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Among the three forms of relativistic Hamiltonian dynamics proposed by Dirac in 1949, the instant

form and the front form can be interpolated by introducing an interpolation angle between the ordinary

time t and the light-front time ðtþ z=cÞ= ffiffiffi
2

p
. Using this method, we introduce the interpolating scattering

amplitude that links the corresponding time-ordered amplitudes between the two forms of dynamics and

provide the physical meaning of the kinematic transformations as they allow the invariance of each

individual time-ordered amplitude for an arbitrary interpolation angle. In particular, it exhibits that the

longitudinal boost is kinematical only in the front form dynamics, or the light-front dynamics (LFD), but

not in any other interpolation angle dynamics. It also shows that the disappearance of the connected

contributions to the current arising from the vacuum occurs when the interpolation angle is taken to yield

the LFD. Since it doesn’t require the infinite momentum frame (IMF) to show this disappearance and

the proof is independent of reference frames, it resolves the confusion between the LFD and the IMF.

The well-known utility of IMF usually discussed in the instant form dynamics is now also extended to any

other interpolation angle dynamics using our interpolating scattering amplitudes.
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I. INTRODUCTION

When the particle systems have the characteristic mo-
menta which are of the same order or even much larger
than the masses of the particles involved, it is part of nature
that a relativistic treatment is called for in order to describe
those systems properly. In particular, relativistic effects are
most essential to describe the low-lying hadron systems in
terms of strongly interacting quarks/antiquarks and gluons
in quantum chromodynamics (QCD). For the study of
relativistic particle systems, Dirac proposed the three dif-
ferent forms of the relativistic Hamiltonian dynamics in
1949 [1] i.e., the instant (x0 ¼ 0), front (xþ ¼ ðx0 þ x3Þ=ffiffiffi
2

p ¼ 0), and point (x�x
� ¼ a2 > 0, x0 > 0) forms. While

the instant form dynamics (IFD) of quantum field theories
is based on the usual equal time t ¼ x0 quantization (c ¼ 1

unit is taken here), the equal light-front time � �
ðtþ z=cÞ= ffiffiffi

2
p ¼ xþ quantization yields the front form dy-

namics, more commonly called light-front dynamics
(LFD), correspondingly. Although the point form dynam-
ics has also been explored [2], the most popular choices
were thus far the equal-t (instant form) and equal-� (front
form) quantizations.

A crucial difference between the instant form and the
front form may be attributed to their energy-momentum
dispersion relations. When a particle has the mass m and
the four-momentum k ¼ ðk0; k1; k2; k3Þ, the relativistic

energy-momentum dispersion relation of the particle at
equal-t is given by

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þm2

q
; (1)

where the energy k0 is conjugate to t and the three-

momentum vector ~k is given by ~k¼ðk1;k2;k3Þ. However,
the corresponding energy-momentum dispersion relation
at equal-� is given by

k� ¼
~k2? þm2

kþ
; (2)

where the light-front energy k� conjugate to � is given

by k� ¼ ðk0 � k3Þ= ffiffiffi
2

p
and the light-front momenta kþ ¼

ðk0 þ k3Þ= ffiffiffi
2

p
and ~k? ¼ ðk1; k2Þ are orthogonal to k�.

While the instant form [Eq. (1)] exhibits an irrational
energy-momentum relation, the front form [Eq. (2)] yields
a rational relation and thus the signs of kþ and k� are
correlated, e.g., the momentum kþ is always positive when
the system evolve to the future direction (i.e., positive �) so
that the light-front energy k� is positive. In the instant

form, however, no sign correlations for k0 and ~k exist. Such
a difference in the energy-momentum dispersion relation
makes the LFD quite distinct from other forms of the
relativistic Hamiltonian dynamics.
The light-front quantization [1,3] has already been

applied successfully in the context of current algebra [4]
and the parton model [5] in the past. With further advances
in the Hamiltonian renormalization program [6,7], LFD
appears to be even more promising for the relativistic
treatment of hadrons. In the work of Brodsky et al. [8], it
is demonstrated how to solve the problem of renormalizing
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light-front Hamiltonian theories while maintaining Lorentz
symmetry and other symmetries. The genesis of the work
presented in Ref. [8] may be found in Ref. [9] and addi-
tional examples including the use of LFD methods to solve
the bound-state problems in field theory can be found in
the review of QCD and other field theories on the light cone
[10]. These results are indicative of the great potential of
LFD for a fundamental description of nonperturbative
effects in strong interactions. This approach may also
provide a bridge between the two different pictures of
hadronic matter, i.e., the constituent quark model (or the
quark parton model) closely related to experimental obser-
vations and the QCD based on a covariant non-Abelian
quantum field theory. Again, the key to a possible connec-
tion between the two pictures is the rational energy-
momentum dispersion relation given by Eq. (2) that leads
to a relatively simple vacuum structure. There is no spon-
taneous creation of massive fermions in the LF quantized
vacuum. Thus, one can immediately obtain a constituent-
type picture [11] in which all partons in a hadronic state are
connected directly to the hadron instead of being simply
disconnected excitations (or vacuum fluctuations) in a
complicated medium. A possible realization of chiral sym-
metry breaking in the LF vacuum has also been discussed
in the literature [12].

Moreover, the Poincaré algebra in the ordinary equal-t
quantization is drastically changed in the light-front
equal-� quantization [13]. In LFD, the maximum number
(seven) of the ten Poincare generators are kinematic (i.e.,
interaction independent) and they leave the state at � ¼ 0
unchanged [14]. However, the transverse rotation whose
direction is perpendicular to the direction of the quantiza-
tion axis z at equal � becomes a dynamical problem in
LFD because the quantization surface � is not invariant
under the transverse rotation and the transverse angular
momentum operator involves the interaction that changes
the particle number [15]. Leutwyler and Stern showed that
the angular momentum operators can be redefined to sat-
isfy the SU(2) spin algebra and the commutation relation
between mass operator and spin operators [16];

½J i;J j� ¼ i�ijkJ k; (3)

½M; ~J � ¼ 0: (4)

Nonetheless, in LFD, there are two dynamic equations
to solve,

J 2jH;pþ; ~p2
?i ¼ SHðSH þ 1ÞjH;pþ; ~p2

?i (5)

and

M2jH;pþ; ~p2
?i ¼ m2

HjH;pþ; ~p2
?i; (6)

where the total angular momentum (or spin) and the mass
eigenvalues of the hadron (H) are given by SH and mH.
Thus, it is not a trivial matter to specify the total angular
momentum of a specific hadron state.

As a step towards understanding the conversion of the
dynamical problem from boost to rotation, we constructed
the Poincaré algebra interpolating between instant and
lightfront time quantizations [17]. We used an orthogonal
coordinate system which interpolates smoothly between
the equal-time and the light-front quantization hypersur-
face. Thus, our interpolating coordinate system had a nice
feature of tracing the fate of the Poincare algebra at equal
time as the hypersurface approaches to the light-front limit.
The same method of interpolating hypersurfaces has been
used by Hornbostel [18] to analyze various aspects of
field theories including the issue of nontrivial vacuum.
The same vein of application to study the axial anomaly
in the Schwinger model has also been presented [19],
and other related works [20–23] can also be found in the
literature.
In the present work, we introduce the interpolating

scattering amplitude that links the corresponding time-
ordered amplitudes between the two forms of dynamics.
We exemplify the physical meaning of the kinematic trans-
formations in contrast to the dynamic transformations by
means of checking the invariance of each individual time-
ordered amplitude for an arbitrary interpolation angle. Our
analysis further clarifies why and how the longitudinal
boost is kinematical only in the LFD but not in any other
interpolation angle dynamics including IFD. In particular,
we show the disappearance of the connected contributions
to the current arising from the vacuum when the interpo-
lation angle is taken to yield the LFD. Since we don’t need
any infinite momentum frame (IMF) to show this disap-
pearance and our proof is completely independent of
reference frames, it resolves the confusion between the
LFD and the IMF that sometimes appears in the discussion
on related topics. The well-known utility of IMF usually
discussed in the instant form dynamics is now also
extended to any other interpolation angle dynamics using
our interpolating scattering amplitudes.
In the next section, Sec. II, we introduce the interpolat-

ing scattering amplitude that links the corresponding time-
ordered amplitudes between the two forms of dynamics
and show the disappearance of the connected contributions
to the current arising from the vacuum when the interpo-
lation angle is taken to yield the LFD. Taking just the
simplest possible example (viz. spin-less scalar particles)
and keeping only the fundamental degrees of freedom,
i.e., particle momenta, we focus only on the essential
part of the time-ordered scattering amplitude, namely the
energy denominators. In Sec. III, we discuss the kinematic
transformations that allow the invariance of each individ-
ual time-ordered amplitude for an arbitrary interpolation
angle and present the explicit results of particle momenta
under those kinematic transformations. In this section, we
also discuss a remarkable difference of the LFD result
compared to the result for any other interpolation angle
dynamics including IFD and the role of the longitudinal
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boost that becomes kinematic only in LFD. In Sec. IV,
we explicitly show the invariance of the individual
time-ordered amplitude under kinematic transformations
plotting the results obtained in Sec. III and extend the well-
known utility of IMF in IFD to an arbitrary interpolation
angle dynamics. Conclusions follow in Sec. V. More de-
tails of the disappearance of the connected contributions
for the interpolating scattering amplitudes are detailed in
the Appendix.

