cases.

2As we have seen in the previous section, this requirement is
not obviously fulfilled for spinors without fine-tuning. An addi-
tional mechanism is needed to naturally ensure the CPT invari-
ance for spinors. In the present article we shall thus focus on the
bosonic sector.
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ij � gEij; (3.10)

and 
ij is its inverse. To finish, the shift vector Ni is
given by

Ni � 
ijgEtj: (3.11)

One can then easily check that the inverse Riemannian
metric is given by

gttE ¼ 1

N2
E

; gtiE ¼ gitE ¼ � Ni

N2
E

; gijE ¼ 
ij þ NiNj

N2
E

:

(3.12)

2. Riemannian geometrical quantities

With the decomposition (3.8), it is straightforward to
show that the Einstein-Hilbert term reduces toffiffiffiffiffiffi
gE

p
RE¼NE

ffiffiffiffi



p ð�Kij
EK

E
ijþK2

EþRð3ÞÞ�2@ið ffiffiffiffi



p

ij@jNEÞ

�2@tð ffiffiffiffi



p
KEÞþ2@ið ffiffiffiffi



p

NiKEÞ; (3.13)

in terms of the extrinsic curvature of the constant-t hyper-
surface, KE

ij, defined by

KE
ij �

1

2NE

ð@t
ij �DiNj �DjNiÞ; (3.14)

where Di is the spatial covariant derivative compatible

with 
ij, and Rð3Þ is its Ricci scalar. We have used the

notations Kij
E � 
ik
jlKE

kl, KE � 
ijKE
ij, and Ni � 
ijN

j.

3. Riemannian action in M0

With the use of the quantities introduced above, the
Riemannian action (3.6) takes the form

Sg ¼
Z

dtdx3NE

ffiffiffiffi



p f�G4ðKij
EK

E
ij � K2

EÞ þG4R
ð3Þ þ L�g;

(3.15)

where the Lagrangian L� is given by

L� ¼ �2ð@E?@E? þD2ÞG4 � 2G0
4½ðr2

E�Þ2
� ðr�

Er�
E�ÞðrE

�rE
��Þ� þKðXEÞ; (3.16)

in which the three-dimensional Laplacian is defined as
usual as D2 � 
ijDiDj. The perpendicular derivative @E?
is defined in terms of the unit vector normal to the constant
� hypersurfaces, nE� ¼ @��=

ffiffiffiffiffiffi
XE

p
, as

@E? � n�E@� � 1

NE

ð@t � Ni@iÞ; (3.17)

with n
�
E ¼ g

��
E nE�.

In order to further simplify L�, note that rE
�rE

�� ¼
�M2�t

E�� in terms of the Christoffel symbols for the

metric gE��, �
�
E��. Its components are explicitly given by

�E
;ij � rE

i rE
j � ¼ ffiffiffiffiffiffi

XE

p
KE

ij;

�E
;?i � �E

;i? � n
�
ErE

�rE
i � ¼ 1

2

ffiffiffiffiffiffi
XE

p
@i lnXE;

�E
;?? � n�En

�
ErE

�rE
�� ¼ 1

2

ffiffiffiffiffiffi
XE

p
@E? lnXE:

(3.18)

It implies that the term ðr2
E�Þ2 � ðr�

Er�
E�ÞðrE

�rE
��Þ

appearing in Eq. (3.16) takes the form

ð
ij
kl � 
ik
jlÞ�E
;ij�

E
;kl þ 2
ijð�E

;??�
E
;ij ��E

;?i�
E
;?jÞ

and thus reduces to

�XEðKij
EK

E
ij � K2

EÞ þ KE@
E
?XE � 1

2
XEðDi lnXEÞ2:

Inserting this into Eq. (3.16), it follows that L� takes the

form

L� ¼ 2G0
4XEðKij

EK
E
ij � K2

EÞ þKðXEÞ þ
��

NE
ffiffiffiffi



p ; (3.19)

where the last term is given by

�� ¼ �2@tð ffiffiffiffi



p
@E?G4Þ þ 2@ið ffiffiffiffi



p

Ni@E?G4Þ
� 2@ið ffiffiffiffi



p


ijNE@jG4Þ (3.20)

and is a total derivative. We finally obtain the expression of
the Riemannian action

Sg ¼
Z

dtdx3NE

ffiffiffiffi



p fð2G0
4XE �G4ÞðKij

EK
E
ij � K2

EÞ
þG4R

ð3Þ þKðXEÞg; (3.21)

where it is understood that XE defined in Eq. (3.3) is
given by

XE ¼ M4

N2
E

and that the time coordinate is fixed according to the
unitary gauge (3.7).

