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We investigate the appearance of arbitrary, regularization-dependent parameters introduced by diver-

gent integrals in two a priori finite but superficially divergent amplitudes: the Higgs decay into two

photons and the two-photon scattering. We use a general parametrization of ultraviolet divergences which

makes explicit such ambiguities. Thus we separate in a consistent way using implicit regularization the

divergent, finite, and regularization-dependent parts of the amplitudes which in turn are written as surface

terms. We find that, although finite, these amplitudes are ambiguous before the imposition of physical

conditions, namely, momentum routing invariance in the loops of Feynman diagrams. In the examples we

study, momentum routing invariance turns out to be equivalent to gauge invariance. We also discuss the

results obtained by different regularizations and show how they can be reproduced within our framework

allowing for a clear view on the origin of regularization ambiguities.
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I. INTRODUCTION

On the last 4th of July a new boson was announced using
its decay into two photons as one of the main channels of
discovery [1,2]. The immediate question that arose was
whether this new boson corresponds to the one predicted
by the Standard Model (Higgs boson) or not. To help
answer this question theoretical predictions (loop correc-
tions) on such decays must be set on consistent grounds.

Some time ago the W-loop calculation of the Higgs
decay into two photons was performed in the unitary gauge
and the result obtained [3] contradicted previous ones
found in the literature [4–6]. The reason pointed to by
the authors was the use of dimensional regularization
(DReg). Soon after many authors performed calculations
in the framework of dimensional regularization [7] and
lattice [8] and loop regularization [9]. In all cases the old
results were recovered shedding many doubts on the state-
ments presented in Ref. [3]. Other authors used cutoff
regularization [10,11] obtaining the same result of
Ref. [3] thus concluding that such regularization is non-
predictive if one works on the unitary gauge. Other works
were devoted to the discussion of the decoupling theorem
[12,13] questioning the reliability of the predictions made
in Ref. [3].

Contemporary to the work of Gastmans et al., another
paper questioned an old established result in the literature:
the cross section of the two-photon scattering [14].
Once again, doubts were raised against the use of

regularization. A work followed in which this issue was
explained [15] in the framework of dimensional and Pauli-
Villars regularization recovering the old results found in
the literature [16,17].
The aim of the present work is to revise these two

calculations with the purpose of illustrating that a priori
undefined quantum corrections in Feynman diagram cal-
culations, which entail regularization scheme dependence,
are the common denominator of such discussion. Such
arbitrarinesses must not be mistaken by finite parameters
related to the freedom of defining renormalization con-
stants to be fixed by renormalization conditions (i.e., the
choice of a renormalization point). We propose a general
parametrization valid at arbitrary loop order to handle such
ambiguities which acts on the physical dimension of the
theory, thus being particularly useful to dimensional spe-
cific models. Moreover an alternative exhibition of such
arbitrariness in terms of arbitrary n-loop integrals is pro-
posed. In this context such arbitrariness is expressed by
differences between divergent loop integrals with the same
degree of divergence and independent of external momenta
with the purpose of bringing about its physical interpreta-
tion, namely, its relation to momentum routing invariance
(MRI) in an arbitrary Feynman diagram. Some regulariza-
tions may break MRI, an inevitable consequence of
energy-momentum conservation at the vertices of
Feynman diagrams. The striking connection between mo-
mentum routing invariance and preservation of gauge sym-
metry was realized long ago by t’ Hooft and Veltman [18]
and Jackiw in Ref. [19] as well as by Elias et al. in
Ref. [20]. In Ref. [21] some of us established the interplay
between the vanishing of such arbitrary parameters ex-
pressed by surface terms and Abelian gauge invariance in
the framework of implicit regularization (IReg). In this
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four-dimensional method, regularization-dependent terms
(surface terms) can be extracted out in a consistent way,
allowing a clear discussion of the ambiguities involved in
the manipulation of divergent integrals. Such a scheme
may be generalized to arbitrary (integer) dimensions and
to arbitrary loop order in perturbation theory complying
with Lorentz invariance and unitarity as dictated by the
local Bogoliubov’s R operation based on the Bogoliubov,
Parasiuk, Hepp, and Zimmermann (BPHZ) theorem
[22–26]. Therefore, instead of just adding the result of a
different method to the literature we intend to show that the
discussions presented in Refs. [7–11] can all be explained
using just one framework.

