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We explore the classical production of solitons in the easy axis Oð3Þ model in 1þ 1 dimensions, for a

wide range of initial conditions that correspond to the scattering of small breathers. We characterize the

fractal nature of the region in parameter space that leads to soliton production and find certain trends in the

data. We identify a tension in the initial conditions required for soliton production—low velocity

incoming breathers are more likely to produce solitons, while high velocity incoming breathers provide

momentum to the final solitons and enable them to separate. We find new ‘‘counter-spinning’’ initial

conditions that can alleviate some of this tension.
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I. INTRODUCTION

Perturbative field theory is an expansion around a single
vacuum state but many field theories admit multiple de-
generate vacua. Excitations in such field theories include
solitons that interpolate between different vacua in addi-
tion to the particle excitations around a single vacuum.
While solitons and particles are distinct excitations, it is
generally possible to transition from one to the other. For
example, a soliton and antisoliton are able to annihilate
and produce particles. Here we shall be concerned with the
reverse process in which we start with particles and create a
soliton-antisoliton pair.

The transition from particles to solitons (or vice versa)
has another layer of complexity because it is also a tran-
sition from a quantum system (particles) to a classical
system (solitons). A rigorous formalism to treat the tran-
sition is not known. While some attempts have been made
at semiclassical and quantum calculations [1–8], the most
straightforward approach at the current time is to treat the
entire process classically. Particles in the initial state are
replaced by classical field configurations that are nondissi-
pative, like ‘‘breathers’’ of the sine-Gordon model [9], or
dissipative but long-lived, like ‘‘oscillons’’ [10–12] in
other models.

Previous work on the classical production of solitons has
mostly been carried out in the ��4 model, which has the
virtue that it has the minimal structure necessary for study-
ing the process [10,11,13,14]. However, the simplicity of
the model may also be a drawback, as additional degrees
of freedom [9] or a more complex potential [8,12] may
facilitate the production of solitons. Thus we study soliton
production in the easy axisOð3Þmodel (described in detail
in Sec. II).

The easy axis Oð3Þ model (or ‘‘Oð3Þz model’’) in 1þ 1
dimensions has a number of features that make it suitable
for studying soliton production. As the model has two

degenerate vacua, it contains kink solutions. Certain sub-
spaces of the model are equivalent to the classical sine-
Gordon model. Thus the model also has breather solutions
that do not decay and can be used to mimic incoming
particle states. The Oð3Þz model has an additional ‘‘twist’’
degree of freedom that gives it more complexity than the
��4 model and brings it a bit closer to models with
‘t Hooft-Polyakov magnetic monopoles, as monopoles
also carry a phase degree of freedom.
This paper is organized as follows. In Sec. II we describe

the Oð3Þz model and in Sec. III we describe the range of
initial conditions that we use in our scattering simulations.
Our numerical results are discussed in Sec. IV and we
conclude in Sec. V.

II. EASYAXIS Oð3Þ MODEL

The Oð3Þz model in 1þ 1 dimensions is given by the
action

S ¼
Z

d2x

�
1

2
ð@�nÞ2 � 1

2
ð1� n23Þ � �ðn2 � 1Þ

�
; (1)

where nðt; xÞ is a vector field with Cartesian components
ðn1; n2; n3Þ and � is a Lagrange multiplier that forces n to
have unit magnitude: n2 ¼ 1. The potential term reduces
the Oð3Þ symmetry to Oð2Þ � Z2, corresponding to sym-
metry under rotations in the n1-n2 plane and to reflections
of n3. There are two degenerate vacua: n ¼ ð0; 0;�1Þ.
After eliminating the constraint condition, the equation

of motion is

hnþ ð@�nÞ2n� n3ðê3 � n3nÞ ¼ 0; n2 ¼ 1; (2)

where ê3 � ð0; 0; 1Þ.
Alternately, the constraint can be solved explicitly in

terms of angular variables, n ¼ ðsin� cos�; sin � sin�;
cos�Þ, to give the action

S¼
Z
d2x

�
1

2
ð@��Þ2þ1

2
sin2�ð@��Þ2�1

2
sin2�

�
; (3)

which leads to the equations of motion
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h�þ sin � cos �ð1� ð@��Þ2Þ ¼ 0; (4)

@�ðsin 2�@��Þ ¼ 0: (5)

The latter equation is of the form @�j
� ¼ 0 and so j0 ¼

sin 2� _� is the charge density of a conserved current in the
model.