II. INTERPOLATING SCATTERING AMPLITUDES

We begin by adopting the following convention of the
space-time coordinates to define the interpolating angle,

xþ̂

x�̂

" #
¼ cos� sin�

sin� � cos�

" #
x0

x3

" #
(7)

and

x0

x3

" #
¼ cos� sin�

sin� � cos�

" #
xþ̂

x�̂

" #
; (8)

in which the interpolating angle is allowed to run from 0
through 45�, 0 � � � �

4 . All the indices with the hat

notation signify the variables with the interpolation angle

�. For the limit �! 0 we have xþ̂ ¼ x0 and x�̂ ¼ �x3 so
that we recover usual space-time coordinates although the
z axis is inverted while for the other extreme limit, �! �

4 ,

we have x�̂ ¼ ðx0 � x3Þ= ffiffiffi
2

p � x� which leads to the stan-
dard light-front coordinates. Of course, the same interpo-
lation applies to the momentum variables:

pþ̂

p�̂

" #
¼ cos� sin�

sin� � cos�

" #
p0

p3

" #
: (9)

For any two interpolating four vector variables a�̂ and b�̂,
the scalar product a�̂b

�̂ must be identical to a�b
� and is

given by

a�̂b
�̂ ¼ ðaþ̂bþ̂ � a�̂b�̂Þ cos 2�þ ðaþ̂b�̂ þ a�̂bþ̂Þ

� sin 2�� a1̂b1̂ � a2̂b2̂: (10)

We may define

C¼ cos2�; S¼ sin2�; ~a?̂ ¼ a1̂x̂þ a2̂ŷ; (11)

for shorthand notations and convenience, so that the
Minkowski space-time metric g�̂ �̂ in the basis of

ðþ̂; �̂; 1̂; 2̂Þ with interpolating angle may be written as

g�̂ �̂ ¼

C S 0 0

S �C 0 0

0 0 �1 0

0 0 0 �1

2
666664

3
777775 ¼ g�̂ �̂: (12)

Thus, the covariant and contravariant indices are related by

aþ̂ ¼ Caþ̂ þ Sa�̂; aþ̂ ¼ Caþ̂ þ Sa�̂

a�̂ ¼ Saþ̂ � Ca�̂; a�̂ ¼ Saþ̂ � Ca�̂

aĵ ¼ �aĵ; ðj ¼ 1; 2Þ: (13)

As the coordinate variable xþ plays the role of the time
evolution parameter and the canonical conjugate energy

variable is pþ ¼ p� in LFD, we also take xþ̂ to be the
evolution parameter and the conjugate energy variable with
the corresponding subscript, e.g., qþ̂.
Now, we discuss the scattering amplitude of two spinless

particles, e.g., an analogue of the well-known QED anni-
hilation/production process eþe� !�þ�� in a toy �3

model theory, as depicted in Fig. 1. In this work we
do not involve spins and any other degrees of freedom
except the fundamental degrees of freedom, i.e., particle
momenta, for the simplest possible illustration.
Although we discuss here just this simple scattering

amplitude, the bare-bone structure that we demonstrate in
this analysis will be commonly applicable to any extended
calculation of amplitudes including other degrees of
freedom. In particular, not only the basic structure of the
amplitudes but also the fundamental degrees of freedom to
describe the scattering process will prevail in such exten-
sion. Further complications from other degrees of freedom
beyond the particle momenta would appear separately
without modifying the energy denominator structure that
we discuss in this work, e.g., the terms associated with the
spin degrees of freedom in QED would appear as the
matrix elements in the numerator but not in the denomina-
tor of the amplitude. The extension of the present work to
the gauge field theories involving other degrees of freedom
such as QED and QCD is in progress. In this work, we will
focus on the basic structure of the scattering amplitudes,
i.e., the energy denominators, considering only the funda-
mental degrees of freedom, i.e., particle momenta.
Modulo inessential factors including the square of the

coupling constant, the lowest order tree-level Feynman
diagram shown in Fig. 1 is proportional to the propagator
of the intermediate particle, that is,

� ¼ 1

s�m2
; (14)

where s ¼ ðp1 þ p2Þ2 is the Mandelstam variable which is
invariant under any Poincaré transformations and m is the

FIG. 1. Scattering amplitude of spinless particles.
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mass of the intermediate boson. Of course, the physical
process can take place only above the threshold
s > 4M2, where M is the mass of the final particle and
antiparticle that are produced, e.g., the muon mass in the
eþe� !�þ�� scattering process. In the IFD, where
the initial conditions are set on the hyperplane t ¼ 0 and
the system evolves with the ordinary time t > 0, this mani-
festly covariant Feynman amplitude is decomposed into the
corresponding two time-ordered amplitudes, graphically
represented in Figs. 2(a) and 2(b). These two time-ordered
amplitudes correspond respectively to the following ana-
lytic expressions:

�a
IFD ¼ 1

2q0

�
1

p0
1 þ p0

2 � q0

�
(15)

and

�b
IFD ¼ � 1

2q0

�
1

p0
1 þ p0

2 þ q0

�
: (16)

It is not difficult to show that the sum of the time-ordered
amplitudes is identical to themanifestly covariant Feynman
amplitude,

�IFD ¼ �IFD
a þ �IFD

b

¼ 1

2q0

�
1

p0
1 þ p0

2 � q0
� 1

p0
1 þ p0

2 þ q0

�

¼ 1

s�m2
; (17)

where the conservation of the three momentum ~p1 þ ~p2 ¼
~q as well as the energy-momentum dispersion relation

q0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

p
in IFD is used to get the covariant denomi-

nator s�m2 in the last step.
To obtain the corresponding time-ordered amplitudes in

an arbitrary interpolating angle �, we just need to change
the superscript 0 of the IFD energy variables in the energy
denominators to the superscipt þ̂ and multiply an overall
factor C to the amplitudes, i.e.,

�a
� ¼ 1

2qþ̂

 
C

pþ̂
1 þ pþ̂

2 � qþ̂

!
(18)

and

�b
� ¼ � 1

2qþ̂

 
C

pþ̂
1 þ pþ̂

2 þ qþ̂

!
: (19)

The overall factor C is necessary because the energy of the
particle with the four-momentum p�̂ in an arbitrary inter-

polation angle is given by pþ̂ while the contravariant pþ̂
used in the interpolating amplitudes is related to the
covariant pþ̂ with the factor C as shown in Eq. (13), i.e.,

pþ̂ ¼ Cpþ̂ þ Sp�̂. Note here that the factor S in front of
the longitudinal momentum p�̂ is irrelevant because the
longitudinal momenta of the initial particles must be can-
celled by the longitudinal momentum of the intermediate
particle due to the conservation of the longitudinal
momentum. Again, it is not so difficult to show that the
sum of the time-ordered amplitudes for any angle � is
identical to the manifestly covariant Feynman amplitude,

�� ¼ �a
� þ �b

�

¼ 1

2qþ̂

 
C

pþ̂
1 þ pþ̂

2 � qþ̂
� C

pþ̂
1 þ pþ̂

2 þ qþ̂

!