The paper is organized as follows: In Sec. II we discuss
some regularization-dependent integrals and present our
parametrizations. Section III is dedicated to the calculation
of the Higgs decay into two photons in the unitary gauge.
In Sec. IV we discuss the result of two-photon scattering in
the framework of IReg. Finally, Sec. V is devoted to our
concluding remarks.

II. A GENERALVIEW OF
REGULARIZATION-DEPENDENT INTEGRALS

In this section we discuss on general grounds the issue of
regularization-dependent integrals leaving the physical
calculations of the Higgs decay as well as of the two-
photon scattering to subsequent sections. Proceeding this
way we hope to set the subject, both from a conceptual
and technical point of view, in a consistent and self-
contained way, allowing a clearer discussion of the
examples just cited.

As is well known, perturbative quantum field theoretical
calculations involve integration in the momentum loops
which must be regularized due to ultraviolet and some-
times infrared divergences. The renormalization program
consistently redefines physical degrees of freedom order by
order in perturbation theory. Symmetry requirements may
be either ensured by an invariant regularization or imposed
as constraint equations dictated by Ward-Slavnov-Taylor
identities order by order in the loops. Yet a little calcula-
tional tedious, the latter procedure is perfectly sound for
both anomaly free theories and models in which the quan-
tum symmetry breaking mechanism is well known.

A plethora of regularization schemes have been con-
structed to be used where gauge invariant DReg may fail,
namely, in the so-called dimensional specific theories
among which supersymmetric, chiral, and topological
quantum field theories figure in. A natural question would
be which basic properties should a method that does not
resort to analytical continuation in the space-time dimen-
sion retain in order to be invariant. We start by illustrating
with simple examples following [27]. Let � be the super-
ficial degree of divergence of a 1-loop integral where
the momentum k runs. Consider the following � ¼ 2
integrals,

A ¼
Z
k

k2

ðk2 �m2Þ2 ; (1)

and

B ¼ Iquadðm2Þ þm2Ilogðm2Þ; (2)

where
R
k �

R
d4k=ð2�Þ4 and we recover the standard

notation of implicit regularization

Ilogðm2Þ �
Z
k

1

ðk2 �m2Þ2 ; (3)

and

Iquadðm2Þ �
Z
k

1

ðk2 �m2Þ : (4)

We expect A ¼ B guaranteed by any regularization
procedure. However this is not the case. Proper-time regu-
larization [28], for instance, introduces a cutoff � after
Wick rotation via the following identity at the level of
propagators

�ðnÞ
ðk2 þm2Þn ¼

Z 1

0
d��n�1e��ðk2þm2Þ

!
Z 1

1=�2
d��n�1e��ðk2þm2Þ: (5)

Thus it is trivial to obtain within the proper-time method
that A � B since

A� ¼ �2i

ð4�Þ2 ð�
2 �m2 ln�2=m2Þ; (6)

whereas

B� ¼ �i

ð4�Þ2 ð�
2 � 2m2 ln�2=m2Þ: (7)

On the other hand it is straightforward to show that stan-
dard DReg leads to A ¼ B. To circumvent such discrep-
ancy the authors of Ref. [27] define an n-dimensional
integral

Ið�;�Þ ¼
Z n

k

1

ð�k2 þ �m2Þ ; (8)

with arbitrary � and �, in order to write

A ¼ � @

@�
Ið�;�Þj�¼�¼1;n¼4; (9)

and

B ¼ Ið�;�Þ
���������¼�¼1;n¼4

þ @

@�
Ið�;�Þ

���������¼�¼1;n¼4
: (10)

Then resorting to proper-time regularization one gets

Ið�;�Þ� ¼ ��n=2
Z n

k

1

ðk2 � �m2Þ

¼ ��n=2i

ð4�Þ2 ð�2 � �m2 ln ð�2=m2ÞÞ; (11)

from which is obtained
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An
� ¼ �i

ð4�Þ2
�
n

2
�2 � n

2
m2 ln ð�2=m2Þ

�
; (12)

and

Bn
� ¼ �i

ð4�Þ2 ð�
2 � 2m2 ln ð�2=m2ÞÞ: (13)

While keeping n ¼ 4 violates A ¼ B, the choices n ¼ 4 in
the term / ln�2 and n ¼ 2 in the term / �2 lead A to
coincide with B at regularized level. Yet arbitrary the
authors consider such a prescription, which is generaliz-
able to other integrals in Feynman amplitudes, a concrete
realization for a four-dimensional regularization. They
claim that Veltman in Ref. [29] already notices that qua-
dratic divergences are associated with n ¼ 2 whereas
logarithmic divergences have to be treated in n ¼ 4 in
DReg. Other authors have used a similar approach [30–32].