Let � � 2� and consider the case, � ¼ constant. Then
the equation of motion reduces to

h�þ sin� ¼ 0; (6)

which is identical to the equation of motion for the sine-
Gordon model. (This can also be seen at the level of the
action.) Hence the Oð3Þz model inherits all the solutions of
the sine-Gordon model. In particular

�kðxÞ ¼ 2tan�1ðexÞ; � ¼ constant (7)

is a kink solution in which n is at the North pole in field
space at x ¼ �1 and at the South pole at x ¼ þ1. With
our normalization, the energy of the kink is Ek ¼ 2. The
model also inherits the (boosted) sine-Gordon breather
solutions

�bðx; tÞ ¼ 2tan�1

�
� sin ð!TÞ
cosh ð�!XÞ

�
; � ¼ constant; (8)

where

T ¼ �ðt� vðx� x0ÞÞ; (9)

X ¼ �ððx� x0Þ � vtÞ: (10)

The parameter x0 is the initial position of the breather, v its

velocity, and � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
its Lorentz factor. The pa-

rameter ! is the oscillation frequency of the breather and
takes values in [0, 1], while � is defined by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
=!: (11)

The typical waveform of a boosted breatsher can be seen
in Fig. 1.

The energy in a field configuration is given by

E ¼
Z

dxHðt; xÞ

¼
Z

dx

� _�2

2
þ �02

2
þ sin 2�

_�2

2
þ sin 2�

�02

2
þ 1

2
sin 2�

�
:

(12)

For a boosted breather, the energy evaluates to

Eb ¼ 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
¼ 4��! (13)

and the rest mass of the breather is

mb ¼ Eb

�
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�!2

p
¼ 4�!: (14)

Note that the energy of the breather is smaller for larger !
and vanishes for ! ¼ 1. If we choose initial conditions on

a great circle (� ¼ �0,�0 þ �), the dynamics will also be
restricted to the great circle. Then the evolution is exactly
as in the sine-Gordon model. As the sine-Gordon model is
completely integrable [15], both the number of kinks and
the number of anti-kinks are conserved and we can not
create kinks (or antikinks) if there were none in the initial
conditions. Hence it is crucial to choose initial conditions
in which � is not a constant i.e., that the initial conditions
be ‘‘twisted’’ in the � direction.
A general feature in 1þ 1 classical field theory of inter-

est to us will be that the interaction force between two static
solitons separated by a distance L is proportional to

FðLÞ / e�L=a; (15)

where a is a length scale, usually on the order of thewidth of
a soliton [16].

III. CHOICE OF INITIAL CONDITIONS

Ideally, we would like to start with initial conditions that
describe incoming particles in some energy range, but then
the initial condition would have to be described in terms of
quantum field theory. On the other hand, the final state of
interest has kinks, and these are classical objects. So the
creation of kinks from particles also involves a transition
from an initial quantum system to a final system that
contains classical elements, and a formalism to describe
such a transition is not known. The simplification we will
adopt is to consider initial conditions that only contain
breathers as, at least in the sine-Gordon model, it has
been shown that quantized breathers correspond to parti-
cles of the theory in the low mass limit [17].
Our choice of initial conditions consists of a train of N

left-moving breathers and N right-moving breathers. The
parameters mb and v characterize an individual breather in
the train. In addition, we can vary the spacing of the
breathers within a train, the number of breathers in each
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FIG. 1 (color online). Field profile (�) of a boosted breather
at different times over an oscillation period. The particular
parameters used are v ¼ 0:9, ! ¼ 0:90 which corresponds to
mb ¼ 1:74.
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train, and the relative twists of the breathers. This last
parameter is called 	 and is defined by

	 � �L ��R

2�
; (16)

where �L, �R are the initial constant values of � for the
left- and right-moving breathers. Explicitly, the initial
condition is

�ðt ¼ 0; xÞ ¼ XN
j¼1

½�bðt ¼ 0; x;�xj;þvÞ

þ �bðt ¼ 0; x;þxj;�vÞ�; (17)

�ðt ¼ 0; xÞ ¼ �	 tanh ðx=wÞ; (18)

_�ðt ¼ 0; xÞ ¼ XN
j¼1

½ _�bðt ¼ 0; x;�xj; vÞ

þ _�bðt ¼ 0; x;þxj;�vÞ�; (19)