¼ 1

s�m2
; (20)

where we used the relation between the covariant and

contravariant indices [see Eq. (13)] such as qþ̂ ¼ Cqþ̂ þ
Sq�̂ and the conservation of momenta p1�̂ þ p2�̂ ¼ q�̂
and ~p1?̂ þ ~p2?̂ ¼ ~q?̂, as well as the four-momentum sca-

lar product relation [see Eq. (10)], to get the Lorentz
invariant denominator s�m2 in the last step. It is also
rather easy to see that Eq. (20) becomes Eq. (17) as C goes
to the unity. In LFD, however, i.e., as C goes to zero, the
denominator in the first amplitude �a

�¼�=4 also vanishes,

i.e., 1=ðpþ̂
1 þ pþ̂

2 � qþ̂Þ ¼ 1=ðpþ
1 þ pþ

2 � qþÞ goes to in-
finity due to the conservation pþ

1 þ pþ
2 ¼ qþ but the

multiplication of C ¼ 0 with this infinity makes the finite
result 1=ðs�m2Þ, while the second amplitude �b

�¼�=4 is

wiped out due toC ¼ 0. This result is akin to the very well-
known result from the work entitled ‘‘Dynamics at Infinite
Momentum’’ [24]. However, wewould like to make it clear

FIG. 2. Time-ordered amplitudes in IFD for the Feynman amplitude depicted in Fig. 1.
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that the disappearance of the second amplitude �b
�¼�=4 in

LFD is different from the usual IMF result obtained by
taking Pz ! �1 with P � p1 þ p2 for a shorthand no-
tation (e.g., P2 ¼ s). As far as any correlation between the
interpolation angle � and the total longitudinal momentum
Pz is avoided, our derivation is completely independent of
the frame and the only relevant parameter to show this
disappearance is the interpolation angle � which has noth-
ing to do with the choice of reference frame. In Sec. IV, we
will discuss the special case with a particular correlation
between � and Pz and the associated treacherous point
similar to the zero-mode issue in LFD.

For the rest of this section, we elaborate more details of
our derivations discussed above. The dispersion relation
q2 ¼ m2 in terms of interpolating angle variables results in
a quadratic equation in qþ̂ and q�̂ that can be solved for the
energy variable qþ̂ in terms of momentum components q�̂
and ~q?̂ as well as mass m,

qþ̂ ¼ �Sq�̂ �!q

C
; (21)

in which we introduced the notation

!q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�̂ þ Cð ~q2

?̂ þm2Þ
q

: (22)

For the physical solution with positive energy in Eq. (21),
we must take

qþ̂ ¼ �Sq�̂ þ!q

C
; (23)

which identifies !q as

!q ¼ Cqþ̂ þ Sq�̂ ¼ qþ̂: (24)

For � ¼ 0 and � ¼ �
4 , !q becomes q0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~q2 þm2
p

and

qþ ¼ ðq0 þ q3Þ= ffiffiffi
2

p
, respectively. Using this variable !q,

we may rewrite Eqs. (18) and (19) as follows:

�a
� ¼ 1

2!qDþ
and �b

� ¼ 1

2!qD�
; (25)

where

Dþ ¼ Pþ̂ þ Sq�̂ �!q

C
and

D� ¼ Pþ̂ þ Sq�̂ þ!q

C
;

(26)

in which we used the longitudinal momentum conservation
P�̂ ¼ ðp1Þ�̂ þ ðp2Þ�̂ ¼ q�̂. The sum of both contribu-
tions given by Eq. (20) can then be expressed as

�� ¼ �a
� þ�b

� ¼ 1

2!q

�
1

Pþ̂ þ Sq�̂�!q

C

� 1

Pþ̂ þ Sq�̂þ!q

C

�
;

(27)

which is identical to the second line of Eq. (20). In Eq. (27),
we can confirm �� ¼ 1=ðs�m2Þ,

�� ¼
1
C

ðPþ̂ þ Sq�̂
C Þ2 � ð!q

C Þ2

¼ 1

CP2
þ̂ þ 2SPþ̂q�̂ þ S2q2�̂

C � !2
q

C

¼ 1

CP2
þ̂ þ 2SPþ̂P�̂ � CP2�̂ � ~P2

?̂ �m2
¼ 1

s�m2
;

(28)

where we used !2
q ¼ q2�̂ þ Cð ~q2

?̂ þm2Þ, P�̂ ¼ q�̂ and

~P?̂ ¼ ~q?̂. Using Eq. (27), wemay now recapture the instant

form and light-front limits, as follows.
For the instant form limit (IFD), we have �! 0 (i.e.,

C! 1 and S! 0) and !q ! qþ̂. In this limit, it is

apparent that Eq. (27) becomes

��! 0 � �IFD ¼ 1

2qþ̂

�
1

Pþ̂ � qþ̂
� 1

Pþ̂ þ qþ̂

�

¼ 1

2q0

�
1

P0 � q0
� 1

P0 þ q0

�
; (29)

where � ¼ 0 is taken in the interpolating angle variables.
For the light-front limit (LFD), �! �

4 (i.e., C! 0 and

S! 1), we expand !q given by Eq. (22) in the orders of

C and get

!q! q�̂ þ Cð ~q2
?̂ þm2Þ
2q�̂

þOðC2Þ: (30)

Substituting this expansion of!q in the denominator of the

first term in Eq. (27), we get

Sq�̂ �!q

C
! �

~q2
?̂ þm2

2q�̂
þOðCÞ

! �
~q2
?̂ þm2

2q�̂
as C! 0: (31)

For the second denominator in Eq. (27), however, we get

Sq�̂ þ!q

C
! 2

C
�

~q2
?̂ þm2

2q�̂
þOðCÞ!1 as C! 0:

(32)

Thus, in the light-front limit (C! 0), the contribution from
the second diagram vanishes and

��!�
4
¼ 1

2q�̂
1�

Pþ̂ � ð ~q2

?̂þm2Þ
2q�̂

�¼ 1

Pþ
1�

P��ð ~P2
?þm2Þ
2Pþ

� ; (33)

where q�̂ !q� ¼ qþ and ~q?̂ ! ~q? are same with Pþ and
~P?, respectively, due to the momentum conservation in
LFD. Again, we would like to make it clear that the
disappearance of the second amplitude �b

�¼�=4 in LFD is

different from what has been known from the usual IMF,
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i.e., Pz ! �1. As we will discuss in the next section,
Sec. III, the longitudinal boost is kinematic in LFD so that
the disappearance of the connected contribution �b

�! �
4
to

the current arising from the vacuum is independent of Pz

or the IMF. This is certainly not the case for any other
interpolation case, i.e., � � �=4. The longitudinal boost
becomes dynamic for � � �=4, and the contributions from
�a

� and �b
� depend on Pz (or the reference frames) and the

well-known utility of IMF can be extended to an arbitrary
interpolating angle 0 � � < �

4 . Wewill discuss more on this

point in Sec. IVafter we present the physical meaning of the
kinematic transformations in Sec. III.

III. KINEMATIC TRANSFORMATIONS
OF PARTICLE MOMENTA

As we presented in the previous section, Sec. II, the sum
of all the time-ordered amplitudes (just two in our example
discussed in Sec. II) must be independent of the interpola-
tion angle � and identical to the manifestly covariant
Feynman amplitude. Although the total amplitude is
Poincaré invariant, the individual time-ordered amplitude
is neither invariant in general nor independent of �. Thus,
one may ask a question if the individual time-ordered
amplitude can be invariant at least under some subset of
Poincaré generators. The answer is yes and this issue is
what we would like to address in this section. The point is
that the individual time-ordered amplitude would not

change as far as the time evolution parameter xþ̂ doesn’t
change so that the individual time-ordered amplitude
would be invariant under a certain transformation which

doesn’t alter the time evolution parameter xþ̂. To the extent
that the time evolution parameter xþ̂ doesn’t change, all

the momentum components with þ̂ such as qþ̂ would not
change because the same transformation rules apply to
both the space-time coordinates and the four-momenta of
the particles involved. Such subset of the Poincaré group

that doesn’t alter the time evolution parameter xþ̂ is known
as the stability group. Since the transformations that belong
to the stability group do not modify the time evolution

parameter xþ̂, each time-ordered amplitude must be invari-
ant under these transformations. Individual time-ordered
amplitudes represent the dynamics given at each instant of

time defined by the time evolution parameter xþ̂ in the
given form of the relativistic quantum field theory. For this
reason, it may be appropriate for the transformations that
leave each individual time-ordered amplitude invariant to
be called the kinematic transformations, and the generators
of those transformations belong to the stability group
deserve to be distinguished from the other Poincaré group
generators. All other Poincaré group generators besides the
kinematic generators are dynamical and change the con-
tributions from each individual time-ordered amplitude. In
this section, we discuss the kinematic transformations for
an arbitrary interpolation angle �. In particular, we take

the limits to � ¼ 0 and �=4 to discuss the fates of the
kinematic transformations in the two distinguished forms
of the relativistic dynamics, IFD and LFD, respectively.
Since we focus mainly on the fundamental dynamic
variables not involving any other degrees of freedom (e.g.,
spins) in this work, our results of the kinematic transforma-
tions apply explicitly only to the particle momenta.
The matrix of the homogeneous part of Poincaré group

in the interpolating angle basis may be written [17] as

M�̂ �̂ ¼
0 K3 D1̂ D2̂

�K3 0 K1̂ K2̂

�D1̂ �K1̂ 0 J3

�D2̂ �K2̂ �J3 0

2
666664

3
777775; (34)

where

K1̂ ¼ �K1 sin�� J2 cos�;

