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Off-shell formulations of supergravities allow one to add closed-form higher-derivative super-invariants

that are separately supersymmetric to the usual lower-derivative actions. In this paper we study four-

dimensional off-shellN ¼ 1 supergravity where additional super-invariants associated with the square of

the Weyl tensor and the square of the Ricci scalar are included. We obtain a variety of solutions where the

metric describes domain walls, Lifshitz geometries, and also solutions of a kind known as gyratons. We

find that in some cases the solutions can be supersymmetric for appropriate choices of the parameters. In

some solutions the auxiliary fields may be imaginary. One may reinterpret these as real solutions in an

analytically continued theory. Since the supersymmetry transformation rules now require the gravitino to

be complex, the analytically continued theory has a ‘‘fake supersymmetry’’ rather than a genuine

supersymmetry. Nevertheless, the concept of pseudosupersymmetric solutions is a useful one, since the

Killing spinor equations provide first-order equations for the bosonic fields.

DOI: 10.1103/PhysRevD.87.065014 PACS numbers: 04.65.+e, 04.20.Jb

I. INTRODUCTION

The study of supersymmetric solutions in theories of
supergravity has proved to be extremely fruitful over the
years. Much of the focus has been on those supergravities
that are directly related to string theory or M theory, and
mostly at the level of the leading-order theories, such as
D ¼ 11 supergravity or the type IIA and IIB supergravities
in D ¼ 10. It is known that in string theory or M theory
these supergravities will receive higher-order corrections,
including, in particular, terms in the effective actions in-
volving higher powers of the curvature tensor. In fact, these
corrections are expected to continue to arbitrarily high
order in powers of the curvature. In general, it is inevitable
that once any higher-order terms are included in the ten- or
eleven-dimensional action, the process of supersymmetriz-
ing them will be an endless one, requiring corrections to
the action and to the transformation rules at all orders.

In dimensions D � 6, things can be rather different,
because in these cases there exist off-shell formulations
of certain supergravity theories. In such cases, the possi-
bility arises of being able to add a finite number of higher-
order terms to an existing supersymmetric action, in the
form of complete and self-contained super-invariants, such
that the resulting theory is fully supersymmetric in its own
right, and with no modifications to the original transforma-
tion rules. Such theories can provide interesting insights
into the effects of higher-order curvature terms on the
solutions of the theories, while retaining the advantages
of a theory that is self-contained and allowing the possi-
bility of obtaining corrected solutions in closed form.

Four-dimensional N ¼ 1 off-shell supergravities [1,2],
without higher-order curvature terms, were recently used to

obtain theories with rigid supersymmetry by taking a limit in
which gravity decoupled [3]. Further work leading on from
this, including the conditions for the existence of supersym-
metric solutions in the N ¼ 1 off-shell supergravity, were
studied in detail in Ref. [4], and certain explicit solutions
were presented. In Refs. [5,6], solutions were investigated
in the more general context of four-dimensional off-shell
N ¼ 1 supergravity with an additional Weyl-squared in-
variant. It had been shown in Ref. [7] that Einstein-Weyl
gravity has a critical point for a specific choice of the
coefficient of the Weyl-squared term, where the massive
graviton disappears and is replaced by a spin-2 mode with a
logarithmic falloff. It is a four-dimensional generalization
of chiral gravity in three dimensions [8]. The critical be-
havior of the off-shell supersymmetrization of Einstein-
Weyl gravity was studied in Ref. [9].
The focus in Refs. [5,6] was on solutions having the form

of Lifshitz or gyrating Schrödinger geometries. Amongst
the solutions obtained therewere supersymmetric examples.
There are in fact two independent off-shell super-invariants
involving quadratic-curvature terms that can be added in the
N ¼ 1 off-shell theory. In addition to the Weyl-squared
invariant already mentioned, there is one other quadratic-
curvature invariant, which involves only the square of the
Ricci scalar. In the present paper we shall look for super-
symmetric solutions, but within the wider class of N ¼ 1
off-shell supergravities involving both of these quadratic-
curvature invariants. The higher-order curvature invariants
play an essential role in the form of the solutions.
The paper is organized as follows. In Sec. II, we

review the four-dimensional N ¼ 1 off-shell supergrav-
ity, including all the super-invariants involving powers of
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curvature ranging from zero to four. For our purposes, it
suffices to present only the bosonic Lagrangian and the
supersymmetry transformation rule for the gravitino.
Owing to the global symmetry of certain of the super-
invariants and the way the scalar auxiliary fields S and P
couple with the auxiliary vector field A�, it is convenient to

refer to the off-shell supergravity as the U(1) theory.
Motivated by some of the solutions we obtain, it is also
natural to consider an analytically continued theory
in which the original auxiliary pseudoscalar and vector
fields P and A� become imaginary. The resulting bosonic

Lagrangian remains real, but the supersymmetry transfor-
mation rules require the gravitino to be complex, implying
that the theory, which we refer to as the O(1, 1) theory, is
actually a ‘‘fake supergravity.’’ In Sec. III, we find domain-
wall solutions supported by the auxiliary scalars and/or
the vector, and we study their supersymmetry. In the
process, we obtain all the supersymmetric anti-de Sitter
(AdS) vacua. Both supersymmetric singular domain walls
and wormholes can arise in these higher-order off-shell
supergravities.

In Sec. IV we consider Lifshitz solutions and list all
possible homogeneous Lifshitz vacua utilizing scalar and/
or vector auxiliary fields. We find that Killing spinors can
arise for suitable choices of parameters in the Lifshitz
solutions, but only in the case of the analytically continued
O(1, 1) theory. These solutions are therefore pseudosuper-
symmetric in the O(1, 1) fake supergravity. In Sec. V, we
obtain pseudosupersymmetric asymptotically Lifshitz
solutions in the O(1, 1) theory. In Sec. VI, we consider
homogeneous gyrating Schrödinger vacua in both the U(1)
and the O(1, 1) theories, and we tabulate the general
solutions. We then look for parameter choices giving rise
to Killing spinors, and find that these arise only in the U(1)
theory, implying the existence of supersymmetric gyrating
solutions. We extend the discussion in Sec. VII, to consider
a more general class of gyrating pp-wave solutions,
amongst which we find a large class of supersymmetric
solutions. The paper ends with conclusions in Sec. VIII.

II. N ¼ 1, D ¼ 4 OFF-SHELL SUPERGRAVITY

The field content of off-shellN ¼ 1,D ¼ 4 supergravity
comprises themetric ea�, a massive vectorA�, and a complex

scalar M ¼ Sþ iP, totalling 12 off-shell degrees of free-
dom, matching with that of the off-shell gravitino c �. The

general formalism for constructing a supersymmetric action
for any chiral superfield was presented in Ref. [10]. For
appropriate choices of superfields, one obtains the actions
of the supersymmetrizations of the cosmological term, the
Einstein-Hilbert term, and higher-order curvature terms.

The supersymmetrization of the Einstein-Hilbert term
was obtained in Refs. [1,2]. In this theory, the complex
scalar and the massive vector are both auxiliary, with purely
algebraic equations of motion. These fields can be integrated
out, giving rise to standard on-shell N ¼ 1, D ¼ 4

supergravity. One defining property of off-shell supergrav-
ity is that the supersymmetry transformation rules close
without needing to make use of the equations of motion.
This implies that one may construct new theories by adding
additional super-invariants, which can in general involve
higher-derivatives, without any modification to the super-
symmetry transformation rules. It turns out that there are
two quadratic-curvature super-invariants: one is the Weyl-
squared super-invariant and the other is the R2 super-
invariant [11]. In the former case, the scalars S andP remain
auxiliary whilst the vector A� acquires a kinetic term. In the

latter case, the scalars acquire derivative terms as well.
(Note that we shall continue to refer to Sþ iP and A� as

auxiliary fields, even though they start to propagate after the
higher-order super-invariants are included.) For our pur-
poses, we shall present only the bosonic Lagrangian and
the supersymmetry transformation rule for the gravitino.