_�ðt ¼ 0; xÞ ¼ 0; (20)

where �b is the breather profile defined in Eq. (8) and the
initial position of the jth breather given by

xj ¼ x0 þ ðj� 1Þa: (21)

Here x0 is the initial position of the innermost breather in
the train and a is the spacing between the breathers in a
train. In our numerical runs, the parameter a is chosen to be
twice the width of a breather, a ¼ 2w ¼ 4=ð��!Þ, and x0
is chosen to be 4Ebw which is much larger than the width
of the breathers investigated. In the bulk of our analysis, we

start with _� ¼ 0, but in Sec. IV F we will also describe

some results with initial conditions _�ðt ¼ 0; xÞ � 0.
The initial conditions listed above are used to construct

the vector nðt ¼ 0; xÞ, which is then numerically evolved
using Eq. (2). The numerical evolution is done using the
explicit second order Crank-Nicholson method with two
iterations [18].

We wish to explore a large number of initial conditions
and to record only those initial conditions that lead to kink
formation. Hence we need to specify criteria to decide if
kinks were or were not produced in any given run. To do
this, for each time step, we checked for a transition from
cos � ¼ 0 to cos � ¼ �0:99. If this transition exists, the
point where cos � ¼ 0 is considered to be the location of
the kink at that time. By recording kink locations as a
function of time, we were able to reconstruct the kink’s
path and therefore its velocity. To explore parameter space,
we hold x0 and a fixed and scan over a range of the 4
parameters:! (breather frequency), v (incoming velocity),
	 (twist), and N (number of breathers in a train). To search
this phase space for successful kink production, we used
two different methods. For coarse grained searches, we
used the MULTINEST software to find large clusters of

conditions that lead to success [19,20]. For fine grained
searches at low mass, we scanned the initial conditions
uniformly in steps of �v ¼ 0:002, �	 ¼ 0:001 and
�! ¼ 0:01. The ranges we explore are shown in Table I.
We also show the corresponding range of the mass (mb)
and the Lorentz factor �. (mb and � are derived from the
ranges of ! and v.)
We now describe our numerical results.

IV. NUMERICAL RESULTS

In Fig. 2 we show a sample event where a kink-antikink
pair is produced. In the center we have the time evolution
of the n3 field. One should note that while the breathers are
initially moving with the same velocity, interactions within
a train change the separation and relative velocity between
breathers. The importance of this effect will be discussed in
Sec. IVE. The vector field nðt; xÞ is shown to the left and
right of Fig. 2 at the initial and final times, respectively.
We start by showing the cumulative result from all runs

in the left panel of Fig. 3. Plotted is the number of suc-
cessful kink production events vs the energy per incoming
breather, after summing over all other parameters in the
ranges shown in Table I. These results shows a peak in
production when the energy of an individual breather in the
train is exactly the kink energy. This suggests that kink
production is dominated by the collision of just two breath-
ers scattering into a kink-antikink pair. However, we will
show that multi-particle interactions within the train are
critical to the success of these collisions and that having
Eb � 2 is not a sufficient condition for kink production.
In the right panel of Fig. 3 we further partition the data of

the left panel of Fig. 3 by the mass of the incoming breather
but only for N ¼ 4. In this plot we see that there is a
distribution of energies for which kink production occurs,
but the distribution is more narrowly distributed at smaller
masses. In other words, if the incoming breather has small
mass, it’s energy must be picked more precisely. While the
general distribution of energies seems to be smooth and
peaked around Eb ¼ 2, for a given mass of a breather there
is a structure of clear peaks where success occurs, and a
slight change in the energy can dramatically changes the
success rate.
Figure 3 provides a summary of all our runs but loses

information about the effects of varying parameters on

TABLE I. Range of initial conditions that we explore. For
reference, the rest energy of a kink is 2.

Parameter Range

! 0.500–0.990

v 0.100–0.990

	 0.000–0.500

N 1–20

mb 0.565–3.500

� 1.005–7.088
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kink production. In order to untangle some of these effects,
we investigated the case of N ¼ 4. This condition was
chosen as a balance between the increased number of
successes that comes from having largerN, and the simpler
dynamics afforded by the few-body collisions of small N.
For N ¼ 4, we were able to find hundreds of successful
initial conditions. From these results, we computed the
velocity of the outgoing kinks as a function of the initial
conditions. For three values of mb, the outgoing kink
velocities are plotted in Fig. 4.