K2̂ ¼ J1 cos�� K2 sin�

D1̂ ¼ �K1 cos�þ J2 sin�;

D2̂ ¼ �J1 sin�� K2 cos�:

(35)

The kinematic generators Kĵ and the dynamic ones Dĵ,

j ¼ ð1; 2Þ, can also be written as the combinations of Eĵ

and Fĵ,

K1̂ ¼ CF1̂ � SE1̂; K2̂ ¼ CF2̂ � SE2̂

D1̂ ¼ �SF1̂ � CE1̂; D2̂ ¼ �SF2̂ � CE2̂;
(36)

where

E1̂ ¼ J2 sin�þ K1 cos�; E2̂ ¼ K2 cos�� J1 sin�

F1̂ ¼ K1 sin�� J2 cos�; F2̂ ¼ J1 cos�þ K2 sin�:

(37)

The interpolating operators Eĵ and Fĵ coincide with the
usual Ej and Fj of LFD in the limit � ¼ �=4. As discussed
in Ref. [17], the transverse boosts ðK1; K2Þ are dynamic
whereas the transverse rotations ðJ1; J2Þ are kinematic in
IFD (� ¼ 0), while the LF transverse boosts ðE1; E2Þ are
kinematic whereas the LF transverse rotations ðF1; F2Þ are
dynamic in LFD (� ¼ �

4 ). One may note the swap of the

roles between ‘‘boosts’’ and ‘‘rotations’’ in the two forms
of relativistic dynamics, IFD and LFD, and utilize it for
some hadron phenomenology [25].

We may check explicitly that the generators Kĵ given

above satisfy the commutation relation ½Kĵ;P þ̂� ¼ 0with

the momentum operator P þ̂ using Eq. (36) and the inter-
polating Poincaré algebra presented in Ref. [17],

½Kĵ;P þ̂� ¼ C½Fĵ;P þ̂� � S½Eĵ;P þ̂�
¼ Cð�iP ĵSÞ � Sð�iP ĵCÞ ¼ 0: (38)
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This means that each transformation of the form

exp ð�i!KĵÞ, (j ¼ 1, 2), leaves the momentum operator

P þ̂ invariant. As a consequence, if the momentumPþ̂ is an

eigenvalue of the operator P þ̂, Pþ̂ remains invariant under
the cited transformations. Likewise, the plus (þ̂) compo-
nent of any four vector is invariant under such transforma-

tions and the time xþ̂ remains invariant as well. It verifies

that the generators Kĵ are kinematic.

In a similar way, for the generators Dĵ, we may check

explicitly that the commutators ½Dĵ;P þ̂� are now non-
vanishing,

½Dĵ;P þ̂� ¼ �S½Fĵ;P þ̂� � C½Eĵ;P þ̂�
¼ �Sð�iP ĵSÞ � Cð�iP ĵCÞ ¼ iP ĵ: (39)

Since commutators above are not only nonvanishing but

also proportional to P ĵ, each transformation of the form

exp ð�i!DĵÞ, (j ¼ 1, 2), develops transverse components

of the momentum and cannot leave the momentum Pþ̂

invariant. Thus, the generators Dĵ are dynamic.
Among the elements involved in the matrix given by

Eq. (34), it is interesting to note that the rotation around the
longitudinal direction, i.e., J3, is unique because it doesn’t

change xþ̂ and thus kinematic for any interpolation angle
�. However, the longitudinal boost K3 has a quite different
characteristic compared to any other operators in Eq. (34).

To see this, let’s look at the commutator between P þ̂ and
K3 in the Poincaré algebra,

½P þ̂; K3� ¼ iP �̂ ¼ iðSP þ̂ � CP �̂Þ; (40)

which leads to

½Pþ; K3� ¼ iPþ (41)

in the limit �! �
4 . This shows that the longitudinal boost

has a distinguished property in the limit �! �
4 ; namely, it

becomes kinematic in this limit. Although the right-hand
side of Eq. (41) doesn’t vanish, it yields the same Pþ
operator in the commutation relation. This means that the
eigenvalues of Pþ operator, or the LF longitudinal mo-
mentum Pþ, are just scaled by the factor e�3 when it is
boosted in the longitudinal direction by the rapidity �3.
By the same token, the LF energy P� is scaled by the factor
e��3 under the same transformation due to the commuta-
tion relation in LFD,

½P�; K3� ¼ �iP�: (42)

It may be interesting to note that the algebra amongPþ,P�
and K3 works in a similar way as the algebra among the
creation, annihilation and number operators in one-
dimensional simple harmonic oscillator. Due to the conser-

vation of three momenta ðPþ; ~P?Þ as well as the
compensating scale factors of e��3 and e�3 between the
LF energy (P�) and the LF longitudinal momentum (Pþ),
one can show that each individual LF time-ordered ampli-
tude is invariant under the longitudinal boost K3. This may
be also understood from the intactness of the LF time xþ
modulo the same scaling factor e�3 for the LF longitudinal
momentum under theK3 operation.With this reasoning, one
may understand thatK3 becomes the kinematic generator in
LFD, although it is dynamical for any other interpolation
angle 0 � � < �=4. As the boost problem in IFD is one of
the most difficult problems to deal with in the relativistic
many-body calculations, all of the boost operators
ðK1; K2; K3Þ have been known as difficult operators in
IFD. Since at least K3 can change its difficult characteristic
to a good one, i.e., from dynamic to kinematic, and joins the
stability group in LFD, one may regard such dramatic
character change of K3 in LFD as a kind of ‘‘return of a
prodigal son.’’ Of course, the community of LFD welcomes
the addition of K3 in the stability group. For this reason, the
number of kinematic generators in LFD is one more than all
other cases of interpolating angles in the range 0 � � < �

4 as

shown in Table I [17]. In terms of the time-ordered diagrams
�a

� and �b
� that we discussed in the last section (Sec. II), it

means that �a
� and �b

� are not individually invariant under

the longitudinal boost K3 unless � ¼ �
4 . In terms of the

vacuum property, it also means that the vacuum in LFD is
very different from the vacuum in IFD because the vacuum
must be invariant under different numbers of kinematic
transformations. As summarized in Table I [17], the number
of kinematic generators is six in general for 0 � � < �

4 but it

maximizes to seven at � ¼ �
4 . One should note that the

minimum three degrees of freedom are necessary to define

the hypersurface of xþ̂ in 3þ 1 dimension.
What Weinberg [24] showed in IMF was to take advan-

tage of the dynamic property of K3 (or the frame depen-
dence of each individual time-ordered amplitude) in the case
of � ¼ 0 and discard the time-ordered amplitudes con-
nected to the current arising from the vacuum in IFD,
e.g., �b

�¼0 ¼ 0 in IMF for IFD. For � ¼ �
4 , i.e., in LFD,

however, K3 is kinematic and the corresponding frame

TABLE I. Kinematic and dynamic generators for different angles.