4. Lorentzian metric

We now introduce a Lorentzian metric g�� and decom-

pose it as

g��dx
�dx� ¼ �N2dt2 þ 
ijðdxi þ NidtÞðdxj þ NjdtÞ;

(3.22)

where the lapse N is defined by

NdN ¼ �NEdNE (3.23)

so that the Riemannian and Lorentzian lapses are related to
each other as

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c � N2
E

q
; (3.24)

Nc being an arbitrary positive constant. As above, we can
define the extrinsic curvature of this metric as
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Kij � 1

2N
ð@t
ij �DiNj �DjNiÞ (3.25)

and Kij � 
ik
jlKkl, K � 
ijKij. It is related to the

Riemannian extrinsic curvature by

Kij ¼NE

N
KE

ij; Kij ¼NE

N
Kij

E ; K¼NE

N
KE: (3.26)

The Ricci scalar of g�� can be expressed in terms of the

extrinsic curvature by the well-known formulaffiffiffiffiffiffiffi�g
p

R ¼ N
ffiffiffiffi



p ½KijKij � K2 þ Rð3Þ� �� (3.27)

with �¼2@ið ffiffiffiffi



p

ij@jNÞ�2@tð ffiffiffiffi



p

KÞþ2@ið ffiffiffiffi



p
NiKÞ and

g ¼ det g��.

5. Lorentzian action in unitary gauge

In the unitary gaugewe have been using so far, the action
(3.21) is now rewritten as

Sg ¼
Z

dtdx3N
ffiffiffiffi



p f½fðXÞ � 2Xf0ðXÞ�ðKijKij � K2Þ
þ fðXÞRð3Þ þ PðXÞg; (3.28)

where the functions f and P are defined by

fðXÞ�NE

N
G4ðXEÞ; f0ðXÞ�dfðXÞ

dX
; PðXÞ�NE

N
KðXEÞ
(3.29)

in terms of

X � M4

N2
: (3.30)

To show the equivalence between Eqs. (3.21) and (3.28),
we have noted that Eq. (3.24) implies that

1

X
þ 1

XE

¼ N2
c

M4
;

dX

dXE

¼ �X2

X2
E

: (3.31)

Now, using the property (3.27), the action (3.28) can be
further simplified to

Sg ¼
Z

dtdx3N
ffiffiffiffi



p �
fðXÞR� 2Xf0ðXÞðKijKij � K2Þ

þ f0ðXÞ
�ðDiXÞ2

X
þ 2K@?X

�
þ PðXÞ

�
; (3.32)

where the perpendicular derivative @? is defined similarly
as Eq. (3.17) in terms of the normal vector to the constant�

hypersurfaces, n� ¼ @��=
ffiffiffiffi
X

p
, as

@? ¼ n�@� ¼ 1

N
ð@t � Ni@iÞ; (3.33)

with n� ¼ g��n�.

6. Covariant expression

In the previous section the action has been derived
assuming that the time coordinate was fixed according to
the unitary gauge (3.7).
The action (3.32) can be rewritten in a covariant way by

noting that r�r�� ¼ �M2�t
��, where r� is the cova-

riant derivative compatible with the Lorentzian metric g��

and �
�
�� are its Christoffel symbols for g��. Concretely, its

components are given by

�;ij � rirj� ¼ � ffiffiffiffi
X

p
Kij;

�;?i � �;i? � n�r�ri� ¼ 1

2

ffiffiffiffi
X

p
@i lnX;

�;?? � n�n�r�r�� ¼ 1

2

ffiffiffiffi
X

p
@? lnX:

(3.34)

Hence, the term ðr2�Þ2 � ðr�r��Þðr�r��Þ can be

expressed as

ð
ij
kl � 
ik
jlÞ�;ij�;kl � 2
ijð�;??�;ij ��;?i�;?jÞ;
which reduces to

�XðKijKij � K2Þ þ K@?Xþ 1

2

ðDiXÞ2
X

:

Finally, the Lorentzian action takes the form

Sg ¼
Z

dx4
ffiffiffiffiffiffiffi�g

p ffðXÞRþ 2f0ðXÞ½ðr2�Þ2

� ðr�r��Þðr�r��Þ� þ PðXÞg: (3.35)

Whilst this form of the action was derived assuming the
unitary gauge (3.7), it can become manifestly covariant by
promoting X to a scalar defined by

X ¼ �g��@��@��: (3.36)

It is thus well defined without the unitary gauge condition.
Actually, the covariant action (3.35) is a special case of the
covariant Galileon considered in Ref. [36] coupled to the
Lorentzian metric g��. In particular, the equations of

motion are second order (see Ref. [37] for comparison).

C. Correspondence

The derived Lorentzian theory (3.35) and the parent
Riemannian theory (3.6) are related to each other by the
following relations:

g�� ¼ gE�� �
@��@��

Xc

;

g�� ¼ g��
E þ g��

E g��E @��@��

Xc � XE

;
1

X
¼ 1

Xc

� 1

XE

;

fðXÞffiffiffiffi
X

p ¼ G4ðXEÞffiffiffiffiffiffi
XE

p ;
PðXÞffiffiffiffi

X
p ¼ KðXEÞffiffiffiffiffiffi

XE

p ; (3.37)

where Xc is an arbitrary positive constant given by
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Xc ¼ M4

N2
c

: (3.38)

These relations are well defined even without the unitary
gauge condition as far as XE=Xc is large enough. It is
straightforward to express various quantities defined in
the Lorentzian theory in terms of those in the
Riemannian theory.