A few distinct features can be seen in Fig. 4. With
increasing breather mass, we see that the likelihood of
producing kinks increases, but the range of velocities that
yield kinks in the final state shift to higher values. Breather
velocities where solitons are produced are found to form
bands, reminiscent of Ref. [14] where the annihilation of
solitons into particle-like states was considered. The cha-
otic results—note the hole at vb ¼ 0:7, 	 ¼ 0:1 in the
middle panel—also bear a qualitative resemblance to the
production found in Ref. [11].

In these plots, the likelihood of kink production is sup-
pressed in a region around 	 � 0:25–0:35 except at higher
velocities where kink production is relatively insensitive to
changes in twist. Another interesting feature is found by

considering the dependence of clustering in the ðmb; vbÞ
plane. In Fig. 5, we plot the outgoing kink velocity for
	 ¼ 0:10. Notice the counter-intuitive trend that for de-
creasing breather mass, mb, successful kink production
requires a decrease in the incoming velocity. This is the
same dependence found in the ��4 model [10] and
suggests a difficulty in the production of solitons from
quantum particles as we will discuss below.
Also of interest in Fig. 5 is the appearance of two bands,

one at high mb and another at low mb. Inside of each band,
we see that increasing the breather mass requires an
increase in velocity for kink production to be successful.
The optimal velocity for kink production is a function of
breather mass, and it increases within a band, but then has a
large discontinuous jump as we cross from one band to
another.
Next we focus on the kink velocity, vk, in the runs that

successfully produced a kink-antikink pair. Figure 6 shows
the dependence ofvk on the parametersmb,vb and	, where
we fix N ¼ 4. For example, the left-most panel shows that
for mb ¼ 1:74 and N ¼ 4, most of the successful runs
produced kinks with velocity � 0:7. As we decrease mb,
the velocity of the outgoing kinks decreases e.g., at mb ¼
1:47, the peak occurs atvk � 0:6. Atmb ¼ 1:12, the success
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FIG. 3 (color online). Number of produced kinks vs the energy of a single breather, summed over mb, vb, 	, N for entire dataset.
A strong peak is seen around the mass of a kink, Ek ¼ 2. In the right-hand figure, we plot the number of produced kinks vs energy of a
single breather, split into groups by breather mass, summed over vb, 	 but with N ¼ 4.

FIG. 2 (color online). The center panel indicates in color the n3 field as a function of time (horizontal axis) and space measured in
units of breather width (vertical axis) for the collision. Left and right panels are the vector field n configurations at t ¼ 0 and t ¼ 140,
respectively. The parameters for this scattering are N ¼ 4,mb ¼ 1:57, vb ¼ 0:55, and 	 ¼ 0:1. The final state contains a kink-antikink
pair located at x � �6:4w, where w is the width of the incoming breather.
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rate for kink productions very low and the outgoing kink
velocity has decreased to � 0:3. Similarly, the center and
right-hand panels of Fig. 6 show the dependence of vk on vb

and 	.
The trends in Fig. 6 can be quantified, as in Fig. 7, where

we show how the mean value of vk depends onmb, vb, and
	. Linear fits give

hvkivb;	 ¼ ð0:56� 0:04Þmb þ ð�0:34� 0:05Þ; (22)

hvkimb;	 ¼ ð1:12� 0:04Þvb þ ð�0:20� 0:03Þ; (23)

where the subscripts refer to the parameters over which the
data is accumulated. If we choose parameters such that the
mean vk is very small, it implies that any kink-antikink
pairs that are produced will re-annihilate. Extrapolation
from the above fits then suggests that kink production
will be suppressed for mb < 0:6� 0:1 and vb < 0:18�
0:03. As a function of 	we see that vk doesn’t seem to vary

dramatically, but we do note a slight increase in vk for
	 ¼ 0:25–0:35.