Angle Kinematic Dynamic

� ¼ 0 K1̂ ¼ �J2, K2̂ ¼ J1, J3, P 1, P 2, P 3 D1̂ ¼ �K1, D2̂ ¼ �K2, K3, P 0

0< �< �
4 K1̂, K2̂, J3, P 1̂, P 2̂, P �̂ D1̂, D2̂, K3, P þ̂

� ¼ �
4 K1̂ ¼ �E1, K2̂ ¼ �E2, J3, K3, P 1, P 2, Pþ D1̂ ¼ �F1, D2̂ ¼ �F2, P�
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dependence of each individual time-ordered amplitudes
cannot be applied. Instead, what we take advantage of in
this work is that the individual time-ordered interpolating
scattering amplitudes are dependent on � and the time-
ordered amplitudes connected to the current arising from
the vacuum vanishes in the limit � ¼ �

4 , e.g., �
b
�¼�

4
¼ 0

(and thus �a
�¼�

4
¼ 1

s�m2 ) as we showed in Sec. II. Since K3

is kinematic in LFD, each individual time-ordered ampli-
tude is invariant under the longitudinal boost (or indepen-
dent of the corresponding change of reference frames),
e.g., �a

�¼�
4
¼ 1

s�m2 or �
b
�¼�

4
¼ 0 is independent of the total

momentum Pz of the system. In the case of �a
�¼�

4
¼ 1

s�m2 or

�b
�¼�

4
¼ 0, one may note that the individual time-ordered

amplitudes are indeed invariant under all Poincaré trans-
formations because the first time-ordered amplitude takes up
the whole result of the Feynman amplitude. In the more
general case of LFDwhere a given physical process involves
more than one nonvanishing time-ordered amplitudes, the
individual time-ordered amplitudes are not invariant under
the dynamic transformations D1, D2 and P� but invariant
under the kinematic transformations shown in Table I in-
cluding K3 in LFD. For the interpolating scattering ampli-
tudes of 0 � � < �

4 , the individual time-ordered amplitudes

are not invariant under the four (instead of three) dynamic
transformations but invariant under the six (instead of seven)
kinematic transformations shown in Table I.

To discuss more details of the invariance of the individ-
ual time-ordered amplitudes under the kinematic transfor-
mations, we now revisit the previous analysis [17] on the
transformations of the particle momentum components

under the kinematic transformations, Kĵðj ¼ 1; 2Þ, and
extend the analysis to include the effect of K3 transforma-
tion in order to cover the case of time-ordered amplitudes
in LFD. The transformations of the particle momentum
components under other kinematic transformations such as

J3, P ĵðj ¼ 1; 2Þ and P �̂ are rather trivial, in the sense that

the particle momentum components Pþ̂ and P�̂ as well as

the magnitude j ~P?j are invariant under these transforma-
tions, and we do not discuss them here.

To analyze the particle momentum components under the

Kĵðj ¼ 1; 2Þ and K3 transformations, we consider both the

longitudinal transformation T3 ¼ e�i�3K
3
and the transverse

transformation T12 ¼ e�ið�1K1̂þ�2K2̂Þ. In particular, we fol-
low the procedure set by Jacob andWick [26] in defining the
helicities in IFD, namely T3 first and T12 later, as the spin in
the rest frame is initially aligned in the z direction and the
boost in the z direction first would not change the spin
direction for the procedure of defining helicities. Although
we do not involve any spin degrees of freedom in this work,
we adopt the same procedure to be consistent when we
extend this work later for the spinor case. As discussed in
Ref. [25], this procedure of applying T3 first and T12 later is
common also in defining the LF helicities.

Having this is mind, we first apply T3 ¼ e�i�3K
3
to each

of the momentum operator components (�̂ ¼ þ̂, �̂, 1̂, 2̂),

Ty
3P �̂T3 ¼ ei�3K

3
P �̂e

�i�3K
3

¼ P �̂ þ i½�3K
3;P �̂�

þ i2

2!
½�3K

3; ½�3K
3;P �̂�� þ � � � : (43)

This yields

Ty
3P þ̂T3 ¼ ðcosh�3 � S sinh�3ÞP þ̂ þ C sinh�3P �̂

Ty
3P �̂T3 ¼ ðcosh�3 þ S sinh�3ÞP �̂ þ C sinh�3P þ̂
Ty
3P

ĵT3 ¼ P ĵ; ðĵ ¼ 1̂; 2̂Þ: (44)

If we apply T3 to the particle momentum state jPi, then the
particle momentum state is changed to the state jP0i, where
jPi and jP0i are the eigenstates of the operator P �̂ with the

eigenvalues of P�̂ and P0
�̂, respectively. From this, one can

find that the operation of Ty
3P �̂T3 and P �̂ to the state jPi

yields the eigenvalues P0
�̂ and P�̂, respectively. Thus, the

results given in Eq. (44) can be translated into

P0
þ̂ ¼ ðcosh�3 � S sinh�3ÞPþ̂ þ C sinh�3P�̂

P0�̂ ¼ ðcosh�3 þ S sinh�3ÞP�̂ þ C sinh�3Pþ̂
P0ĵ ¼ Pĵ; ðj ¼ 1; 2Þ:

(45)

This result satisfies the energy-momentum dispersion rela-
tion as it should,

P0
�̂g

�̂�̂P0̂
�¼CP02

þ̂ þ2SP0
þ̂P

0�̂ �CP0�̂2� ~P02?̂

¼CP2
þ̂ þ2SPþ̂P�̂ �CP2�̂ � ~P2

?̂ ¼M2: (46)

Taking the limit �! 0 in Eq. (45), we get

P00 ¼ cosh�3P
0 þ sinh�3P

3

P03 ¼ cosh�3P
3 þ sinh�3P

0

P0j ¼ Pj; ðj ¼ 1; 2Þ;
(47)

which are the usual Lorentz transformations along the z
direction in IFD. Taking the limit �! �

4 , on the other

hand, we get

P0� ¼ e��3P�

P0þ ¼ e�3Pþ

P0j ¼ Pj; ðj ¼ 1; 2Þ;
(48)

which are the expected results in LFD since Pþ and P� are
decoupled with the corresponding scaling factors. This
result confirms that T3 is kinematical in LFD.
After the T3 (longitudinal) transformation, we now take

the T12 (transverse) transformation following the Jacob and
Wick’s procedure as mentioned above. In Ref. [17], the
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effect of T12 transformation on the momentum operator
P �̂ was obtained as follows:

Ty
12P þ̂T12 ¼ P þ̂ þ S�2

?
ð1� cos	Þ

	2
P �̂

� S
sin	

	
ð�1P 1̂ þ �2P 2̂Þ

Ty
12P �̂T12 ¼ P �̂ cos	þ C

sin	

	
ð�1P 1̂ þ �2P 2̂Þ

Ty
12P

ĵT12 ¼ P ĵ � �j

sin	

	
P �̂ þ C�j

ðcos	� 1Þ
	2

� ð�1P 1̂ þ �2P 2̂Þ; ðj ¼ 1; 2Þ; (49)

where we have defined 	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð�2

1 þ �2
2Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffi
C ~�2

?
q

. It is

interesting to note that this result indicates a dramatic
difference in the outcome of the particle momentum after

the application of the kinematic transformation T12 ¼
e�ið�1K1̂þ�2K2̂Þ to the particle in the rest frame between
IFD (� ¼ 0) and LFD (� ¼ �=4). The particle of mass M

in the rest frame (i.e., P0 ¼ M, ~P ¼ 0) has the interpolat-
ing momentum components given by Pþ̂ ¼ M cos�,

P�̂ ¼ M sin�, ~P?̂ ¼ 0. If we write the interpolating

momentum components with the prime notation after the
T12 transformation, we get

P0
þ̂ ¼ M

�
cos�þ S ~�2

?
ð1� cos	Þ

	2
sin�

�
P0
�̂ ¼ M sin� cos	

P0ĵ ¼ �M�j sin�
sin	

	
ðj ¼ 1; 2Þ;

(50)

which shows that the particle can gain some longitudinal
momentum although the transformation T12 is transversal
and the amount of the gained longitudinal momentum
depends on the interpolating angle �. In IFD (� ¼ 0), the
particle in the rest frame remains in the rest frame since

T12 is just a transverse rotation, i.e., P00 ¼ M, ~P0 ¼ 0.
However, in LFD (� ¼ �

4 ), the result given by Eq. (49)

can be written as

P0� ¼ Mffiffiffi
2

p
�
1þ

~�2
?
2

�

P0þ ¼ Mffiffiffi
2

p

P0j ¼ � Mffiffiffi
2

p �j; ðj ¼ 1; 2Þ:

(51)

From this, we find the energy and longitudinal momentum
components are related to the transverse momentum
~P0? ¼ �M ~�?=

ffiffiffi
2

p
, i.e.,

P00 ¼ Mþ
~P02?
2M

; P03 ¼ �
~P02?
2M

; (52)

which shows that the particle gains the longitudinal

momentum� ~P02?
2M while the particle is transversely boosted

by T12 ¼ eið�1E
1þ�2E

2Þ. One should note that the LF trans-

verse boosts E1 ¼ ðJ2 þ K1Þ= ffiffiffi
2

p
and E2 ¼ ðK2 � J1Þ= ffiffiffi

2
p

involve not only K1, K2 (ordinary transverse boosts) but
also J1, J2 (ordinary transverse rotation) so that the parti-
cle’s moving direction cannot be kept just in the transverse
direction while the particle is transversely boosted. This
yields the momentum in the longitudinal direction as well
as in the transverse direction. It is also interesting to note
that the relativistic energy-momentum dispersion relation
works, although the particle energy takes a nonrelativistic
form,

ðP0Þ2 � ~P2 ¼
�
Mþ

~P2
?