D. Stability analysis

We now analyze the stability of a general flat Friedmann-
Lemaı̂tre (FL) background using the Lorentzian action
(3.35) with the Lorentzian Arnowitt-Deser-Misner decom-
position (3.22).

1. Cosmological background

We consider a flat FL background spacetime for which
the metric in cosmic time reduces to

N ¼ 1; Ni ¼ 0; 
ij ¼ aðtÞ2�ij; (3.39)

where a is the scale factor, and for which the clock field
� ¼ �0ðtÞ.

The action (3.22) being invariant under a constant shift
of the clock field�, there is a conserved current associated
with the shift symmetry so that the equation of motion for
� takes the form

_J� þ 3HJ� ¼ 0; (3.40)

where H ¼ _a=a is the Hubble function and

J� � ½P0
0 þ 6H2ð2X0f

00
0 þ f00Þ� _�0: (3.41)

We are using notations according to which

X0 ¼ _�2
0; PðnÞ

0 ¼PðnÞðX0Þ; fðnÞ0 ¼ fðnÞðX0Þ; (3.42)

where n stands for the order of the derivation. Thus,
Eq. (3.40) implies that J� decays as J� / 1=a3.

By using the correspondence (3.37), J� can be expressed

in the language of the Riemannian theory as

J� _�0 ¼ f½4G00
4X

2
E þ 4G0

4XE �G4�r3=2
þ ½2G0

4XE �G4�r1=2g3H2

þ 1

2

�
ðK� 2K0XEÞr1=2 þ K

r1=2

�
; (3.43)

where a prime in the right-hand side represents derivative
with respect to XE, and where the ratio r is defined by

r � XE

X
¼ XE

Xc

� 1: (3.44)

From Eq. (3.24), we have that N2
c > ðN2

E; N
2Þ which

implies that r > 0.
The equation of motion for the metric reduces, as usual,

to the Friedmann equation that takes the form

3M2
effH

2 ¼ 2J� _�0 � P0; (3.45)

where the effective mass scale is defined by

M2
eff � 2ðf0 � 2X0f

0
0Þ: (3.46)

To understand the qualitative behavior of the system, let
us suppose that H2=M2 � 1 and Taylor expand P0ðXÞ and
f0ðXÞ around a local minimum of PðXÞ (which we denote
as X � qM4) as

P0ðXÞ ¼ p2�þOð�2Þ; f0ðXÞ ¼ f1 þ f2�

M2
þOð�2Þ;

(3.47)

where q, p2, and f1;2 are dimensionless constants of order

unity, and � � X
M4 � q is a small quantity. Accordingly,

J�¼
�
p2�þ6

H2

M2
ð2f2qþf1ÞþO

�
H2

M2
�;�2

��
_�0: (3.48)

As already stated above, J� behaves as / 1=a3 ! 0

(a ! 1). Hence, apart from the trivial behavior with
_�0 ! 0, the system has a nontrivial attractor with

�þOðH2=M2Þ / 1=a3 ! 0. This implies that _�0 !ffiffiffi
q

p
M2½1þOðH2=M2Þ� and that M2

eff and P0 approach

constant values up to OðH2=M2Þ corrections. Therefore,
Eq. (3.45) is no more than the standard Friedmann equation
for a universe containing a pressureless fluid (from J� /
1=a3) and a cosmological constant (from P0 ! const).
This behavior is similar to the one obtained in ghost
condensate models [38,39]. To be consistent with the
cosmic expansion as understood today, we need to have

P0 < 0: (3.49)

More precisely, we even need P0 to be tuned so that

P0 ��3��0M
2
effH

2
0 ��2:1M2

effH
2
0 ; (3.50)

where ��0 � 0:7 is the standard density parameter for the
cosmological constant. Note also that since J� contributes

to the dark matter component, it has to be bounded so that
we shall require

2

3

J�0

M2
eff

ffiffiffi
q

p M2

H2
0

	 �m0 � 0:3; (3.51)

today. Note that the term can even be negative at the
expense of introducing more dark matter. These two last
bounds are the only indicative form that can be derived
from cosmology, but a full cosmological analysis will be
presented elsewhere.