Let us now consider another related example. Consider
the effect of a shift in the integration variable of a four-
dimensional integral. As is well known such shifts accom-
pany surface terms in more than logarithmically divergent
integrals. Their value is highly regularization dependent.
For instance take the difference between two linearly
divergent integrals for ! ¼ 2:

�1 ¼
Z 2!

k

k�

½ðk� pÞ2 �m2�2 �
Z 2!

k

ðkþ pÞ�
½k2 �m2�2 : (14)

Clearly �1 ¼ 0 in DReg because in this method no surface
terms accompany shifts in the integration variable. In
Ref. [20] the authors generalize the procedure adopted by
Jauch and Rohrlich in Ref. [33] to evaluate �1 for !
exactly equal to 2. Their purpose was founded on the
physical motivation of constructing four-dimensional reg-
ularizations with properties compatible with DReg. By
defining

I2nþ1;r
�1...�2nþ1

¼
Z 2!

k

Q
2nþ1
j¼1 k�j

½ðk� pÞ2 �m2�r ; (15)

and

J2nþ1;r
�1...�2nþ1

¼
Z 2!

k

Q
2nþ1
j¼1 ðkþ pÞ�j

½k2 �m2�r ; (16)

it is shown in Ref. [20] that while I ¼ J for 2!þ 2nþ
1� 2r < 1, if 2> 2!þ 2nþ 1� 2r > 1 then

I2nþ1;r
�1...�2nþ1

� J2nþ1;r
�1...�2nþ1

¼ �ið2�Þ4�!Gn;2nþ1ðpÞ
�ð!Þ �r;!þn;

(17)

with

Gn;2nþ1ðpÞ ¼
g�j1

�j2
. . . g�j2n�1

�j2n
p�j2nþ1

�j1...j2nþ1

�ð!Þ�1�ð!þ nþ 1Þn!22n ; (18)

and

�j1...j2nþ1 ¼ �j1...j2nþ1ð�Þsignð�Þ: (19)

For n ¼ 0 we immediately obtain

�1 ¼ �i�2ð2�Þ4
2

�!2p�: (20)

A similar expression may be obtained for more than line-
arly divergent variable shifted integrals. It is evident from
above that the Kronecker delta signs a discontinuity in the
dimensionality !. The authors use these results to back up
an integer dimensional regularization called preregulariza-
tion where the freedom of momentum routing in the loops
is chosen to cancel out some surface terms, thus preserving
Ward identities in chiral anomalies or supersymmetry
[34–36]. A relevant question, given that shifts of integra-
tion variables are regularization dependent, would be to
verify whether the argument could be turned the other way
around, namely, to exploit the consequences of momentum
routing invariance over regularization schemes. Some
technicalities deserve attention. Symmetric integration in
n (integer) dimensions, namely, k�k	 ! g�	k

2=n, under

integration in k for divergent integrals does not hold in
general and has been a source of disagreements in loop
calculations, discussed as well in Ref. [37] in the context of
CPT violation in quantum field theory and used in Ref. [3]
to study the Higgs decay into two photons. In particular
symmetric integration was used in Ref. [33] to evaluate�1.
We proceed to write down a general parametrization for

loop integrals which incorporates explicitly arbitrary con-
stants which will be fixed on physical grounds. Later on we
propose an alternative description of ultraviolet (and infra-
red) divergences in terms of basic divergent integrals. In
such a description undetermined regularization-dependent
constants are expressed in terms of a special set of well
known surface terms, namely, integrals of total divergences
in momentum space, whose contact with momentum rout-
ing invariance in the diagrams is immediate as well as is
their generalization to arbitrary loop order. In order to
isolate the basic loop integrals from Feynman amplitudes,
an identity at the level of the integrand,