A. The U(1) supergravity theory

Together with the supersymmetrization of the cosmo-
logical term [9], the bosonic action is given by

I ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�L0 þ �LS þ 1

2
�LC þ 1

2
�LR2

�
;

(2.1)

where �, �, �, and � are constants, and

L0 ¼ R� 2

3
ðM �M� A2Þ; M ¼ Sþ iP;

LS ¼ Mþ �M; LC ¼ C����C
���� � 2

3F
2;

LR2 ¼ R2 þ 4

3

�
A2 þ 1

2
M �M

�
Rþ 4ðr�A

�Þ2

� 4@�M@� �M� 4

3
iA�ð �M@�M�M@�

�MÞ

þ 4

9
ðM2 �M2 þM �MA2 þ A4Þ

¼ R2 þ 4

3

�
A2 þ 1

2
M �M

�
Rþ 4ðr�A

�Þ2

� 4jD�Mj2 þ 4

9
ðjMj2 þ A�A

�Þ2; (2.2)

where

F�� ¼ @�A� � @�A�; A2 ¼ A�A�;

F2 ¼ F��F��; D�M ¼ @�M� 1

3
iA�M;

D�
�M ¼ @�

�Mþ 1

3
iA�

�M: (2.3)

The LC and LR2 super-invariants were given in Ref. [11].
The constant � in general can be set to 1 by appropriate
scalings. However, it is convenient here to allow it to
remain arbitrary, to emphasize that the terms L0, LS,
LC, and LR2 are independent super-invariants, and each
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can be turned on or off independently. The supersym-
metry transformation rule for the gravitino is universal,
and given by

�c � ¼ �D�	� i

6
ð2A� � ���A

�Þ�5	

� 1

6
��ðSþ i�5PÞ	: (2.4)

The equation of motion for the complex scalar M is
given by

� 2

3
�Mþ �þ 1

2
�

�
2

3
MRþ 4hM� 4

3
ið2A�@�M

þMr�A
�Þ þ 4

9
Mð2M �Mþ A�A

�Þ
�
¼ 0; (2.5)

and the equation of motion for the vector A� is given by

0 ¼ 2

3
�r�F

�� þ 2

3
�A�

þ �

�
2

3
RA� � 2r�ðr�A

�Þ � 1

3
ið �Mr�M

�Mr� �MÞ þ 2

9
M �MA� þ 4

9
A2A�

�
: (2.6)

The Einstein equation of motion is

�E0
�� þ �ES

�� þ �EC
�� þ �ER2

�� ¼ 0; (2.7)

where

E0
�� ¼ R�� � 1

2
Rg�� þ 1

3
g��M �Mg�� þ 2

3

�
A�A� � 1

2
A2g��

�
; ES

�� ¼ � 1

2
g��ðMþ �MÞ;

EC
�� ¼ �ð2r�r� þ R��ÞC���� � 2

3

�
F2
�� � 1

4
F2g��

�
;

ER2

�� ¼ 2RR�� � 2r�r�Rþ 2hRg�� þ 4

3
A�A�Rþ 4

3
ðR�� �r�r�

þ g��hÞ
�
A2 þ 1

2
M �M

�
þ 4g��r�ðA�r�A

�Þ � 8Að�r�Þr�A
� � 4Dð�MD�Þ �Mþ 8

9
A�A�ðM �Mþ A2Þ

� 1

2
g��

�
R2 þ 4

3

�
A2 þ 1

2
M �M

�
Rþ 4ðr�A

�Þ2 � 4D�MD� �Mþ 4

9
ðM �Mþ A2Þ2

�
: (2.8)

Note that the derivatives of the complex scalar M that
appear in the action, D�M and D�

�M, are defined in
Eq. (2.3). Thus the complex scalar can be viewed as being
‘‘charged’’ under the U(1) vector. Furthermore, if we set
� ¼ 0 the complex scalar has a U(1) global symmetry,
M ! ei
M. For this reason, we shall refer to this action
as the U(1) theory.

B. The O(1, 1) ‘‘fake supergravity’’ theory

If we perform the field redefinitions

A� ¼ i ~A�; P ¼ �i ~P; (2.9)

where ~A� and ~P are taken to be real, the bosonic

Lagrangian remains real. We now have

L0 ¼R�2

3
ðM �Mþ ~A2Þ; M¼Sþ ~P; �M¼ S� ~P; LS ¼Mþ �M; LC ¼C����C

����þ2

3
F2;

LR2 ¼R2þ4

3

�
1

2
M �M� ~A2

�
R�4ðr�

~A�Þ2�4@�M@� �Mþ4

3
~A�ð �M@�M�M@�

�MÞþ4

9
ðM2 �M2�M �M ~A2þ ~A4Þ

¼R2þ4

3

�
1

2
M �M� ~A2

�
R�4ðr�

~A�Þ2�4D�MD�
�Mþ4

9
ðM �M� ~A2Þ2; (2.10)

where

D�M ¼ @�Mþ 1

3
~A�M;

D�
�M ¼ @�

�M� 1

3
~A�

�M;
(2.11)

and �, �, �, and � are constants. Thus we see that the
scalars are gauged in the original Weyl sense. The
Lagrangian, if we set � ¼ 0, is invariant under an O(1, 1)

global symmetry that acts as a boost on the scalars S and ~P.
We shall refer to this theory as the O(1, 1) theory.
The analytic continuation of the A� and P fields can

be thought of as a choice of a different ‘‘real section’’ of
the complexification of the original theory. The process
of complexifying a supergravity theory was discussed in
detail in Ref. [12]. If one first writes the theory in terms of
purely holomorphic functions of the original real variables
(in particular, in the fermionic sector, in terms of Majorana
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spinors with all conjugations being performed using the
Majorana rather than the Dirac conjugate), then almost
trivially the theory remains supersymmetric if all the
real fields are now allowed to become complex. Of course,
the action will now be complex also, and the numbers of
bosonic and fermionic degrees of freedom will be doubled.
The question then arises as to whether there exist alter-
native possibilities for choosing real sections, by imposing
appropriate conjugation conditions on all the fields, such
that one again obtains a real action and a consistent set of
supersymmetry transformation rules for a genuine super-
gravity theory. Finding a consistent choice of conjugation
conditions on the bosonic fields that results again in a real
bosonic action is a necessary part of this procedure. If one
can at the same time also impose a set of conjugation
conditions on the fermionic fields such that their action is
real and the supersymmetry transformations are consistent
with the conjugation properties, then one has arrived at a
genuine supergravity. If, on the other hand, it is not pos-
sible to impose such conjugation conditions on the fermi-
ons, then one has instead arrived at a ‘‘fake supergravity,’’
meaning in particular that the fermions are necessarily
complex rather than being purely real or purely imaginary.

In the present case of interest, it turns out that having
imposed our conjugation conditions A�

� ¼ �A� and

P� ¼ �P on the original, but now complexified, A� and

P fields, it is not possible to find a consistent choice of
conjugation section of the complexified fermion fields that
halves their degrees of freedom again. They must neces-
sarily remain complex, and so the O(1, 1) theory is there-
fore a ‘‘fake supergravity.’’ It is still of interest, however,
since it provides us with a real bosonic theory that admits
real bosonic ‘‘pseudosupersymmetric’’ solutions that obey
first-order equations following from the requirement of the
existence of complex pseudo-Killing spinors.

The pseudosupersymmetry transformation rule for the
off-shell gravitino is now given by

�c � ¼�D�	þ 1

6
ð2 ~A� ����

~A�Þ�5	� 1

6
��ðSþ�5

~PÞ	;
(2.12)

and the scalar equations of motion (2.5) become

� 2

3
�Sþ �þ 1

2
�

�
2

3
SRþ 4hSþ 4

3
ð2 ~A�@� ~Pþ ~Pr� ~A�Þ

þ 4

9
Sð2ðS2 � ~P2Þ � ~A2Þ

�
¼ 0;

� 2

3
� ~Pþ 1

2
�

�
2

3
~PRþ 4h ~Pþ 4

3
ð2 ~A�@�Sþ Sr� ~A�Þ

þ 4

9
~Pð2ðS2 � ~P2Þ � ~A2Þ

�
¼ 0: (2.13)

Since many of the solutions that we shall obtain arise
(with minor differences as noted) in both the U(1) super-
gravity theory and in the O(1, 1) fake supergravity theory,

we shall sometimes use the generic term ‘‘supersymmet-
ric’’ for both cases. It should always be understood that in
the case of the O(1, 1) theory the solutions are actually
pseudosupersymmetric rather than truly supersymmetric.