2. Tensor perturbations

We now consider tensor (T) perturbations around the FL
background so that the metric is given by

N ¼ 1; Ni ¼ 0; 
ij ¼ aðtÞ2½eh�ij; (3.52)
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where hij is transverse and traceless (i.e., @ih
i
k ¼ 0 ¼

�ijhij). We still have that � ¼ �0ðtÞ.
In Fourier space, the quadratic action for each

polarization of the tensor mode is given by

�Sð2ÞT;k ¼
1

8

Z
dta3

�
M2

eff
_h2k � 2f0

k2

a2
h2k

�
: (3.53)

Note that this result can be easily inferred from the
expression (3.28). Hence, the stability of the tensor sector
requires that

M2
eff > 0; f0 > 0: (3.54)

By using the correspondence (3.37), M2
eff and f0 are

expressed in the language of the Riemannian theory as

M2
eff ¼ 2ð2G0

4XE �G4Þ
ffiffiffi
r

p
; f0 ¼ 1ffiffiffi

r
p G4; (3.55)

where a prime in the right-hand side of these expressions
represents derivative with respect to XE and r is defined in
Eq. (3.44). Thus, the stability of the tensor sector gives the
constraint

2G0
4XE > G4 > 0: (3.56)

3. Scalar perturbations

For scalar perturbations around the FL background, the
metric in the unitary gauge is given by

N¼ 1þ�; Ni ¼ @i	; 
ij ¼ aðtÞ2e2��ij; (3.57)

and, by definition, � ¼ �0ðtÞ.
It is then straightforward to calculate the quadratic per-

turbed action since the time derivatives of � and 	 do not
appear in the action. Thus, the equations of motion for �
and 	 become constraint equations. After solving for those
constraint equations with respect to � and 	, one gets that
the perturbed action for � , in Fourier space, is

�Sð2ÞS;k ¼
1

2

Z
dta3

�
A _�2k �B

k2

a2
�2k

�
; (3.58)

where A and B are given by

A ¼ M2
eff

H2G2
ð6þM2

effF Þ; B ¼ 1

a

d

dt

�
aM4

eff

HG2

�
þ 4f0;

(3.59)

with F and G given by

F ¼ P00
0X

2
0 þ

1

2
J� _�0 þ 3H2½4f0000 X3

0 þ 14f000X2
0

þ 6f00X0 � f0�;
G ¼ 4f000X

2
0 þ 4f00X0 � f0: (3.60)

The quadratic action (3.58) agrees with a special case of
the action derived in Ref. [40]. The stability of scalar
perturbations requires that

A> 0; B> 0: (3.61)

By using the correspondence (3.37), this sets two other
constraints on the Riemannian theory since F and G can
be expressed in the language of the Riemannian theory as

F ¼ �
��
4G000

4 X
3
E þ 18G00

4X
2
E þ 9G0

4XE � 3

2
G4

�
r5=2

þ
�
2G00

4X
2
E þ 2G0

4XE � 1

2
G4

�
r3=2

�
3H2

þ
�
K00X2

E þK0XE � 1

4
K
�
r3=2

� 1

4
ðK� 2K0XEÞr1=2;

G ¼ ½4G00
4X

2
E þ 4G0

4XE �G4�r3=2; (3.62)

where a prime in the right-hand side of these expressions
represents derivative with respect to XE and r is defined in
Eq. (3.44).

E. Summary

Starting from the Riemannian action (3.6) for a positive
definite metric gE��, we have been able to derive an action

for a Lorentzian metric g��. The key ingredient is the

coupling of the Einstein tensor of gE�� to the clock field.

In M0, the dynamics of g�� is dictated by the covariant

action (3.35), which is a special case of the covariant
Galileon considered in Ref. [36]. (See Ref. [41] for the
original Galileon theory.)
The theory has two free functions, K and G4, and we

have shown that the stability of the FL spacetime with
respect of both scalar and tensor perturbations at linear
level sets four constraints on these quantities. An extra
constraint appears from the requirement that the constant
term entering the Friedmann equation reproduces a posi-
tive cosmological constant.

IV. BOSONICMATTER FIELDS IN CURVED SPACE

Given the formulation of gravity described in the
previous section, we shall now extend the constructions
presented in Sec. II to describe the proper dynamics of the
matter fields in curved spacetime.

A. Scalar field

Following Sec. II C we assume that the clock field� has
a derivative coupling to a real scalar field � of the form

Z
dx4

ffiffiffiffiffiffi
gE

p ðg��
E @��@��Þ2: (4.1)

Adding this to the Riemannian kinetic term and a potential
term ~V for �, the general action for � is of the form

FROM CONFIGURATION TO DYNAMICS: EMERGENCE OF . . . PHYSICAL REVIEW D 87, 065020 (2013)

065020-11



S� ¼
Z

dx4
ffiffiffiffiffiffi
gE

p �
���

2
g
��
E @��@��� ~Vð�Þ

þ ��

2M4
ðg��

E @��@��Þ2
�
: (4.2)