2M

�
2 � ~P2

? �
�
�

~P2
?

2M

�
2 ¼M2: (53)

This may be regarded as another distinguishing feature of
the LFD.
We now apply the T12 transformation subsequently after

we do the T3 transformation in order to combine the
longitudinal boost and the transverse kinematic transfor-

mations, i.e., TK ¼ T3T12 ¼ e�i�3K
3
e�ið�1K1̂þ�2K2̂Þ. This

allows not only the transformation of the unprimed P�̂ to

primed P0
�̂ but also the subsequent transformation from the

primed four-momentum P0
�̂ to the double-primed four-

momentum P00̂
� of the particle that we consider. Under

the TK transformation, we get

P 00
�̂ ¼ Ty

KP �̂TK ¼ Ty
12ðTy

3P �̂T3ÞT12 ¼ Ty
12P

0
�̂T12: (54)

From this, we get the following general transformation
relations:

P00
þ̂ ¼ ðcosh�3 �Scos	 sinh�3ÞPþ̂ þ ½ð1�S2 cos	Þ sinh�3 þSð1� cos	Þcosh�3�

~�2
?

	2
P�̂ �S

sin	

	
ð�1P

1̂ þ�2P
2̂Þ

P00
�̂ ¼ Ccos	 sinh�3Pþ̂ þ cos	ðcosh�3 þS sinh�3ÞP�̂ þC

sin	

	
ð�1P

1̂ þ�2P
2̂Þ

P00ĵ ¼ Pĵ �C�j

sin	

	
sinh�3Pþ̂ ��j

sin	

	
ðcosh�3 þS sinh�3ÞP�̂ þC�j

ðcos	� 1Þ
	2

ð�1P
1̂ þ�2P

2̂Þ; (55)
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which of course satisfy the dispersion relation as expected:

M2 ¼ CP002
þ̂ þ 2SP00

þ̂P
00
�̂ � CP002

�̂ � ~P002?̂

¼ CP2
þ̂ þ 2SPþ̂P�̂ � CP2

�̂ � ~P2
?̂: (56)

In the IFD limit, �! 0, we note that 	2 !ð�2
1 þ �2

2Þ ¼
~�2
? and get

P000 ¼ cosh�3P
0 þ sinh�3P

3

P003 ¼ cos�? sinh�3P
0 þ cos�? cosh�3P

3

þ sin�?
�?

ð�1P
1 þ �2P

2Þ

P00j ¼ Pj � �j

sin�?
�?

ðsinh�3P
0 þ cosh�3P

3Þ

þ �j

ðcos�? � 1Þ
�2

?
ð�1P

1 þ �2P
2Þ;

(57)

where �? ¼
ffiffiffiffiffiffiffi
~�2
?

q
. Here, the transverse vector ~�? ¼

ð�1; �2Þ can be represented by ~�? ¼ 
ðẑ� n̂?Þ defining
the angle 
 and the rotation axis as the unit transverse vector

n̂? ¼ ðn1; n2Þ because the kinematic transformations K1̂

and K2̂ are nothing but the ordinary transverse rotations
�J2 and J1, respectively, in IFD. Since ẑ� n̂? ¼ �n2x̂þ
n1ŷ ¼ ð�n2; n1Þ, one may identify �1 ¼ �
n2 and �2 ¼

n1 to rewrite Eq. (57) as

P000 ¼ cosh�3P
0 þ sinh�3P

3

P003 ¼ cos
ðsinh�3P
0 þ cosh�3P

3Þ þ sin
ðẑ� n̂?Þ � ~P?
~P00? ¼ ~P? � ðẑ� n̂?Þ sin
ðsinh�3P

0 þ cosh�3P
3Þ

þ ðẑ� n̂?Þðcos
� 1Þðẑ� n̂?Þ � ~P?: (58)

Taking n̂? ¼ ŷ (i.e., ẑ� n̂? ¼ �x̂), we have

P000 ¼ P00 ¼ cosh�3P
0 þ sinh�3P

3

P001 ¼ � sin 
P03 þ cos
P01

¼ � sin 
ðsinh�3P
0 þ cosh�3P

3Þ þ cos 
P1

P002 ¼ P02 ¼ P2

P003 ¼ cos 
P03 þ sin
P01

¼ cos 
ðsinh�3P
0 þ cosh�3P

3Þ þ sin
P1;

(59)

where the boost in ẑ direction and the subsequent rotation
around ŷ axis are manifest.

Next, we consider the other extreme that corresponds
to the LFD, � ¼ �

4 . As �! �
4 , 	! 0 and it leads to the

following limits for the expressions that appear in the
different components of momentum given by Eq. (55),

ð1� S2 cos	Þ
~�2
?

	2
!

~�2
?
2

ð1� cos	Þ
	2

! 1

2
sin	

	
! 1:

(60)

Using the usual LFD notations, we thus get

P00� ¼ e��3P� þ e�3 ~�2
?

2
Pþ � ~�? � ~P?

P00þ ¼ e�3Pþ

~P00? ¼ ~P? � e�3 ~�?Pþ;

(61)

which satisfies the LF dispersion relation as expected

2P00þP00� � ~P002? ¼ 2PþP� � ~P2
? ¼ M2: (62)

In the case that the particle is at rest in the unprimed
frame, i.e.,

Pþ ¼ P� ¼ Mffiffiffi
2

p
~P? ¼ 0;

(63)

we obtain

P00� ¼ Mffiffiffi
2

p
�
e��3 þ e�3

~�2
?
2

�

P00þ ¼ Mffiffiffi
2

p e�3

~P00
? ¼ � Mffiffiffi

2
p ~�?e�3 ;

(64)

which can be translated into

P000 ¼ M cosh�3 þM

4
~�2
?e�3

P003 ¼ M sinh�3 �M

4
~�2
?e�3

~P00? ¼ � Mffiffiffi
2

p ~�?e�3 :

(65)

From this, we may extend the relation between the energy
and the transverse momentum (as well as between the
longitudinal momentum and the transverse momentum)
given by Eq. (52) as

P000 ¼ M cosh�3 þ
~P002?
2M

e��3

P003 ¼ M sinh�3 �
~P002?
2M

e��3 :
(66)

For �3 ¼ 0, this equation is reduced to Eq. (52). As we
explained about Eq. (52), the gained longitudinal momen-
tum is correlated with the transverse momentum due to the
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kinematic transformation T12 ¼ eið�1E
1þ�2E

2Þ in such a

way that a paraboloid shape of surface (note P003 ¼ � ~P002?
2M

for �3 ¼ 0) can be drawn for the gained momentum
components in the momentum space as shown in
Ref. [17]. In the case�3 � 0, we find that the similar shapes
of paraboloids can be drawn. However, the corresponding
paraboloids are shifted in the longitudinal direction as �3

gets more positive values and the curvatures of the corre-
sponding paraboloids get modified as shown in Fig. 3. This
plot shows three surfaces corresponding to three different
values of�3 ¼ 0, 1, 2, with the momenta scaled by the mass

of the particle, i.e., ~p ¼ ~P00=M, where ~p ¼ p1x̂þ p2ŷþ
p3ẑ, in the range �4< p1 < 4, �4< p2 < 4 and �12<
p3 < 4. We note that the p3 value of the lowest surface for
p1 ¼ p2 ¼ 0 corresponds to p3 ¼ 0 due to the relation
between p3 and ~p2

? ¼ ðp1Þ2 þ ðp2Þ2 for �3 ¼ 0 given by

Eq. (66). For the positive values of�3 as shown in Fig. 3, the
paraboloid of �3 ¼ 0 is shifted to upwards in pz and gets
flattened due to the factors given by sinh�3 and e��3 in
Eq. (66), respectively. The top point of each paraboloid

corresponds to the momentum gained by the T3 ¼ e�i�3K
3

transformation in IFD [see Eq. (47)]. Although the particle
at rest stays at rest in IFD when only the kinematic trans-
formation T12 (i.e., the ordinary transverse rotation in IFD)
is applied, the longitudinal boost T3 is dynamical in IFD so
that it can generate the longitudinal momentum of the

particle. However, in LFD, both T12 and T3 are kinematic
transformations and the entire momentum region of ~p can
be covered by these kinematic transformations.