C. AdS4 vacua

There may exist several AdS4 vacua in which A� ¼ 0

and M is a constant. For the U(1) theory, the scalar
equations of motion imply�

�� 2

3
�M

�
þ 4

3
�M

�
�þ 1

3
M �M

�
¼ 0; (2.14)

and so the constant M must be real, i.e., P ¼ 0. The
equation is a cubic polynomial in S, and so it has at least
one real solution, with the possibility of three real solu-
tions. As we shall see later, the supersymmetric AdS4
vacuum has � ¼ � 1

3S
2.

TheAdS4 solution with P ¼ 0 ¼ A� is also a solution in

the O(1, 1) theory. In that theory, however, there also exists
a vacuum solution in which ~P is nonvanishing, provided
that � ¼ 0. A supersymmetric AdS4 can also arise in this
case, which we shall discuss in the next section.

III. SUPERSYMMETRIC DOMAIN
WALLS (MEMBRANES)

In this section, we construct supersymmetric domain-
wall solutions. The ansatz is given by

ds2 ¼ dr2 þ aðrÞ2dx�dx�; A ¼ �ðrÞdr;
S ¼ SðrÞ; P ¼ PðrÞ: (3.1)

Note that if A� were a massless gauge field, it would be

pure gauge. However, since A� is a massive field, the

ansatz is nontrivial. A natural choice for the vielbein is
e�r ¼ dr, e �� ¼ adx�. The only nonvanishing components
of the corresponding spin connection are then given by
! ��

�r ¼ ða0=aÞe ��, where a prime denotes a derivative with
respect to r. For the U(1) theory, the Killing spinor equa-
tions become

@r	þ i

3
�	þ 1

6
�rðSþ i�5PÞ	 ¼ 0;

@�	þ
�
1

2
a0 � i

6
a�

�
� �� �r	þ 1

6
a� ��ðSþ i�5PÞ	 ¼ 0:

(3.2)

A. Domain wall with a scalar potential

Let us first consider � ¼ 0 ¼ P, which applies for both
the U(1) and O(1, 1) theories. The solution is supersym-
metric provided that

S ¼ 3a0

a
: (3.3)
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The corresponding Killing spinor is subject to the
projection

ð��r þ 1Þ	 ¼ 0: (3.4)

We find that all the equations of motion then reduce to

�a2 � 2�aa0 þ 6�ðaa000 � a0a00Þ ¼ 0: (3.5)

If � ¼ 0 ¼ �, then the equations of motion simply
reduce to

aa000 � a0a00 ¼ 0; (3.6)

for which the general solution is given by

a ¼ a1 cosh krþ a2 sinh kr or

a ¼ ~a1 cos krþ ~a2 sin kr:
(3.7)

The second choice gives a solution with a naked power-law
singularity and we shall not consider it further. For the first
choice, we find that not only do AdS4 vacua with an
arbitrary cosmological constant arise, butAdS4 wormholes
can arise also.

If both � � 0 and � � 0, then the vacuum solution is
AdS4 with a ¼ exp ð�=ð2�ÞÞ. If � ¼ 0 but � � 0, the
vacuum solution is Minkowski spacetime with a being
constant. If � ¼ 0 and � � 0, neither AdS4 nor
Minkowski spacetime is a solution.

B. Domain wall with A� � 0

We now consider the case with nonvanishing � and P.
The existence of a Killing spinor implies

Uð1Þ theory: 1

2

�
a0 � i

3
a�

�
2 � 1

18
ðS2 þ P2Þ ¼ 0;

Oð1; 1Þ theory: 1

2

�
a0 þ 1

3
a ~�

�
2 � 1

18
ðS2 � ~P2Þ ¼ 0;

(3.8)

where in the O(1, 1) theory the ansatz for the vector field

becomes ~A ¼ ~�dr. We see that for the U(1) theory, the
solution cannot be real if � and P are nonvanishing. This
reality problem is resolved in the O(1, 1) theory.
Substituting the supersymmetry condition into the bosonic
equations of motion, we find that if we set S ¼ ~P, the
equations are reduced to

�aa0 � 3�ð5a0a00 þ aa000Þ ¼ 0: (3.9)

Note that as mentioned in Sec. II, turning on ~P means we
must have � ¼ 0. The function S ¼ ~P is determined by

�aS� 3�ð5a0S0 þ aS00Þ ¼ 0: (3.10)

Note that there is no back reaction of the scalars on the
metric, and hence the domain wall is supported by the
vector field alone.

It is clear from Eq. (3.9) that Minkowski spacetime
is a vacuum solution. It also admits an AdS solution with
a ¼ ekr, where

k2 ¼ �

18�
: (3.11)

IV. LIFSHITZ SOLUTIONS AND THEIR
(PSEUDO)SUPERSYMMETRY

In this section we study Lifshitz solutions following
from the ansatz

ds2 ¼ ‘2
�
dr2

r2
� r2zdt2 þ r2ðdx2 þ dy2Þ

�
;

A ¼ qrzdtþ p
dr

r
;

(4.1)

in the U(1) theory, where p, q and the scalars S and P are
constants. Note that since A� is massive, with no gauge

symmetry, the p term is nontrivial even though it is exact.
In the O(1, 1) theory the ansatz for the vector field becomes

~A ¼ ~qrzdtþ ~p
dr

r
; (4.2)

where A is now written as A ¼ i ~A with ~A, and hence ~q and
~p, being real.
Lifshitz solutions were proposed in Ref. [13] as gravity

duals for nonrelativistic field theories. (See also Ref. [14].)
Although Lifshitz solutions can be embedded in string
theories and supergravities [15–22], supersymmetric
Lifshitz solutions are rare. Lifshitz solutions arise naturally
in higher-derivative gravities. It was shown in Ref. [23]
that not only the homogeneous Lifshitz vacua, but also
asymptotically Lifshitz black holes can arise in Einstein-
Weyl gravity.

A. List of solutions

1. Solutions with A� ¼ 0

There are two classes of solutions with A� ¼ 0. The first

is when P ¼ 0, for which

� ¼ 2S

9‘2
ð2�zðz� 4Þ þ 3�ð3ðz2 þ 2zþ 3Þ � ‘2S2ÞÞ;

� ¼ 1

3‘2
ð2�zðz� 4Þ þ �ð6ðz2 þ 2zþ 3Þ � ‘2S2ÞÞ;

S2 ¼ 3ðz2 þ 2zþ 3Þ
2‘2

; or

S2 ¼ �zðz� 4Þ þ 3�ðz2 þ 2zþ 3Þ
2�‘2

: (4.3)

The second class is when P � 0. This implies that we must
have � ¼ 0. There are then two solutions:
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� ¼ �zðz� 4Þ
3‘2

; ~P2 � S2 ¼ 3ðz2 þ 2zþ 3Þ
‘2

;

� ¼ � �zðz� 4Þ
9ðz2 þ 2zþ 3Þ ; or � ¼ 0;

S2 þ P2 ¼ 3ðz2 þ 2zþ 3Þ
2‘2

; � ¼ � 4�zðz� 4Þ
9ðz2 þ 2zþ 3Þ :

(4.4)

Note that the first solution arises only for the O(1, 1)
theory. The second solution, which is presented for the
U(1) theory, can also be a solution in the O(1, 1) theory
provided that S2 þ P2—which then becomes S2 � ~P2—is
non-negative. For zðz� 4Þ ¼ 0, we must have � ¼ 0. This
implies that P ¼ 0, and hence the solution reduces to a
special case of Eq. (4.3).