It involves two dimensionless constants, �� and ��. There

is a freedom to rescale � and thus we can set �� ¼ 
1 if

needed.
With the decomposition (3.8), the Riemannian kinetic

and the derivative coupling terms are correspondingly
rewritten as

g��
E @��@�� ¼ ð@E?�Þ2 þ 
ij@i�@j�;

ðg��
E @��@��Þ2 ¼ M4

N2
E

ð@E?�Þ2;
(4.3)

where @E? is defined in Eq. (3.17). Therefore, the action of

the scalar field � reduces to

S� ¼
Z

dtdx3NE

ffiffiffiffi



p �
1

2

�
��

N2
E

� ��

�
ð@E?�Þ2

� ~Vð�Þ � ��

2

ij@i�@j�

�
: (4.4)

If

��

N2
E

> �� > 0; (4.5)

then S� describes a scalar field propagating in a Lorentzian

spacetime. To see this explicitly let us define a Lorentzian
effective metric g��� by

g
�
��dx�dx�¼�N2

�dt
2þ�2

�
ijðdxiþNidtÞðdxjþNjdtÞ;
(4.6)

where

N� ¼ NE

�
�3
�

��

N2
E

� ��

�
1=4

; �� ¼
�
��

�
��

N2
E

� ��

��
1=4

:

(4.7)

The scalar field action S� is rewritten as

S� ¼ �
Z

dx4
ffiffiffiffiffiffiffiffiffiffi�g�

p �
1

2
g
��
� @��@��þ Vð�; XÞ

�
; (4.8)

where g� and g
��
� are the determinant and the inverse of

g
�
��, and

Vð�;XÞ ¼ ~Vð�Þ
�
�3
�

�
��

N2
E

� ��

���1=2

¼ ~Vð�Þ
�
�3
�

�
��XE

M4
� ��

���1=2
: (4.9)

Note that �� and �� may depend on XE and that XE is

related to X via the correspondence (3.37).

B. Vector field

Let us now consider the case of a gauge field A�.
Similarly as in Sec. II C, we can add a coupling to the
clock field � of the formZ

dx4
ffiffiffiffiffiffi
gE

p
F��
E F�

E�@��@�� (4.10)

to the standard (Riemannian) Maxwell action. Again,
F���@�A��@�A� is the Faraday tensor of A� and we

use the notations F
�
E� � g

��
E F�� and F

��
E � g

��
E F

�
E�. This

leads to the general gauge-invariant action for the vector
field,

SA¼1

4

Z
dx4

ffiffiffiffiffiffi
gE

p �
��AF

��
E F��þ2

�A

M4
F
��
E F�

E�@��@��

�
;

(4.11)

where �A and �A are two dimensionless constants.
With the decomposition (3.8) for the Riemannian metric,

the Riemannian kinetic term and the nonminimal coupling
term can be respectively written as

F
��
E F�� ¼ 2
ij ~F?i

~F?j þ 
ik
jlFijFkl;

F
��
E F�

E�@��@�� ¼ M4

N2
E


ij ~F?i
~F?j;

(4.12)

where

~F?i � 1

NE

ðFti � NjFjiÞ: (4.13)

Therefore, the gauge-invariant action takes the form

SA ¼ 1

4

Z
dtdx3NE

ffiffiffiffi



p �
2

�
�A

N2
E

� �A

�

ij ~F?i

~F?j

� �A

ik
jlFijFkl

�
: (4.14)

If

�A

N2
E

> �A > 0; (4.15)

then SA describes a Uð1Þ gauge field propagating in a
Lorentzian spacetime. To see this explicitly, let us define
a Lorentzian effective metric gA�� by

gA��dx
�dx�¼�N2

Adt
2þ�2

A
ijðdxiþNidtÞðdxjþNjdtÞ;
(4.16)

where �A is an arbitrary positive function and

NA ¼ NE�A

�
�A

�A

N2
E

� �A

�
1=2

: (4.17)

The vector field action SA takes the form of the usual
Maxwell action
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SA ¼ �
Z

dx4
ffiffiffiffiffiffiffiffiffiffi
�gA

q 1

4e2
g��
A g��A F��F��; (4.18)

where gA and g
��
A are the determinant and the inverse of

gA��, and the effective coupling constant e2 is given by

e2 ¼
�
�A

�
�A

N2
E

� �A

���1=2
: (4.19)

Note that �A and �A may depend on XE and that XE is
related to X via the correspondence (3.37).