IV. APPLICATION OF TRANSFORMATIONS ON
INTERPOLATING SCATTERING AMPLITUDES

In the previous sections, we discussed that the scattering
amplitude in Fig. 1 has two nonvanishing time-ordered
contributions in an arbitrary interpolating angle for the
range 0 � � < �

4 including IFD (� ¼ 0), while in LFD

(� ¼ �
4 ) only the contribution of the first diagram Fig. 2(a)

survives. We now apply the transformations of the particle
momenta that we obtained in the last section, Sec. III, to the
scattering amplitudes and discuss a quantitative measure on
the invariance of the individual time-ordered amplitudes
under the kinematic transformations.
In order to see this in an arbitrary interpolating angle, let

us first consider the expression for Dþ found in Eq. (26)
under the transverse kinematic boost T12, i.e.,

D0þ ¼ P0
þ̂ þ Sq0�̂ �!0

q

C
; (67)

where the prime indicates the transformed frame variables

via P 0
þ̂ ¼ Ty

12P þ̂T12, etc. This quantity D0þ expresses the

difference between the interpolating angle energies of P0
þ̂

and q0þ̂ for the first diagram Fig. 2(a). Under T12 [see

Eq. (49)], we get

D0þ ¼ Pþ̂ þ S
ð�2

1̂
þ �2

2̂
Þ

	2
ð1� cos	ÞP�̂

� S
sin	

	
ð�1̂P

1̂ þ �2̂P
2̂Þ

� S
C

�
q�̂ cos	þ C

sin	

	
ð�1̂P

1̂ þ �2̂P
2̂Þ
�
�!0

q

C

¼ Pþ̂ þ S
C
q�̂ �!0

q

C
; (68)

where we used 	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð�2

1̂
þ �2

2̂
Þ

q
and the momentum

conservation P�̂ ¼ q�̂. This means that if !0
q ¼ !q as

defined by Eq. (22), then D0þ ¼ Dþ and the first term by
itself is invariant under T12. We may use the solution in
terms of qþ̂ of the quadratric equation for the dispersion
relation and show !0

q ¼ !q, i.e.,

qþ̂ ¼ !q � Sq�̂
C

) !q ¼ Cqþ̂ þ Sq�̂ (69)

so that

!0
q ¼ Cq0þ̂ þ Sq0�̂ ¼ Cqþ̂ þ Sq�̂ ¼ !q; (70)

according to Eq. (49). It is nowmanifest thatDþ by itself is
invariant under T12. Similar manifestation can be obtained
for D� for the second diagram Fig. 2(b).

FIG. 3 (color online). General kinematic transformation on a
fixed interpolating front.
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Now, we apply the longitudinal boost T3 to the interpo-
lating time-ordered amplitudes. As we have already dis-
cussed in Sec. III, the longitudinal boost K3 is dynamical
for any � in the range 0 � � < �

4 and becomes kinematical

only at � ¼ �
4 . To exhibit this feature quantitatively, we

show Fig. 4 which plots �a
� and �b

� as functions of the

initial particle total momentum ð ~p1̂ þ ~p2̂Þ � ẑ ¼ Pz while

ð ~p1̂ þ ~p2̂Þ � x̂ ¼ 0 and ð ~p1̂ þ ~p2̂Þ � ŷ ¼ 0 for convenience,

as well as the interpolation angle �. The ranges of � and Pz

are taken as 0 � � < �
4 and �4 � Pz � 4 in some unit of

energy, e.g., GeV, respectively. For illustrative purposes,
we took s ¼ 2 and m ¼ 1 using the same energy unit. As
clearly shown in Fig. 4, the contributions from �a

� and �b
�

are such that the sum of them yields a constant, indepen-
dent of Pz and �. For � ¼ 0,�a

� and�
b
� have the maximum

and the minimum, respectively, at Pz ¼ 0. For � ¼ �
4 , �

a
�

is the whole answer and �b
� ¼ 0. For positive values of

momentum, Pz > 0, the amplitudes �a
� and �b

� show a

smooth behavior (see also the Appendix), while for nega-
tive values of Pz we observe the presence of a J-shaped
curve in the peak of �a

� matched by a similar J-shaped
curve in the valley of �b

�. We find that this J-shaped curve

of maximum/minimum is given by the function Pz ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffi
sð1�CÞ
2C

q
. This J-shaped curve is plotted in Fig. 5. On

this J-shaped curve, a stable maximum and minimum of
�a

� and �b
�, respectively, is present for the negative values

of momentum Pz, i.e.,

�a
� ¼ 1

2mð ffiffiffi
s

p �mÞ ;

�b
� ¼ � 1

2mð ffiffiffi
s

p þmÞ ;

�a
� þ �b

� ¼ 1

s�m2
:

(71)

The J-shaped curve does not exist for the positive values of
Pz because both amplitudes of �a

� and �b
� are monotoni-

cally dependent on the two independent variables Pz and �
for Pz > 0.
One interesting point to observe in this J-shaped curve

for negative values of momentum Pz is that it is stable in
the peak as well as in the valley as it is independent of the
mass and does not vanish as the momentum goes to
the negative infinity. Thus, if the limit �! �

4 is taken in

the exact correlation with Pz given by the J-shaped curve,

i.e., Pz ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
sð1�CÞ
2C

q
!C! 0 �1, then the connected contri-

bution to the current arising from the vacuum �b
�! �

4
does

not vanish but remains as a nonzero constant, i.e.,
� 1

2mð ffiffisp þmÞ ¼ � 1
2ð ffiffi2p þ1Þ 	 �0:207, although this nonzero

constant (i.e., the minimum of �b
�! �

4
) is cancelled by the

same magnitude of the constant (i.e., the maximum of
�a

�! �
4
) given by 1

2mð ffiffisp �mÞ ¼ 1
2ð ffiffi2p �1Þ 	 1:207 to yield the

total amplitude 1
s�m2 ¼ 1.

This may clarify the prevailing notion of the equivalence
between IFD and LFD in the IMF since it works for the
limit of Pz !1 but requires a great caution in the limit of
Pz ! �1. Although the IFD in IMF is entirely symmetric
between Pz ¼ 1 and Pz ¼ �1, there is a treacherous
point Pz ¼ �1 in LFD. As far as the limit of Pz ¼ �1

FIG. 4 (color online). Interpolating amplitudes.

FIG. 5. J-shaped curve of maximum/minimum for �a
� and �b

�.
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is taken off from the J-shaped curve, i.e., without the

specific correlation Pz ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
sð1�CÞ
2C

q
!C! 0 �1, then our

result of �b
�¼�

4
¼ 0 is valid. However, if the limit of

Pz ¼ �1 is taken exactly with this particular correlation,
then the result �b

�¼�
4
¼ 0 is not correct but should be

modified to be the nonzero minimum value of �b
�¼�

4
¼

� 1
2mð ffiffisp þmÞ � 0. In this sense, the J-shaped curve which we

find in this work is singular. Nevertheless, even in this case,
the sum of the two amplitudes �a

�¼�
4
þ �b

�¼�
4
remains

invariant as it should be.

V. CONCLUSIONS

In the present work, we discussed the fundamental
aspects of the time-ordered scattering amplitudes in rela-
tivistic Hamiltonian dynamics. Using the interpolating
angle between IFD and LFD, we presented a simple but
clear example of interpolating scattering amplitudes and
demonstrated a physical meaning of kinematical transfor-
mations introduced often formally in the stability group of
Poincaré transformations. We confirmed the well-known
IMF result [24] for the IFD and extended it for any arbi-
trary interpolating angle 0 � � < �

4 . We also showed that

the disappearance of the connected contributions to the
current from the vacuum in LFD is independent of the
reference frame and should be distinguished from the usual
IMF result. We demonstrated that the longitudinal boostK3

joins the stability group only in the LFD. We did this not
only using explicit expressions of kinematic transforma-
tion effects on the fundamental dynamical variables of
physical momenta but also discussing the interpolating
time-ordered scattering amplitudes. The addition of K3 in
the stability group is a great advantage of LFD in hadron
phenomenology [25].