Next, we shall consider solutions with nonvanishing A�.

We find that the reality of the solution typically tends to
select the O(1, 1) rather than the U(1) theory.

2. A� � 0 and � � 0

For nonvanishing �, we find that the equations of
motion imply that either p ¼ 0 or q ¼ 0. We then find
solutions as follows. First, we can take p ¼ 0 ¼ P, with q
nonvanishing. We find

~q ¼ z� 1; S ¼ zþ 2

‘
;

�‘2 ¼ �ðzþ 2Þ2 � 2�z; � ¼ 2�ðzþ 2Þ
3‘

;

(4.5)

~q ¼ z� 1; � ¼ �S2;

� ¼ 2�Sð‘2S2 þ 2ðzþ 2Þ2Þ
9‘2

;

3�zþ 2�ððzþ 2Þ2 � ‘2S2Þ ¼ 0;

(4.6)

~q2 ¼ ð3ðz2 þ 2zþ 3Þ � 2‘2S2Þ; � ¼ �S2;

� ¼ 2

3
�S3; z� ¼ 0:

(4.7)

Note that of the above three solutions, the first two are for
the O(1, 1) theory, with the ansatz for the vector now taking
the form Eq. (4.2). The third solution, with � ¼ 0, which is
presented for the O(1, 1) theory, could also be real in the
U(1) theory if the right-hand side of the expression for ~q2

were negative.
If instead q ¼ 0 ¼ P, we find that there is a solution in

the O(1, 1) theory, given by

~p¼ 9; z¼ 4; �¼ 108�

‘2
; �¼ 0; S¼ 0:

(4.8)

Now we consider the case with nonvanishing P. For this,
we find that the equations of motion always require that
� ¼ 0. For p ¼ 0, we find two solutions in the O(1, 1)
theory:

~q ¼ z� 1; S2 � ~P2 ¼ ðzþ 2Þ2
‘2

;

� ¼ 0; 2�z ¼ �ðzþ 2Þ2;
(4.9)

~q ¼ z� 1; S2 � ~P2 ¼ � 2ðzþ 2Þ2
‘2

;

�‘2 ¼ �2�ðzþ 2Þ2; �z ¼ 2�ðzþ 2Þ2:
(4.10)

For ~q ¼ 0, we find a solution in the O(1, 1) theory, given by

z ¼ 4; � ¼ �ð~p2 þ 6~pþ 81Þ
2‘2

;

� ¼ 2�~pð~p� 9Þ2
~P‘4

; S ¼ ð~pþ 9Þ2
12~p

~P;

~P ¼ � 6
ffiffiffi
2

p
~pð~p� 9Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið~pþ 3Þð~pþ 27Þð~p2 þ 6~pþ 81Þp :

(4.11)

3. A� � 0 and � ¼ 0

In this case, we find solutions in the O(1, 1) theory with
both ~p and ~q nonvanishing, given by

� ¼ �~pðzþ 2ÞðS� ~PÞ
‘2 ~P

; � ¼ 2�~pðzþ 2ÞðS2 � ~P2Þ
3‘2 ~P

;

~q2 � ~p2 ¼ 3ðz2 þ 2zþ 3Þ � ~pðzþ 2Þð2S� 3 ~PÞ
~P

;

S2 � ~P2 � ~pðzþ 2ÞðS� 3 ~PÞ
‘2 ~P

¼ 0: (4.12)

A special case arises if S ¼ ~P, implying � ¼ � ¼ 0 and
~q2 ¼ 3ðz2 þ 2zþ 3Þ.

B. (Pseudo)supersymmetry analysis

Having obtained a variety of Lifshitz solutions in
quadratic-curvature supergravity, we now examine their
(pseudo)supersymmetry. Since they arise mostly in the
O(1, 1) theory, we shall present the analysis within this
framework. For simplicity, and without loss of generality,
we shall set ‘ ¼ 1. A natural choice for the vielbein is
given by

e0̂¼ rzdt; ex̂¼ rdx; eŷ¼ rdy; er̂¼dr

r
; (4.13)

where we use hats to denote tangent-space indices. The
nonvanishing components of the corresponding torsion-
free spin connection are then given by

!0̂
r̂ ¼ ze0̂; !x̂

r̂ ¼ ex̂; !ŷ
r̂ ¼ eŷ: (4.14)
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The Killing spinor equations are

@t	þ1

2
zrz�0r̂�1

6
rzð2~q� ~p�0r̂Þ�5	þ1

6
rz�0̂ðSþ ~P�5Þ¼0;

@i	þ1

2
r�î r̂	þ

1

6
rð~p�î r̂� ~q�î 0̂Þ�5	þ1

6
r�îðSþ ~P�5Þ	¼0;

@r	�1

6
r�1ð2~pþ ~q�r̂ 0̂Þ�5	þ1

6
r�1ðSþ ~P�5Þ	¼0; (4.15)

where i ¼ x, y.
To establish the supersymmetry of a solution, one need

only demonstrate the existence of a Killing spinor, without
necessarily solving for it explicitly. This can be done by
examining the integrability conditions. We find that

0¼½@x;@y�	¼�xyUxy	; 0¼½@r;@i�	¼�riUri	;

0¼½@t;@i�	¼ rzþ1�0iUti	; 0¼½@r;@t�	¼ rz�1�r0Urt	;

(4.16)

where

Uxy ¼ 1

18
r2ð9þ ~p2 � ~q2 � S2 þ ~P2Þ

þ 1

9
r2ð3~pþ ð~q�0 � ~p�rÞðSþ ~P�5ÞÞ�5;

Uri ¼ 1

18
ð9� ~q2 � S2 þ ~P2Þ þ 1

6
~p�5

� 1

18
~p ~q�0r þ 1

9
ð~q�0 þ ~p�rÞðSþ ~P�5Þ�5;

Uti ¼ 1

18
ð9zþ ~p2 � S2 þ ~P2Þ

� 1

9
ð~q�0 þ ~p�rÞðSþ ~P�5Þ�5

þ 1

6
ððzþ 1Þ~pþ z~q�0rÞ�5 � 1

18
~p ~q�0r;

Urt ¼ 1

18
ð9z2 � S2 þ ~P2Þ � 1

9
ð~q�0 � ~p�rÞðSþ ~P�5Þ�5

� z

6
ð~pþ 2~q�0rÞ�5: (4.17)

It is now straightforward to verify whether the Lifshitz
solutions we have obtained are (pseudo)supersymmetric or
not. For the A� ¼ 0 solutions, we find from the integra-

bility conditions that the only supersymmetric solution is
the maximally supersymmetric AdS4 vacuum. In what
follows, we shall enumerate the supersymmetric solutions
with nonvanishing A�.