C. Generalization to a complex scalar field

The generalization to a complex scalar field charged
under theUð1Þ is straightforward and follows the construc-
tion presented in Sec. II D. Consider the action for a
complex scalar c ,

Sc ¼
Z

dx4
ffiffiffiffiffiffi
gE

p �
��c

2
g��
E ð@� þ iqA�Þc �ð@� � iqA�Þc

þ �c

2M4
jg��

E @��ð@� � iqA�Þc j2 � ~Uðjc j2Þ
�
;

(4.20)

where q, �c , and �c are dimensionless constants and
~Uðjc j2Þ is a function of jc j2.
Supposing that

�c

N2
E

> �c > 0; (4.21)

it is easy to show that

Sc ¼ �
Z

dx4
ffiffiffiffiffiffiffiffiffiffiffi
�gc

q �
1

2
g
��
c ð@� þ iqA�Þc �ð@� � iqA�Þc

þUðjc j2; XÞ
�
; (4.22)

where we have introduced a Lorentzian metric gc
�� by

gc
��dx�dx� ¼�N2

c dt
2þ�2

c
ijðdxiþNidtÞðdxjþNjdtÞ;
(4.23)

Nc ¼ NE

� �3
c

�c

N2
E

� �c

�
1=4

; �c ¼
�
�c

�
�c

N2
E

� �c

��
1=4

;

(4.24)

gc and g
��
c are the determinant and the inverse of gc

��, and

Uðjc j2; XÞ ¼ ~Uðjc j2Þ
�
�3
c

�
�c

N2
E

� �c

���1=2

¼ ~Uðjc j2Þ
�
�3
c

�
�cXE

M4
� �c

���1=2
: (4.25)

Note that �c and �c may depend on XE and that XE is

related to X via the correspondence (3.37).
Generalization to a non-Abelian group is trivial.

D. Massive point particle

For a massive point particle, we assume that the action is
given by

Spp ¼ 1

2

Z �
N �1

�
��ppg

E
�� �

��pp

M4
@��@��

�

� dx�

d

dx�

d
�Nm2

�
d; (4.26)

where N is a function of . Then, a test particle prop-

agates in the effective metric g
pp
��¼ ��ppg

E
��� ��pp

M4@��@��

so that its equation of motion is simply a geodesic equation
for this metric

u�rpp
� u� ¼ 0; (4.27)

with u� ¼ dx�=d�, where � is an affine parameter defined
by d� ¼ N d. Using the decomposition (3.8) of the
Riemannian metric, we obtain that

gpp��dx�dx� ¼ �ð ��pp � ��ppN
2
EÞdt2

þ ��pp
ijðdxi þ NidtÞðdxj þ NjdtÞ: (4.28)

This effective metric has Lorentzian signature if

��pp

N2
E

> ��pp > 0: (4.29)

V. PHENOMENOLOGY

A. Summary

We have proposed a Riemannian field theory for gravity,
vector, and scalar fields that, with the expense of the
introduction of a scalar field � called a clock field, leads
to an effective Lorentzian dynamics.
This construction involves a set of free parameters:
(i) For the gravitational sector, we have two free func-

tions of XE,K andG4 in terms of which the two free
functions of the Lorentzian theory fðXÞ and PðXÞ are
defined; see the correspondence between the two sets
given in Eq. (3.37).

(ii) For the matter sector, we have derived the actions
for scalar and vector fields. Each action depends on
two parameters ð�; �Þ that are allowed to be func-
tions of XE, or equivalently X, in general but may as
well be assumed constant.

(iii) Besides, there is an environmental parameter which
characterizes the clock field configuration on the
patch M0, NE [see Eqs. (3.3) and (3.9)] and the
associated integration constant Nc [see Eq. (3.24)].
They combine in the parameter r [see Eq. (3.44)].

With these parameters the actions for gravity, scalar, and
vector fields are respectively given by Eqs. (3.35), (4.8),
and (4.18).
We have already shown that these parameters are subject

to a series of constraints.
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(i) For the gravitational sector, we have two sets of
constraints. The first one arises from the stability
analysis and is given by Eqs. (3.56) and (3.61).
The second is related to the dynamics of the homo-
geneous model. Interestingly, the model induces two
components which respectively behave as dark mat-
ter and dark energy. This sets the two constraints
(3.50) and (3.51) in order for the cosmology to be
consistent with the standard cosmology [42], at least
at the background level.

(ii) For the matter sector, the constants � have to satisfy
[see Eqs. (4.5) and (4.15)]

�� > N2
E��; �A > N2

E�A: (5.1)

From the effective Lagrangians (4.8) and (4.18), we see
that scalars and vectors propagate in two different effective
metrics In order for the weak equivalence principle to hold,
we have to impose that these two metrics coincide. This
can be obtained by imposing that c2A ¼ c2�, with c2A ¼
��2

A N2
A=N

2
E and c2� ¼ ��2

� N2
�=N

2
E. This sets the following

constraints:

�A

�A

¼ ��

��

: (5.2)

In the simplest situation in which the coefficients ð�;�Þ are
assumed to be constant, we can always set � ¼ 1 in both
sectors so that we are left with the constraint �A ¼ �� for

the two coupling constants. This is similar to what we
performed in Sec. II in which the couplings to the clock
field were chosen a priori so that effectively all fields
propagate in the same effective Minkowski metric.
Interestingly, in this class of models, one requires a tuning
on the parameters of the Lagrangians, but once it is done, it
is satisfiedwhatever the configuration of the clock field, that
is whatever NE or XE. In this sense the tuning is not worse
than the one usually does by assuming that all the fields
propagate in the same metric. This conclusion holds even if
�’s and �’s are functions of XE as long as their ratios agree
between different sectors. Again, once this condition is
satisfied, it holds whatever the field configuration.