A. Chaotic structure

One way to quantify the chaotic nature of conditions is
to consider the fractal dimension of plots of the outgoing
kink velocities, vk, as a function of the initial conditions
as shown in Fig. 4. Following the ideas of Ref. [11], we
investigate a specific type of fractal dimension, the
Minkowski-Bouligand dimension or the box-counting
dimension. This dimension is defined by

Dbox ¼ lim
r!0

log nðrÞ
log 1=r

; (24)

where nðrÞ is the number of boxes of side length r that are
required to cover the outline of the shape considered. For a
shape lacking fractal properties in 2D (e.g., a circle) we get
Dbox ¼ 1; while an area filling shape (e.g., a disc) has
Dbox ¼ 2. A fractal shape in 2D has 1<Dbox � 2.
While Eq. (24) is the formal definition of the box-counting
dimension, in practice it can be difficult to extract from
data. Instead, since we expect the scaling of the boxes with
r to be of the form

kð1=rÞDL ¼ nðrÞ; (25)

where DL is called the local dimension and has a weak
dependence on the box size for small r. Rearranging this
equation we see that

�DL log ðrÞ þ log ðkÞ ¼ log ðnðrÞÞ: (26)

So the local dimension will be given by

DL ¼ �d log ðnðrÞÞ
d log ðrÞ (27)

and should be approximately Dbox for small r. In Fig. 8 we
plot the number of boxes needed to bound the area in Fig. 4
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FIG. 4. Velocity of outgoing kinks (denoted by color) as a function of incoming breather velocity and twist for three breather masses.
Band structure can be seen in the velocity dependence of successful production. The distinct drop in production for 	 ¼ 0:25–0:40 can
be observed for all masses. Further, we observe that lower values of mb produce lower kink velocities.
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FIG. 5. vk (denoted by color) is plotted vs vb and mb for
	 ¼ 0:10. Successful kink production occurs in two bands that
are well separated.
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as a function of the side length. We have found that for
increasing mb there is a marked deviation from Dbox ¼ 1.

We compute DL at each box size by taking 2nd order
central finite differences and, for averaging over all r

values, we arrive at a good estimate of box counting
dimension, Dbox. The results for Dbox are shown in
Table II for several mb.

B. Dependence on breather mass

We expect that it is more difficult to produce kinks with
low mass breathers than it is with high mass breathers. This
expectation is seen to be correct in Fig. 9. We see that the
success rate fluctuates around some value for mb > 2,
where we note that the kink energy is Ek ¼ 2. While for
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FIG. 7 (color online). Mean outgoing kink velocity as a function of initial conditions. In each of these plots, two of the three initial
parameters, mb, vk, 	 are summed over.
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The plot begins at r ¼ 23 because a point in our data corresponds
to a 5� 5 pixel box.

TABLE II. Mean value and standard deviation of the mean for
the box counting fractal dimension, Dbox, as a function of
breather mass, mb. We note that this is in general smaller than
a similar value (1:770� 0:011) for the ��4 model found in
Ref. [11].

mb Dbox

1.74 1:58� 0:03
1.66 1:54� 0:04
1.57 1:60� 0:04
1.47 1:62� 0:06
1.38 1:42� 0:05
1.25 1:23� 0:10
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mb < 2, the success rate decreases exponentially with
decreasing mb. In the right panel of Fig. 9, we searched
the mb < 2 region more densely and fit the drop off with
exponential and Gaussian profiles, with the Gaussian being
marginally better in the low mass region.

Focusing on the low mass region of Fig. 9, we see that
the lowest mass at which soliton production is achieved is
mb ¼ 0:9. Due to the exponential fall-off at small breather
mass, it would be very difficult to produce kinks using
breathers of yet lower mass and a random choice for the
other parameters.

C. Dependence on incoming breather velocity

Another important parameter for soliton production is
the initial breather velocity. From Fig. 4 we see that kink
production occurs when the incoming breather velocities
lie in certain bands. These bands are insensitive to the
breather mass and survive even after we sum over all mb

and 	 as seen in Fig. 10 where distinct peaks are present.
From our simulations, for a fixed breather mass, it is

possible to calculate a mean breather velocity, hvbi	, at
which kink production is most likely. This value is found

by accumulating the data from successful kink production
over all twists and then finding the average breather veloc-
ity. The data is plotted in Fig. 11. The dependence of hvbi	
on mb is found to be linear in the region of 1:2<mb < 2
with a fit

hvbi	 ¼ ð0:43� 0:02Þmb þ ð�0:04� 0:02Þ: (28)

Extrapolating to low mass, we obtain a mass cutoff at
mb ¼ 0:09� 0:05. This bound is much lower, hence
weaker, than the bound of mb ¼ 0:6 obtained by requiring
that the outgoing kinks have a nonzero velocity (see above
Eq. (22)).
We therefore see that for breathers of lower mass to

produce kinks, the velocity at which they must be collided
is lower. But with lower breather velocity, the outgoing
kink velocity also decreases, and at some point the kinks
cannot escape and instead they re-annihilate. These results
together indicate that kink production will be highly sup-
pressed in low mb regions in the ðmb; vbÞ parameter space.
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D. Dependence on twist

An intuitive understanding of how the success of pro-
duction should depend upon 	 is not obvious, but a few
simple characteristics are expected. For 	 ¼ 0, 0.5, the
dynamics is the same as in the sine-Gordon model and
we therefore expect there to be no kink production at these
points. From Fig. 12, we see that this is in fact true. In the
same figure, we see that even for small deviations from the
sine-Gordon model, the production rate is quite large.