Let us first consider ~p ¼ 0 and ~P ¼ 0. We find that the
(pseudo)supersymmetric solutions in general satisfy

~q ¼ z� 1; S ¼ zþ 2: (4.18)

The Killing spinor satisfies the projections

�0�5	� 	 ¼ 0; �r	þ 	 ¼ 0; (4.19)

and so in general the solution preserves 1
4 of the (pseudo)

supersymmetry. It is clear that such a Lifshitz solution does
exist, given by Eq. (4.5). There are two cases where
a supersymmetry enhancement occurs. We find that
when z ¼ �2 or z ¼ 0, the fraction of preserved super-
symmetry is doubled to 1

2 , with now only the single pro-

jection given by

z ¼ �2: �0�5	� �r	 ¼ 0; z ¼ 0: �0�5	þ 	 ¼ 0:

(4.20)

Interestingly, there is a maximally (pseudo)supersym-
metric solution that is not AdS4. It is given by Eq. (4.7)
with z ¼ 0 and ~q ¼ �3, and hence S ¼ 0. Thus we have
� ¼ 0, and so the theory itself is constructed from only
quadratic super-invariants. The four Killing spinors can be
solved explicitly, and are given by

	 ¼
�
1� 1

2
rðx�x þ y�yÞð�r þ �0�5Þ

�
�;

� ¼ etffiffiffi
r

p �þ
1 þ e�t

ffiffiffi
r

p
��
1 þ et

ffiffiffi
r

p
�þ
2 þ e�tffiffiffi

r
p ��

2 ;

(4.21)

where ��
i are four constant spinors satisfying

ð�5� 1Þ��
i ¼ 0; ð�01� 1Þ��

1 ¼ 0; ð�01þ 1Þ��
2 ¼ 0:

(4.22)

Finally, we find that the solution (4.9) also preserves 1
4

of the (pseudo)supersymmetry. The Killing spinors are
subject to the constraints

ðSþ ~P�5 þ ðzþ 2Þ�rÞ	 ¼ 0; ð�0�5 þ �rÞ	 ¼ 0:

(4.23)

It is clear that this projection reduces to Eq. (4.19) when
~P ¼ 0. However, we nevertheless treat these as two sepa-
rate classes of solutions since turning on ~Pwill force � ¼ 0
in the bosonic equations of motion.
Thus we have obtained all the (pseudo)supersymmetric

Lifshitz solutions in the off-shell N ¼ 1 supergravities
that use both the quadratic super-invariants. The (pseudo)
supersymmetric Lifshitz solutions in Einstein-Weyl super-
gravity was obtained in Ref. [5].

V. (PSEUDO)SUPERSYMMETRIC
T2-SYMMETRIC SOLUTIONS

In this section, we construct pseudosupersymmetric
T2-symmetric solutions in the O(1, 1) theory. The ansatz
is given by

ds2¼dr2

f2
�a2dt2þr2ðdx2þdy2Þ; ~A¼�dt: (5.1)

This ansatz encompasses all the Lifshitz solutions we
obtained in the previous section that have ~p ¼ 0. We shall
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not include a term ~c ðrÞdr in the ansatz for the vector field
~A� here, because in this section we shall concentrate only on

the pseudosupersymmetric T2-symmetric solutions. As we
have seen in the previous section, there is no (pseudo)super-
symmetric Lifshitz solution that has nonvanishing ~p.

A. (Pseudo)supersymmetry conditions
and equations of motion

As in Ref. [5], the vielbein and the corresponding spin
connection are given by

er̂ ¼ f�1dr; e0̂ ¼ adt; ex̂ ¼ rdx; eŷ ¼ rdy;

!0̂
r̂ ¼

a0f
a

e0̂; !î
r̂ ¼

f

r
eî; ði¼ x; yÞ; (5.2)

where a prime denotes a derivative with respect to r.
The Killing spinor equations are given by

�
@t þ 1

2
a0f�0̂ r̂ �

1

3
��5 þ 1

6
a�0̂ðSþ ~P�5Þ

�
	 ¼ 0;

�
@r þ �

6af
�0̂ r̂�5 þ 1

6f
�rðSþ ~P�5Þ

�
	 ¼ 0;

�
@i þ 1

2
f�î r̂ þ

r�

6a
�0̂ î�5 þ 1

6
r�iðSþ ~P�5Þ

�
	 ¼ 0:

(5.3)

Following a similar strategy to the one we used for obtain-
ing supersymmetric Lifshitz solutions, we find that for
~P ¼ 0, the existence of a Killing spinor implies

~P ¼ 0: � ¼ ðra0 � aÞf
r

;
a0

a
¼ S

f
� 2

r
: (5.4)

The scalar equation then gives

3�� 2�Sþ 2�fð2SS0 þ 3f0S0 þ 3fS00Þ ¼ 0; (5.5)

and the vector equation of motion gives

0 ¼ r�ðrS� 3fÞ � �rðrS� 3fÞð2fS0 þ S2Þ
� �fðrfð3f00 � rS00Þ � rðrf0 þ 2rS� 3fÞS0
þ ðS� 3f0Þð5f� 2rS� rf0ÞÞ: (5.6)

The Einstein equations of motion are then all satisfied. The
Killing spinor is given by 	 ¼ ffiffiffi

r
p

	0, and it satisfies the
projection (4.19).

For ~P � 0, the existence of a Killing spinor implies that

~P � 0: � ¼ ðra0 � aÞf
r

; S2 � ~P2 ¼
�
a0

a
þ 2

r

�
2
f2:

(5.7)

The Killing spinor is again given by 	 ¼ ffiffiffi
r

p
	0, but now

satisfying the projections

�
Sþ ~P�5 þ

�
a0

a
þ 2

r

�
f�r̂

�
	 ¼ 0; ð�0�5 þ �r̂Þ	 ¼ 0:

(5.8)

For nonvanishing ~P, we find, after imposing the super-
symmetry conditions, that we must have � ¼ 0 and
furthermore that ~P is a constant multiple of S. This may
be parametrized as

~PðrÞ ¼ sin 
SðrÞ; (5.9)

where 
 is a constant. The scalar and vector equations now
become

0 ¼ �S� �ð3f2S00 þ 3f0S0 þ 2 cos
SS0Þ;
0 ¼ r�ðrS cos 
� 3fÞ � �r cos
ðrS cos
� 3fÞ

� ð2fS0 þ S2cos 2
Þ � �f½rfð3f00 � rS00cos 2
Þ
� rðrf0 þ 2rS cos
� 3fÞS0 cos

þ ð3f0 � S cos
Þðrf0 þ 2rS cos
� 5fÞ�: (5.10)

Note that when 
 ¼ 0we have ~P ¼ 0, but the equations are
reduced to the previous ~P ¼ 0 case only for � ¼ 0.

B. Some exact solutions

First, we consider the case where ~P ¼ 0. Setting � ¼ 2
and � ¼ 1, we obtain the solution

f ¼ r� r0; a ¼ ðr� r0Þ3
r2

; � ¼ 3ðr� r0Þ3r0
r3

;

(5.11)

provided that� ¼ 1=9. This is also a solution of conformal
supergravity with � ¼ � ¼ � ¼ 0 [5].
Now we consider instead the case where ~P � 0. In this

case, ~P is given by Eq. (5.9). One particularly simple
situation is when sin 
 ¼ 1 and hence ~P ¼ S. The general
solution for the metric functions is then given by

a2 ¼ 1

r4
; f2 ¼ c0 þ c1r

6 þ �r2

4�
: (5.12)

It appears unlikely that the equations (5.10) are solvable
exactly in general, and we have not found any further exact
solutions.

VI. GYRATING SCHRÖDINGER GEOMETRIES

In this section, we consider another class of homoge-
neous metrics, namely the gyrating Schrödinger geome-
tries [6]. The general ansatz is

ds2 ¼ ‘2
�
dr2 � 2dudvþ dx2

r2
� 2c2dudx

rzþ1
� c1du

2

r2z

�
;

A ¼ q
dt

rz
þ p

dr

r
; (6.1)
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with the scalars S and P being constant. In the case of
the O(1, 1) theory, the ansatz for the vector A will become

A ¼ i ~A, with

~A ¼ ~q
dt

rz
þ ~p

dr

r
: (6.2)

The solution is of Schrödinger type if c2 ¼ 0, and the term
c1 adds a further deformation to the Schrödinger metric.
The metric is AdS4 if z ¼ 1. There are two other Einstein
metrics, given by

z ¼ � 1

2
: c2 ¼ 0; z ¼ �2: c1 þ 1

2
c22 ¼ 0: (6.3)

The first solution above is the Kaigorodov metric [24].
When c2 ¼ 0, the z ¼ 2 solution has Schrödinger symme-
try and was proposed as a gravity dual for the Schrödinger
system [25,26]. The solutions of Refs. [25,26] make use
of a massive vector, which is absent in typical supergrav-
ities. However, a massive vector arises naturally in higher-
orderN ¼ 1, D ¼ 4 off-shell supergravity. AdS gyratons
were studied in Ref. [27]. Supersymmetric (gyrating)
Schrödinger solutions in Einstein-Weyl supergravity were
constructed in Refs. [6,28]. Note that the metric of the
gyrating Schrödinger solution (6.1) is homogeneous, as is
the Schrödinger metric.