The Lorentzian effective metric (4.28) for a point parti-
cle coincides with that for the vector if ��pp= ��pp � N2

E ¼
N2

A=�
2
A, that is if

��pp

��ppN
2
E

� 1 ¼
�

�A

�AN
2
E

� 1

��1
: (5.3)

This may look as a functional fine-tuning depending on the
local value of XE. Actually, this arises from the fact that
��pp and ��pp have been introduced with reference to gE��

while �A;� and �A;� have been introduced with reference to

g
��
E . Shifting to the inverse metric and redefining these

coefficients leads to a constraint similar to Eq. (5.2).

Only the condition (5.1) for the emergence of the
Lorentzian signature is environmentally dependent so
that there are regions in the configuration space where
the dynamics is effectively Lorentzian while other regions
remain Riemannian. This could drive us toward a multi-
verse description in the configuration space but we do not
have any anthropic reasons associated.
Note that without such a tuning so that all fields propa-

gate in the same effective Lorentzian metric, one can
choose one metric as reference so that the equations of
motion of other fields will exhibit an explicit coupling to
the clock field.

B. Other constraints

The fundamental parameters entering our effective
Lorentzian actions are environmentally determined. This
means that ifXE is not strictly constant onM0, fundamental
constants may be spacetime dependent, which can induce a
violation of the equivalence principle [2].
(i) From Eq. (4.19), it can be deduced that the coupling

constant of any gauge field will be environment
dependent. The first implication is that the coupling
constants of the three nongravitational interactions
have to be spacetime varying. There exist strong
constraints on such a possibility [2].

(ii) The action for the gravitational sector implies that
the Newton constant is also expected to be space-
time dependent.

(iii) Furthermore, even if cA ¼ c� so that scalars and

vectors propagate on the same light cone, we have
to compare the propagation speeds of gravity waves
and photons. The first is given by

c2
 ¼ c2A ¼ N2
A

�2
AN

2
E

¼
�
�AXE

�AM
4
� 1

��1
: (5.4)

The propagation speed of the gravity waves can be ob-
tained from the action (3.53) rewritten as

�Sð2ÞT;k ¼ 1

8

Z
dta3NE

�
M2

eff

NE

N

� _hk
NE

�
2 � 2f0

N

NE

k2

a2
h2k

�
;

from which we read off

c2GW ¼ 2f0
M2

eff

N2

N2
E

¼ 2f0
M2

eff

r: (5.5)

It can be rewritten in terms of the functionG4ðXEÞ entering
the Euclidean gravitational action (3.6) as

c2GW ¼
�
2G0

4XE

G4

� 1

��1
: (5.6)

As long as both light cones are nondegenerate, there is no
a priori intrinsic problem even if these two propagation
speeds are different [43,44] and similar features indeed
appear in many bimetric theories such as TeVeS [45] or
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many other extensions of general relativity [43]. This
difference can be tested by future experiments by compar-
ing e.g., the arrival time of gravity waves and light emitted
during the explosion of supernovae; see e.g., Ref. [46].
Models in which c2GW < c2A are very constrained by the

observations of cosmic rays [47] because particles prop-
agating faster than the gravity waves emit gravi-Cerenkov
radiation. They lead to the constraint [48]

c
 � cGW
c


< 2� 10�15: (5.7)

C. Emergence of Lorentz symmetry on
intermediate scales

Let us first consider our mechanism in flat space. As
discussed in Sec. II,M is not the most important mass scale
of the problem.More important is the scale characterizing the
variation of XE=M

4. In order to illustrate this and to capture
the way the Lorentz dynamics appear on relevant scales, let
us assume that the clock field configuration is given by

�ðx�Þ ¼ M½mxxþ cos ðmyyÞ þ 	 cos ðMyyÞ�
with my � My two mass scales that characterize respec-

tively large- and small-scale variations of� and 	 a dimen-
sionless number. We neglect the two other dimensions for
simplicity. With such a form it is obvious that @�� is not

constant.
Now, assume that we are smoothing the dynamics at a

scale R�m�1
x with, e.g., a top-hat window function. (See

Fig. 2.) On the scale R, the clock field is given by

� ¼ M

�
mxxþ 2

J1ðmyRÞ
myR

cos ðmyyÞ

þ 2	
J1ðMyRÞ
MyR

cos ðMyyÞ
�
;

where J1 is the Bessel function of order 1. It follows that
@�� is given by

@��

M2
¼

mx=M

�2
J1ðmyRÞ
MR sin ðmyyÞ � 2	

J1ðMyRÞ
MR sin ðMyyÞ

 !
:

This can be considered as constant only if 2J1ðmyRÞ �
mxR and 2	J1ðmyRÞ � mxR. By choosing R�m�1

x , the

first condition reduces to

my

mx

� 1;

since J1ðxÞ � x=2 at small x, while the second gives

2

ffiffiffiffi
2

�

s
	 cos

�
My

mx

þ �

4

� ffiffiffiffiffiffiffi
mx

My

s
� 1:

This condition is clearly fulfilled if my � mx � 	�2My.