In previous sections, it has been seen that in a region
located around 	 ¼ 0:25–0:40 various interesting features
occur. We have shown that the likelihood of production is
decreased in this region (Fig. 4) and that the average out-
going kink velocity is slightly increased (Fig. 7). From
Fig. 12 we see that the production count decrease in this
region is over 40%, indicating some interesting physics
must be occurring.

To understand the strange effects observed at 	 ¼
0:25–0:40 on twist, we investigated the case of two breath-
ers whose centers of energy are initially at rest. Previous

calculations have found that the force between two breath-
ers in the sine-Gordon model is to first order [21]

F ¼ �16�4!2e�2�!jLj; (29)

where the negative (positive) sign indicates attraction
(repulsion) for in-phase (out-of-phase) breathers, and L is
half the distance between the breathers. Since the phase of
the breathers also corresponds to 	 ¼ 0 for in-phase
breathers and 	 ¼ 0:5 for out-of-phase breathers, we
expect that the force should be attractive for low twist,
and repulsive for high twist in the Oð3Þz breather case. In
Ref. [9], the time delay was numerically investigated for
the Oð3Þz model and it was found that for 	 ¼ 0:2–0:4
there was dramatic increase in time delay over the 	 ¼ 0,
0.5 cases. Both of these works seem to indicate that at
intermediate values of 	 there is something different about
the breather interactions.
We have studied the dynamics of two initially static

breathers for two different values of mb and for various
values of 	. The results in Fig. 13 show that there is a
critical value of twist at which the force changes from
being attractive to being repulsive. The critical value de-
pends on mb and is larger for lower mass breathers. This
suggests that the observed drop in kink production around
	 � 0:3 might be correlated with the lack of interaction
between breathers at the critical twist.

E. Dependence on number of breathers

As one might expect, increasing the number of breathers
in the initial train of breathers increases the chances of kink
production. This data is shown in Fig. 14. The shown fit
corresponds to logarithmic growth of successful kink pro-
duction events with the number of breathers. So the gain in
kink production depends weakly on the number of breath-
ers. This agrees with our earlier discussion in the context of
the left panel of Fig. 3, where we suggested that it is the
energy per breather that is important for kink production
and not so much the total energy in the train of breathers.
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To further understand the effects of N, we investigated a
set of initial conditions where for N ¼ 4 we know solitons
are produced, and then we varied N. We found, as seen in
Fig. 2, that the solitons were produced in the collision of
the second breathers in each train before the third and
fourth had a chance to collide. This result is at first trou-
bling because for the cases ofN ¼ 1, 2, 3 it is found that no
kinks are produced. So the fourth breather in the train is
critical to kink production. The exact role that the fourth
breather plays is not clear to us though some possibilities
come to mind. The fourth breather may influence the
forward breathers in the train prior to the collision and
change some of their characteristics, and this is what
enables kink production. Another possibility is that the
collisions of the number two breathers produce a proto-
kink pair which requires additional momentum transfer via
the fourth breather to grow into a kink-antikink pair.

We speculate that the diminishing return on success of
additional breathers arises from the limitation imposed on

interaction between breathers based on their initial spacing
in the trains. Although the numbers of breathers increases,
the distance between the beginning and end of the train
also increases. Since the force between breathers is generi-
cally exponential with distance (i.e., Eq. (15)), breathers
that are sufficiently far away have little effect on each
other.