We shall now present more general solutions that are not
themselves Einstein metrics. As in the case of Lifshitz
solutions, we shall present the bosonic solutions first, and
then study their supersymmetry.

A. A� ¼ 0

In this subsection, we list solutions where the massive
vector A� vanishes. It can be easily verified that if P � 0,

the scalar equations require that � ¼ 0. Thus we shall
consider first the case with P ¼ 0. For the Schrödinger
solutions (i.e., with c2 ¼ 0), we then have

S¼ 3

‘
: �¼ 9�þ2�zð1�2zÞ

‘2
; �¼ 18�þ4�zð1�2zÞ

‘3
;

�¼�S2: �¼ 2�Sð18þ‘2S2Þ
9‘2

;

2�ð‘2S2�9Þþ3�zð2z�1Þ ¼ 0:

(6.4)

For gyrating solutions, namely where c2 � 0, we find

S¼ 3

‘
: � ¼ 9���zðzþ 1Þ

‘2
; �¼ 18�� 2�zðzþ 1Þ

‘3
;

�ð2c1 þ c22Þzð1þ 2zÞ ¼ 0; (6.5)

� ¼ �S2: c1 þ 1

2
c22 ¼ 0; � ¼ 2�Sð18þ ‘2S2Þ

9‘2
;

3�zðzþ 1Þ þ 4�ð‘2S2 � 9Þ ¼ 0: (6.6)

Since P and A� are both vanishing here, it follows that

these solutions arise in both the U(1) and the O(1, 1)
theories.
Now consider the case with P � 0, for which we must

have � ¼ 0. We find two Schrödinger solutions:

S2þP2¼ 9

‘2
; �¼2

9
�zð2z�1Þ; �¼0; (6.7)

~P2 �S2 ¼ 18

‘2
; �¼ 1

18
�zð2z� 1Þ; �¼ �zð1� 2zÞ

‘2
:

(6.8)

In addition, there are two types of gyrating solution:

S2 þ P2 ¼ 9

‘2
: ð2c1 þ c22Þzð1þ 2zÞ ¼ 0;

� ¼ 1

9
�zðzþ 1Þ; � ¼ 0;

(6.9)

~P2 � S2 ¼ 18

‘2
: ð2c1 þ c22Þzð1þ 2zÞ ¼ 0;

� ¼ 1

36
�zðzþ 1Þ; � ¼ ��zðzþ 1Þ

2‘2
:

(6.10)

The solutions (6.7) and (6.9) are presented in the U(1)
theory, but they could also arise in the O(1, 1) theory,
with P ¼ �i ~P, provided that ~P2 is sufficiently small that
S2 � ~P2 remains non-negative. The solutions (6.8) and
(6.10) can only arise in the O(1, 1) theory.

B. A� � 0

When A� is turned on, as in the ansatz (6.1), we find that

the equations of motion imply the constraints

ðzþ 1Þ�pq ¼ 0: (6.11)

Solutions then arise as follows.

1. Case 1: � � 0

In this case, and if p ¼ 0 ¼ P, we find

S ¼ 3

‘
: q ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c1 þ c22

q
ðz� 1Þ;

� ¼ 1

2
‘� ¼ 9�� �zðzþ 1Þ

‘2
;

(6.12)

� ¼ �S2: � ¼ 2�Sð18þ ‘2S2Þ
9‘2

;

q ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c1 þ c22

q
ðz� 1Þ;

3�zðzþ 1Þ þ 4�ð‘S2 � 9Þ ¼ 0:

(6.13)

For p ¼ 0, but P � 0, we must have � ¼ 0. The
solutions are
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S2þP2¼ 9

‘2
:q¼3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c1þc22

q
ðz�1Þ;

�¼1

9
�zðzþ1Þ; �¼0;

(6.14)

~P2�S2¼18

‘2
: q¼3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c1þc22

q
ðz�1Þ;

�¼ 1

36
�zðzþ1Þ; �¼��zðzþ1Þ

2‘2
:

(6.15)

The first solution, written for the U(1) theory, can arise also

for the O(1, 1) theory with P ¼ �i ~P and A� ¼ i ~A�, pro-

vided that S2 � ~P2 is still non-negative. The second solu-
tion arises only in the O(1, 1) theory.

If instead q ¼ 0 and p � 0, we have

�¼2�pðP2þS2Þ
‘2p

;

�¼�ð6pSþ‘2PðP2þS2ÞÞ
3‘2P

;

ð�18þp2ÞPþ3pSþ‘2PðP2þS2Þ¼0;

12‘2pSðp2þS2Þ�Pðp2þ9Þðp2þ36Þ¼0;

c1¼�c22ðz�1Þð7zþ4Þ
4ð2zþ1Þð2z�1Þ ; z¼0;�1;�2;

(6.16)

for the U(1) theory. In the O(1, 1) theory, we have

�¼��~pð~p�3Þð~p�6Þ
~P

;

�¼ 1

2
�ð~p2þ3~pþ15Þ; z¼ 0;�1;�2;

S¼�ð~p2þ9~pþ18Þ ~P
2~p

;

~P2 ¼ 18~p2ð~p�3Þð~p�6Þ
ð~p2þ3~pþ18Þð~p2þ15~pþ18Þ ;

(6.17)

where now the ansatz for the vector field in Eq. (6.1) is

written in terms of the tilded field ~A�, as in Eq. (6.2). In the

cases z ¼ �1 and z ¼ �2 there is a further constraint,
namely

c1 ¼ � c22ðz� 1Þð7zþ 4Þ
4ð2zþ 1Þð2z� 1Þ : (6.18)

2. Case 2: � ¼ 0

In this case, we find that pq can be nonzero, and the
solution in the U(1) theory is given by

� ¼ 2�pðP2 þ S2Þ
‘2P

;

� ¼ �ð6pSþ ‘2PðP2 þ S2ÞÞ
3‘2P

;

18P� p2P� 3pS� ‘2PðP2 þ S2Þ ¼ 0;

2ðp4 � 63p2 þ 81ÞPþ 9pðp2 � 9ÞS
þ 3‘2ðP2 þ S2Þð9Pþ pS

� ‘2PðP2 þ S2ÞÞ ¼ 0: (6.19)

In the O(1, 1) theory, we have

� ¼ ��~pð~p� 3Þð~p� 6Þ
~P

;

� ¼ 1

2
�ð~p2 þ 3~pþ 15Þ;

S ¼ �ð~p2 þ 9~pþ 18Þ ~P
2~p

;

~P2 ¼ 18~p2ð~p� 3Þð~p� 6Þ
ð~p2 þ 3~pþ 18Þð~p2 þ 15~pþ 18Þ :

(6.20)

It is of interest to note that there is no restriction on the
parameters z, c1, and c2 in either of these solutions.