For example, if we assume that My is of the order of the

Planck mass,My�Mp�1019GeV, and that the large-scale

variations appear on Hubble scales, my�H0�10�41GeV,

then we end up with the conclusion that @�� can be

considered as constant at the level 10�n on scales

10n�41 GeV<mx < 1021�2n

�
	

0:1

��2
GeV: (5.8)

For n ¼ 9 and 	 ¼ Oð0:1Þ, this means that we can work
with scales

10�19 m<m�1
x < 1016 m: (5.9)

In such a range of scales, we expect no deviations larger
than 10�9 to the standard field theory. On cosmological
scales, we can probably relax the bound to deviations of the
order if 10�1–10�2 so that our model may be compatible
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FIG. 2 (color online). Example of a field configuration with fluctuations on scales larger thanM�1
y and shorter thanm�1

y (left). When
smoothed on scales m�1

x (middle) and 10m�1
x (right), the distribution of the clock field is such that @�� can be considered as constant

on scales smaller than m�1
x .
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with standard cosmology on scales of the order of the
observable universe.

VI. SUMMARYAND DISCUSSION

We have followed the idea that the apparent Lorentzian
dynamics of the usual field theories is an emergent prop-
erty and that the underlying field theory is in fact strictly
Riemannian. This requires the introduction of the clock
field, a scalar field playing the role of the physical time. We
emphasize that the microscopic theory is Euclidean, and
that time evolution is just an effective and emergent prop-
erty, which holds on some energy scales, and in some
regions of the Euclidean space. We have thus to think of
time and dynamics as illusions in our local patchM0. This
has to be distinguished from the mathematical trick of a
Wick rotation used to effectively study genuine Lorentzian
theories in a Euclidean space.

We have been able to perform such a construction in flat
spacetime for scalar, vector, and spinor, hence allowing for
the construction of the standard model of particle physics.
Our construction is however restricted to classical field
theory and the spinor sector suffers from the severe
fine-tuning to ensure the CPT invariance. (See e.g.,
Ref. [49] and references therein for recent constraints on
CPT violation.)

We have then generalized our construction to curved
spacetimes. This generalizes an early attempt [31] that
ended up with a Nordström theory of gravity. Our con-
struction leads to an extended K-essence model for gravity
called covariant Galileon, which can be close enough to
general relativity to be experimentally acceptable. We have
then generalized the scalar and vector sectors to curved
spacetimes. This requires the introduction of four arbitrary
functions. Again, so far we have not generalized the con-
struction of spinors to curved spacetime. We have ex-
pressed the effective Lorentzian action that can emerge
in a patchM0 of the Euclidean space. It allowed us to list a
set of constraints arising from the stability of the cosmo-
logical solution, and the requirement for the different test
fields to propagate in the same metric, in order for the weak
equivalence principle to hold. The effective fundamental
constants, such as the three nongravitational coupling con-
stants and the gravitational constant, are spacetime depen-
dent and the difference of the propagation speeds of gravity
and electromagnetic waves can also set constraints on

our model. We have proposed a heuristic description on
the way the Lorentz symmetry can emerge on a band of
energy scales.
From a theoretical point of view, our construction gives

a new insight into the need for Lorentzian metric as a
fundamental entity. As we have shown, this is not a man-
datory requirement and a decent field theory, at least at the
classical level, can be constructed from a Riemannian
metric. Such a formalism may be fruitful in the debate
on the emergence of time and, speculating, for the develop-
ment of quantum gravity.
It also opens up a series of questions and possibilities

that will be addressed in a companion article. We can list
(1) the construction of Majorana and Weyl spinors, (2) the
development of a quantum theory and study of particle
creation [50], (3) the possibility from the classical view-
point that singularities in our local Lorentzian region may
be related to singularities in the clock field (e.g., similar to
topological defects) and not in the metric of the Euclidean
theory (see Ref. [51] for a similar idea in a totally different
setup), (4) the possibility that a de Sitter spacetime may be
an ‘‘illusion’’ in an anti-de Sitter Riemannian space. It then
follows that a Euclidean AdS/CFT correspondence at the
microscopic level would reveal itself as a dS/CFT corre-
spondence in our effective Lorentzian universe.
All these are indeed, for now, bold speculations but they

illustrate that this framework may be fruitful for extending
our current field theories, including general relativity.
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