Computing the individual time-ordered amplitudes for
the whole range of total momentum Pz and the interpolat-
ing angle �, we showed not only the invariance of the sum
of time-ordered amplitudes but also the behavior of each
individual time-ordered amplitude (see Fig. 4). Our work
demonstrates a rather clear distinction between the well-
known IMF result in IFD and the LFD result on the dis-
appearance of the connected contribution to the current
from the vacuum. Our result exhibits the J-shaped curve

given by Pz ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
sð1�CÞ
2C

q
which reminds us of a treacherous

zero-mode issue in LFD. The J-shaped curve provides a
correlation between the total momentum Pz and the inter-
polation angle �. It traces the maximum of the time-
ordered amplitude �a

0��<�
4
as well as the minimum of the

time-ordered amplitude �b
0��<�

4
. Thus, if one takes the

interpolating angle to the limit of �
4 in an exact correlation

with the limit Pz ! �1 following the J-shaped curve,
then one should be careful not to miss the contribution
from the minimum value of �b

0��<�
4
which must be

cancelled by the maximum value of �a
0��<�

4
. Although

our work is limited to a simple example without spins or
any other degrees of freedom except the particle momenta,
the results seem to offer interesting and significant aspects
of the relativistic Hamiltonian dynamics which interpo-
lates between IFD and LFD.
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APPENDIX: INTERPOLATING SCATTERING
AMPLITUDES IN INFINITE MOMENTUM FRAME

As we discussed in Sec. II, we can rewrite the interpolat-
ing time-ordered amplitudes in the same form as in the IFD
by changing the superscript 0 (i.e., the energy) to super-
script þ̂ as well as multiplying an overall factor C. Then it
follows that interpolating amplitudes become IFD ampli-
tudes as C! 1. In the LFD case as C! 0, the fraction

1
Pþ�qþ !1 due to the conservation of Pþ ¼ qþ, but the
multiplication of zero and infinity makes the finite 1

s�m2

just from the first diagram alone, while the second diagram
vanishes since the denominator Pþ þ qþ is nonzero. The
disappearance of the connected contributions to the current
arising from the vacuum atC ¼ 0 (LFD), i.e.,�b

�¼�=4 ¼ 0,

should be distinguished from the similar disappearance of
Z-graph in the IMF at C ¼ 1 (IFD). In this Appendix, we
apply the longitudinal boost T3 [see Eq. (44)] and take a
specific limit to an infinite momentum frame, viz.
ðPz; qzÞ � ðP3; q3Þ!1, in order to discuss more details
of the disappearance of the connected contributions for the
entire range of the interpolation angle 0 � � � �

4 .

First of all, let us consider the case of the IFD [see
Eq. (17)], where the longitudinal component of interest is
P�̂ ¼ Pz � P3, etc. The time-ordered diagram of Fig. 1 is
dependent on the reference frame,

�a
IFD ¼ 1

2q0

�
1

P0 � q0

�
: (A1)

From the dispersion relation q2 ¼ m2, the expansion of q0

for the IMF is given by

q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~q2 þm2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2z þ ~q2

? þm2
q

¼ qz

�
1þ ~q2

? þm2

2q2z
þO

�
1

q4z

��
: (A2)
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Similarly, from the dispersion relation P2 ¼ s, the expan-
sion of P0 for the IMF is given by

P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P2 þ s

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
z þ ~P2

? þ s
q

¼ Pz

�
1þ

~P2
? þ s

2P2
z

þO
�
1

P4
z

��
: (A3)

Substituting Eqs. (A2) and (A3) into Eq. (A1), we get

�a
IFD ¼ 1

2qz
n
1þ ~q2

?þm2

2q2z
þOð 1

q4z
Þ
o

�
8<
: 1

Pz � qz þ ~P2
?þs
2Pz

� ~q2
?þm2

2qz
þOð 1

q3z
; 1
P3
z
Þ

9=
;: (A4)

Due to the three-momentum conservation, Pz ¼ qz and
~P? ¼ ~q?, the result (A4) in the IMF limit yields

�a
IFD ¼ 1

2q0

�
1

P0 � q0

� ���!Pz¼qz !1 1

s�m2
: (A5)

Likewise, for the diagram of Fig. 2(b), we get

�b
IFD ¼ 1

2q0

�
1

P0 þ q0

� ���!Pz¼qz !1
0: (A6)

This reveals that the results (A5) and (A6) are frame
dependent.

Next, we consider what happens in the LFD case, where
we have P� ¼ Pþ and q� ¼ qþ. Independent of reference
frames, i.e., regardless of thePz value, the result is given by

�LFD � �a
LFD ¼ 1

2qþ

 
1

P� � ~q2
?þm2

2qþ

!

¼ 1

2qþP� � ð ~q2
? þm2Þ : (A7)

Since qþ ¼ Pþ, ~q? ¼ ~P?, we get

�LFD � �a
LFD ¼ 1

2PþP� � ~P2
? �m2

¼ 1

s�m2
: (A8)

This result is frame independent and thus valid even in the
IMF limit, or Pz !1.

Finally, let us consider the case of an arbitrary interpo-
lating angle in the range of 0< �< �

4 . The contribution of

diagram of Fig. 2(a) is given by

�a
� ¼ 1

2!q

 
1

Pþ̂ þ Sq�̂�!q

C

!
; (A9)

where !q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2�̂ þ Cð ~q2

? þm2Þ
q

. Since P�̂ ¼ q�̂ and

~P?̂ ¼ ~q?̂, we can rewrite these expressions as

�a
� ¼ 1

2!q

�
C

CPþ̂ þ SP�̂ �!q

�
;

!q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2�̂ þ Cð ~P2

? þm2Þ
q

:
(A10)

Using Eq. (13), we can further reduce the time-ordered
amplitude of Fig. 2(a) as

�a
� ¼ C

2!qP
þ̂ � 2!2

q

: (A11)

Since Pþ̂ ¼ P0 cos�þ P3 sin� from Eq. (7), we can
express P0 in terms of P3 using the dispersion relation
P2 ¼ s as

P0 ¼ P3 þ
~P2
? þ s

2P3
þO

�
1

ðP3Þ3
�

¼ Pz þ
~P2
? þ s

2Pz

þO
�
1

P3
z

�
: (A12)

Thus, we get

Pþ̂ ¼ Pzðsin�þ cos�Þ þ
~P2
? þ s

2Pz

cos�þO
�
1

P3
z

�
(A13)

and similarly

P�̂ ¼ Pzðsin�þ cos�Þ þ
~P2
? þ s

2Pz

sin�þO
�
1

P3
z

�
: (A14)

The result given by Eq. (A14) is used to evaluate !2
q,

!2
q ¼ P2

zðsin�þ cos�Þ2 þ ð ~P2
? þ sÞ sin�ðsin�þ cos�Þ

þ Cð ~P2
? þm2Þ þO

�
1

P2
z

�
; (A15)

which leads to

!q ¼ Pzðsin�þ cos�Þ þ ð ~P2
? þ sÞ
2Pz

sin�

þ ð ~P2
? þm2Þ
2Pz

ðcos�� sin�Þ þO
�
1

P2
z

�
; (A16)

where we used the identity

C � cos 2� ¼ cos 2�� sin 2�

¼ ðcos�þ sin�Þðcos�� sin�Þ:
Using all the ingredients to calculate the denominator, we
obtain
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2!qP
þ̂ � 2!2

q ¼ 2P2
zðsin�þ cos�Þ2 þ ð ~P2

? þ sÞðsin�þ cos�Þ2 þ Cð ~P2
? þm2Þ � 2P2

zðsin�þ cos�Þ2

� 2ð ~P2
? þ sÞðsin 2�þ sin� cos�Þ � 2Cð ~P2

? þm2Þ þO
�
1

P2
z

�
¼ Cðs�m2Þ þO

�
1

P2
z

�
: (A17)

This leads to

�a
� ¼ C

2!qP
þ̂ � 2!2

q

���!Pz !1 1

s�m2
: (A18)

For the diagram of Fig. 2(b), since

2!qP
þ̂ þ 2!2

q ¼ 4P2
zðsin�þ cos�Þ2 þ ð ~P2

? þ sÞð3sin 2�þ cos 2�2 þ 4 sin� cos�Þ
þ 3Cð ~P2

? þm2Þ þO
�
1

P2
z

�
; (A19)

we get

�b
� ¼ C

2!qP
þ̂ þ 2!2

q

���!Pz !1
0: (A20)
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