C. Supersymmetry analysis

To examine the supersymmetry of the solutions we have
obtained in this section, we choose the vielbein

eþ ¼ du; e� ¼ dv

r2
þ c2dx

rzþ1
þ c1du

2r2z
;

er̂ ¼ dr

r
; ex̂ ¼ dx

r
;

(6.21)

such that the metric is given by ds2 ¼ �2eþe� þ ex̂ex̂ þ
er̂er̂. Note that for simplicity we have set ‘ ¼ 1. The
corresponding spin connection has nonvanishing compo-
nents given by

!x̂
r̂ ¼ �ex̂ þ ðz� 1Þc2

2rz
eþ;

!x̂þ ¼ ðz� 1Þc2
2rz

er̂; !r̂� ¼ �eþ;

!r̂þ ¼ �ðz� 1Þc2
2rz

ex̂ � ðz� 1Þc1
r2z

eþ � e�;

!þþ ¼ �er̂;

(6.22)

and so the components of the Killing spinor equation are
given by
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0 ¼ @u	þ ðz� 1Þc2
4rz

�x̂ r̂	þ 1

2
�r̂þ	� ð2z� 1Þc1

4r2z
��r̂	þ 1

6

�
�þ þ c1

2r2z
��

�
ðSþ iP�5Þ	

þ i

6

�
q

rz
ð2þ �þ�Þ � p

�
�þr̂ þ c1

2r2z
��r̂

��
�5	;

0 ¼ @v	� 1

2r2
��r̂	� ip

6r2
��r̂�5	þ 1

6r2
��ðSþ iP�5Þ	;

0 ¼ @r	þ ðz� 1Þc2
4rzþ1

��x̂	þ 1

2r
�þ�	� iq

6rzþ1
��r̂�5	þ ip

3r
�5	þ 1

6r
�r̂ðSþ iP�5Þ	;

0 ¼ @x	� 1

2r
�x̂ r̂	� ðzþ 1Þc2

4rzþ1
��r̂	þ 1

6

�
1

r
�x̂ þ c2

rzþ1
��

�
ðSþ iP�5Þ	� i

6

�
q

rzþ1
��x̂ þ p

�
1

r
�x̂ r̂ þ c2

rzþ1
��r̂

��
�5	:

(6.23)

Having obtained the Killing spinor equations, we can
study the integrability conditions to determine whether
there exists a Killing spinor for a particular background.
The Killing spinor equations (6.23) can be expressed as

@u	¼U	; @v	¼ V	; @x	¼ X	; @r	¼ R	:

(6.24)

This implies, for example,

@v@u	¼@vU	þUV	; @u@v	¼@uV	þVU	; (6.25)

and so we have the following derivative-independent
equation on 	:

ð@vU� @uV þ ½U;V�Þ	 ¼ 0: (6.26)

There are in total six such equations, from the possible pairs
taken from fU;V; X; Rg. Examining these integrability con-
ditions for A� ¼ 0, we find that only the Schrödinger
solutions (i.e., with c2 ¼ 0) can have Killing spinors. For
these solutions, supersymmetry requires that S2 þ P2 ¼ 9,
and the Killing spinors satisfy the projections

��	 ¼ 0; �r̂	 ¼ 1

3
ðSþ iP�5Þ	: (6.27)

Thus there is one Killing spinor, and it depends on r only.
An interesting situation arises for these Schrödinger

solutions in the special case P ¼ 0; i.e., if S ¼ 3. It turns
out that the integrability conditions are then satisfied if 	
obeys just the single projection

��	 ¼ 0; (6.28)

which would suggest that there should be two Killing
spinors. However, one finds in this case that the Killing
spinor equations (6.23) themselves can only be solved if
the second projection condition

�r̂	 ¼ 	 (6.29)

is also satisfied, and so there is in fact only a single Killing
spinor in this special case too. This is an example, not often
encountered in practice in supergravity examples, where

the second-order integrability conditions obtained by com-
muting pairs of Killing-spinor derivatives are not sufficient
to determine the existence of solutions. In principle, one
might have to look at third-order integrability conditions or
beyond. (For a discussion of this in the supergravity con-
text, see Ref. [29].) Of course, if one explicitly constructs
the most general solution of the Killing-spinor conditions
themselves, it is not necessary to examine the higher-order
integrability conditions. In practice, as in this example,
projection conditions that one learns from the usual
second-order integrability conditions—even if they are
not providing the complete set of projections—can be
helpful when constructing the Killing spinors explicitly.
For A� � 0, we find that supersymmetry requires

p ¼ 0. There are two inequivalent solutions. The first is
given by

q ¼ � 3

2
c2ðz� 1Þ; c1 ¼ 0; S2 þ P2 ¼ 9: (6.30)

In this case, there is only one (constant) Killing spinor,
subject to the projection

�þ	 ¼ 0; �r̂	 ¼ 1

3
ðSþ iP�5Þ	: (6.31)

The second solution is given by

q ¼ 1

2
c2ðz� 1Þ; S2 þ P2 ¼ 9: (6.32)

There is again only one (constant) Killing spinor, subject to
the projections

��	 ¼ 0; �r̂	 ¼ 1

3
ðSþ iP�5Þ	: (6.33)

Comparing this with the solutions obtained in the pre-
vious subsection, it is straightforward to see that the solu-
tions (6.12) and (6.14) can be made supersymmetric. Both
Bogomol’nyi-Prasad-Sommerfield solutions in Einstein-
Weyl supergravity (P ¼ 0) were obtained in Ref. [6].
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VII. MORE GENERAL GYRATING SOLUTIONS

A. A general class of solutions

In general, we can consider the following most general
gyraton metrics:

ds2 ¼ ‘2
�
dr2 � 2dudvþ dx2

r2
� 2hðr; u; xÞdudx

�Hðr; u; xÞdu2
�
;

A ¼ �ðr; u; xÞduþ c ðr; u; xÞdr; S ¼ Sðr; u; xÞ;
P ¼ Pðr; u; xÞ: (7.1)

These become pp-waves when h ¼ 0. Such pp-wave solu-
tions in critical gravity and more general higher-derivative
gravities can be found in Refs. [30–32].

The general equations of motion are rather complicated
to present. There is no u derivative in any of the equations,
and so all ‘‘constants of integration’’ can trivially be taken
to be functions of u. For simplicity of notation, the freedom
to add such arbitrary u dependence will be understood, but
not explicitly indicated. A further simplification can be
achieved by considering cases where P ¼ 0 and S is a
constant, in which case two possible choices arise:

S2 ¼ 9

‘2
or S2 ¼ �

�
: (7.2)

The equations become completely solvable if we then
make the further assumption that the functions are all
independent of x, leading to the ansatz

ds2¼‘2
�
dr2�2dudvþdx2

r2
�2hðr;uÞdudx�Hðr;uÞdu2

�
;

A¼�ðrÞdt; S¼const:; P¼0: (7.3)

We then find that the functions �, h, and H are given by

� ¼ q1
rz

þ q2r
zþ1;

h ¼ h1r
�z�1 þ h2r

z þ h3r
�2 þ h4r;

H ¼ H1r
�z�1 þH2r

z þH3r
�2 þH4r� 1

2
h24r

4

� h1h4r
2�z � 1

2
h21r

�2z � h2h4r
3þz � 1

2
h22r

2zþ2

þ 2q21
9ðz� 1Þ2r2z þ

2q22r
2zþ2

9ðzþ 2Þ2 : (7.4)

For the constants, there are two possibilities:

‘2S2 ¼ 9; � ¼ 1

2
�‘ ¼ 9�� �zðzþ 1Þ

‘2
; (7.5)

or

� ¼ �S2; � ¼ 2�Sð18þ ‘2S2Þ
9‘2

;

3�zðzþ 1Þ þ 4�ð‘2S2 � 9Þ ¼ 0:
(7.6)

There exist two critical values of z, namely z ¼ 1 or
z ¼ �2, for which the solution degenerates. The functions
�, h, and H are now given by

� ¼ q1
r
þ q2r

2; h ¼ ðh1 þ h2r
3Þ log r

r2
þ h3 þ h4r

3

r2
;

H ¼ ðH1 þH2r
3Þ log r

r2
þH3 þH4r

3

r2
þ 2ð6q21 þ q22r

6Þ
81r2

þ 2q21 log rð4þ 3 log rÞ
27r2

� 2h21 þ 4h1h2r
3 þ 3h24r

6

6r2

� ð2h21 � 4h1h2r
3 þ 3h2h4r

6Þ log r
3r2

� ðh1 þ h2r
3Þ2ðlog rÞ2

2r2
: (7.7)

Logarithmic behavior can also arise when z ¼ �1=2,
for which we have

� ¼ ffiffiffi
r

p ðq1 þ q2 log rÞ;

h ¼ ðh1 þ h2 log rÞffiffiffi
r

p þ h3
r2

þ h4r;

H ¼ ðH1 þH2 log rÞffiffiffi
r

p þH3

r2
þH4r

þ 16

243
q1q2rð3 log r� 5Þ þ 8

729
q22rð3 log r� 2Þ2

� 1

18
rð�30h1h2 � 16h22 þ 18h1h4r

3=2 þ 9h24r
3

þ 18h2ðh1 þ h4r
3=2Þ log rþ 9h22ðlog rÞ2Þ: (7.8)

Note that for these solutions, the parameters h3 and H3 are
trivial.