F. Other initial conditions

In Sec. III, it was discussed that there is a freedom in

choosing _�ðt ¼ 0Þ. In the previous discussions we have

only studied the simplest case of _�ðt ¼ 0Þ ¼ 0. Here we
consider two other possible set of initial conditions. The
first type is the ‘‘co-spinning’’ initial conditions

_�ðt ¼ 0; xÞ ¼ v�; (30)

where v� is some constant velocity and all the breather

trains rotate have the same velocity in the � variable.
Additionally, we considered ‘‘counter-spinning’’ initial
conditions

_�ðt ¼ 0; xÞ ¼ v� tanh ðx=wÞ; (31)

where the left-moving and right-moving breather trains
have opposite velocity in the � direction. These choices
both introduce another free parameter into the initial con-
ditions, namely, the initial� velocity v�. On inclusion of a
_� term into the equations of motion, the sine-Gordon
breathers are no longer exact solutions, but from our simu-
lations they are found to still be long-lived.
Spinning initial conditions may also be viewed as

charged initial conditions, following the remark below
Eq. (4). Co-spinning initial conditions correspond to like
charges on the incoming breather trains; counter-spinning
initial conditions correspond to opposite charges on the
breather trains. We have run our simulations for the co-
spinning and counter-spinning initial conditions with

 0

 200

 400

 600

 800

 1000

 0  2  4  6  8  10  12  14  16  18

C
(N

,{
ω

,v
b
, ξ

})

N

Data

A ln(x)-B

FIG. 14 (color online). Number of kinks produced vs. N,
summed over vb, mb and 	. The likelihood of kink production
increases, but slows with increasing N. A good fit was found to
be ð330� 30Þ ln ðNÞ � ð280� 70Þ.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.5  0.6  0.7  0.8  0.9

ξ

φ̇(0)=0

 0.5  0.6  0.7  0.8  0.9

vb

φ̇(0)=v

 0.5  0.6  0.7  0.8  0.9

φ̇(0)=v tanh(x/w)

 0

 0.2

 0.4

 0.6

 0.8

 1

FIG. 15. Velocity of outgoing kinks (denoted by color) as a function of incoming breather velocity and twist for the nonspinning (left
panel), co-spinning (center panel), and counter-spinning (right panel) initial conditions for mb ¼ 1:36, v ¼ 0:1, and N ¼ 4.

NUMERICAL EXPLORATION OF SOLITON CREATION PHYSICAL REVIEW D 87, 065018 (2013)

065018-9



v� ¼ 0:1, mb ¼ 1:36, and N ¼ 4 and some of the results

are shown in Fig. 15. The co-spinning initial conditions
have only 80% of the number of successful kink production
events as the nonspinning initial conditions for the same
phase space search. Furthermore, the distributions in
breather velocity and twist are shifted to lower values
and have smaller spreads. The mean outgoing kink velocity
is also decreased. Putting these trends together, we con-
jecture that co-spinning initial conditions suppress kink
production, but additional study should be undertaken to
confirm this.

Counter-spinning initial conditions appear to have ex-
actly the opposite effects. The spread in breather velocities
and twist increased, and the final kink velocities also
increased. For the same parameter space search, counter-
spinning runs were more successful than nonspinning runs
by a factor of 1.4, suggesting that such initial conditions
may be worth exploring further.

V. CONCLUSIONS

We have numerically explored a wide range of scattering
initial conditions in the Oð3Þz model that can lead to the
production of a kink-antikink pair. Our initial state consists
of two oppositely moving trains of breather solutions.
There are several general features that we have observed
that we now summarize: (i) the region in parameter space
that leads to kink production has fractal structure,
(ii) smaller breathers need to be scattered at smaller
velocities, (iii) when kinks are produced, their outgoing

velocities increase in proportion to the incoming breather
train velocity, (iv) twist is essential for kink production in
this model but the outcomes are not strongly sensitive to
the exact value that we choose, and (v) the force between
breathers vanishes for a certain value of the twist. Putting
together points (ii) and (iii) we conclude that small
breather velocities are necessary for building kinks, while
large breather velocities help to separate them. Hence there
is tension in the requirements for successful kink produc-
tion and we can expect that the process will be highly
suppressed when the breather mass is small compared to
the kink mass.
These pessimistic conclusions are somewhat offset by

our finding that counter-spinning initial conditions can
enhance kink production. Further exploration of such ini-
tial conditions may lead to better understanding of when
kinks can be (more easily) produced.
Finally we observe that, since the sine-Gordon model is

embedded inside the Oð3Þz model, and soliton operators
have been constructed in the sine-Gordon model [22], it is
possible that similar operators can be found in the quantum
Oð3Þz model. Then it is conceivable that kink production
can be studied in the Oð3Þz model by quantum field theory
methods or on a lattice.
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