B. Supersymmetry analysis

We shall choose the vielbein basis

eþ ¼ du; e� ¼ dv

r2
þ 1

2
Hduþ hdx;

er̂ ¼ dr

r
; ex̂ ¼ dx

r
:

(7.9)

The nonvanishing components of the spin connection are
then given by
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!x̂
r̂ ¼ �ex̂ �

�
rhþ 1

2
r2h0

�
eþ;

!x̂þ ¼ �
�
rhþ 1

2
r2h0

�
er̂;

!r̂þ ¼
�
rhþ 1

2
r2h0

�
ex̂ þ

�
H þ 1

2
rH0

�
eþ � e�;

!r̂� ¼ �eþ; !þþ ¼ �er̂:

(7.10)

The Killing spinor equations are

0 ¼ @u	� 1

4
ð2rhþ r2h0Þ�x̂ r̂	

þ 1

2
�r̂þ	� 1

4
ðH þ rH0Þ�r̂�	þ i

6
�ð�þ� þ 2Þ�5	

þ 1

6

�
�þ þ 1

2
H��

�
ðSþ iP�5Þ	;

0 ¼ @v	þ 1

2r2
�r̂�	þ 1

6r2
��ðSþ iP�5Þ	;

0 ¼ @r	þ 1

4
ð2hþ rh0Þ�x̂�	þ 1

2r
�þ�	

þ i

6r
��r̂��5	þ 1

6r
�r̂ðSþ iP�5Þ	;

0 ¼ @x	� 1

2r
�x̂ r̂	� 1

4
rh0�r̂�	þ i

6r
��x̂��5	

þ 1

6

�
1

r
�x̂ þ h��

�
ðSþ iP�5Þ	: (7.11)

For the solutions with P ¼ 0 that we considered earlier, it
is clear that if we turn off h and �, they then reduce to a
special class of AdS pp-waves and hence preserve 1

4 of the

supersymmetry, provided that S ¼ 3=‘. In fact, it was
shown in Ref. [33] that the most general pp-waves with
r, u, and x dependence and with A� turned off all preserve 1

4

of the supersymmetry. The Killing spinor satisfies the
projections

�r̂	 ¼ 	; ��	 ¼ 0: (7.12)

For nonvanishing � and h, Killing spinors with the same
projections (7.12) also exist, provided that

� ¼ � 1

2
ð2rhþ r2h0Þ: (7.13)

Thus the bosonic solution (7.4) becomes supersymmetric
provided that the condition

3

2
h4r

2 þ r�z

�
q1 � 1

2
ðz� 1Þh1

�

þ rzþ1

�
q2 þ 1

2
ðzþ 2Þh2

�
¼ 0 (7.14)

holds for all r. For generic z, we must therefore have

h4 ¼ 0; q1 ¼ 1

2
ðz� 1Þh1; q2 ¼ � 1

2
ðzþ 2Þh2:

(7.15)

For the critical solution (7.7), we find that supersymme-
try implies

q1 ¼ � 1

2
h1; h2 ¼ 0; q2 ¼ � 3

2
h4: (7.16)

For the z ¼ �1=2 solution (7.18), supersymmetry implies

h4 ¼ 0; q1 ¼ � 1

4
ð3h1 þ 2h2Þ; q2 ¼ � 3

4
h2:

(7.17)

Finally, we find that there exists another type of Killing
spinor, satisfying

�r̂	 ¼ 	; �þ	 ¼ 0: (7.18)

It requires that

� ¼ � 3

2
rð2hþ rh0Þ; 2H þ rH0 ¼ 0: (7.19)

Applying this condition to the three solutions, we find that
H1 ¼ H2 ¼ H4 ¼ 0, and that

Generic z: q1 ¼ 3

2
ðz� 1Þh1; q2 ¼ � 3

2
ðzþ 2Þh2; h4 ¼ 0;

z ¼ 1;�2: q1 ¼ � 3

2
h1; q2 ¼ � 9

2
h4; h2 ¼ 0;

z ¼ � 1

2
: q1 ¼ � 3

4
ð3h1 þ 2h2Þ; q2 ¼ � 9

4
h2; h4 ¼ 0:

(7.20)

VIII. CONCLUSIONS

In this paper, we have considered four-dimensional
N ¼ 1 off-shell supergravity including all four super-
invariants up to and including quadratic order in curvature.
These comprise a ‘‘cosmological term,’’ the Einstein-
Hilbert term, and two quadratic-curvature terms: one

formed using the square of the Weyl tensor, and the other

formed using the square of the Ricci scalar. In addition to

the graviton and the gravitino, the fields of the off-shell

multiplet include a complex scalar Sþ iP and a vector A�.

In the Einstein plus cosmological supergravity, the com-

plex scalar and the vector are auxiliary and possess no

physical degrees of freedom. The supersymmetric solution
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space is then rather limited. Examples of such solutions
were given in Ref. [4].

However, when the curvature-squared super-invariants
are included, the auxiliary fields can develop dynamics,
and in particular the vector becomes a massive Proca field.
For lack of a more satisfactory name, one may continue to
call these fields auxiliary, even though they may now
propagate. (The supersymmetry algebra still closes off-
shell, however.) In Einstein-Weyl supergravity, Lifshitz
solutions and also a new type of supersymmetric gyrating
Schrödinger solution were obtained in Refs. [5,6]. In this
paper, we included both of the curvature-squared super-
invariants, namely the one based on the square of the Weyl
tensor and the one based on the square of the Ricci scalar.
We found large classes of domain-wall solutions, as well as
Lifshitz and gyrating Schrödinger vacua. Amongst these
solutions, we found subsets that were supersymmetric or
pseudosupersymmetric. We also obtained (pseudo)super-
symmetric solutions that were asymptotic to the Lifshitz
and gyrating Schrödinger vacua. It is worth pointing out
that these supersymmetric solutions depend upon nontri-
vial contributions from the auxiliary fields. Thus the
mechanism for supersymmetry in our solutions is rather
different from that in an on-shell theory, where typically
supersymmetry is associated with a balance between mass
and conserved charges carried by form fields. In fact, the
massive vector that is essential for the supersymmetry has
no conserved charge.

The wealth of supersymmetric vacua of the AdS,
Lifshitz, and gyrating Schrödinger types leads to many
new avenues for investigation in off-shell higher-derivative
supergravities. They may provide a rich source of gravity
backgrounds for studying the correspondences of both
AdS/CFT and AdS/CMT physics. In particular, the

existence of supersymmetric Schrödinger and gyrating
Schrödinger vacua provides a supersymmetric framework
for studying nonrelativistic field theories. The inclusion of
higher-derivative terms generically requires that one spec-
ify additional boundary data in order to make the varia-
tional problem well defined. In the context of holography,
the additional data corresponds to a new operator in the
dual CFT, in addition to the stress-energy tensor which is
dual to the bulk metric.
For generic higher-derivative terms added to the action,

the dual operator has complex dimension and/or negative
norm, reflecting the fact that the addition of higher-
derivative terms violates unitarity. However, if the effects
from these higher-derivative terms are treated perturba-
tively, the corrections to the leading-order solution satisfy
second-order inhomogeneous differential equations, rather
than higher-order differential equations. Since the equa-
tions are of second order, only the field itself need be
specified on the boundary in order that the variational
problem be well defined. Within such a perturbative frame-
work, corrections to thermodynamic quantities and trans-
port coefficients from higher-derivative interactions have
been studied extensively in the context of the AdS/CFT
correspondence [34,35].
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[6] H. Lü and C.N. Pope, Phys. Rev. D 86, 061501 (2012).
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