1

½ðkþpÞ2�m2�¼
XN
j¼0

ð�1Þjðp2þ2p �kÞj
ðk2�m2Þjþ1

þ ð�1ÞNþ1ðp2þ2p �kÞNþ1

ðk2�m2ÞNþ1½ðkþpÞ2�m2� ; (21)

can be judiciously used to extract external momentum
dependence from loop integrals. Such an operation at the
level of integrands somewhat resembles the renormaliza-
tion procedure originally proposed by BPHZ [22–25] in
which divergent Green functions are Taylor expanded up to
the order needed to reach convergent integrals. We assume
an implicit regulator under the integration sign which acts
on the physical dimension of the underlying theory avoid-
ing conflicts with space-time and internal algebras sensi-
tive to dimensional continuation. Consider the derivative of
Ilogðm2Þ in d (integer) space-time dimensions,
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dIlogðm2Þ
dm2

¼ � bd
m2

;
dI�	

log ðm2Þ
dm2

¼ �g�	

d

bd
m2

; (22)

where for future reference

bd ¼ i

ð4�Þd=2
ð�Þd=2
�ðd=2Þ : (23)

A general parametrization which obeys the relations above
is given by

Ilogðm2Þ ¼ bd ln

�
�2

m2

�
þ �1;

I
�	
log ðm2Þ ¼ g�	

d

�
bd ln

�
�2

m2

�
þ �0

1

�
;

(24)

where �1, �
0
1 are arbitrary dimensionless regularization-

dependent constants, � is an ultraviolet cutoff, and

I�	
log ðm2Þ ¼

Z
k

k�k	

ðk2 �m2Þ3 : (25)

In a similar fashion

dIquadðm2Þ
dm2

¼ ðd� 2Þ
2

Ilogðm2Þ;
dI�	

quadðm2Þ
dm2

¼
�
d

2

�
I�	
log ðm2Þ;

(26)

where the expression for I�	
quadðm2Þ is now clear, namely, a

basic quadratically divergent integral containing two-loop
momenta with Lorentz indices � and 	. Again, a parame-
trization that complies with the relations above is

Iquadðm2Þ ¼ ðd� 2Þ
2

�
�2�

2 þ bdm
2 ln

�
�2

m2

�
þ �3m

2

�
;

I�	
quadðm2Þ ¼ g�	

2

�
�0
2�

2 þ bdm
2 ln

�
�2

m2

�
þ �0

3m
2

�
; (27)

in which all regularization dependence is encoded in the
�’s. Some comments are in order. It is economical and
neat to write basic divergent integrals in terms of
fIlogðm2Þ; Iquadðm2Þ . . .g without Lorentz indices in internal

momenta, in other words expressing I
�	
log ðm2Þ and

I
�	
quadðm2Þ, etc., in terms of Ilogðm2Þ and Iquadðm2Þ, respec-
tively, both without resorting to symmetric integration and
in a regularization-independent way through surface terms.
For instance it is straightforward to show that

�
�	
0 �

Z d

k

@

@k�

k	

ðk2 �m2Þd2
¼ d

�
g�	

d
Ilogðm2Þ � I

�	
log ðm2Þ

�
; (28)

and

��	
2 �

Z d

k

@

@k�

k	

ðk2 �m2Þd�2
2

¼ ðd� 2Þ
�

g�	

ðd� 2Þ Iquadðm
2Þ � I�	

quadðm2Þ
�
: (29)

The surface terms �’s are regularization-dependent
terms which however can be shown to be physically mean-
ingful and therefore be fixed. That is because although the
intrinsic (regularization-dependent) parameters in loop in-
tegrals are indeed ambiguous, the well adjusted relation
between them expressed by the�’s is not. In other words in
the process of reducing the set of loop integrals to basic
divergent integrals it can be shown that the vanishing of
surface terms expressed by the �’s reflects momentum
routing invariance in the loops of a Feynman diagram
[21,38]. Attributing spurious values to such surface terms
is the root of quantum symmetry breaking by regulariza-
tions. Once we attach a physical meaning to them, as it is
proposed in the implicit regularization program, we may
regularize infinities in a regularization-independent fash-
ion because the renormalization constants can be defined in
terms of basic divergent integrals themselves. To see that
they are regularization dependent we can use the parame-
trizations (24) and (27) to obtain

�
�	
0 / g�	ð�1 � �0

1Þ; (30)

and

��	
2 / g�	½ð�2 � �0

2Þ�2 þ ð�3 � �0
3Þm2�: (31)

For instance in the four-dimensional case �
�	
0 ¼

g�	½i=8ð4�Þ2� and �
�	
2 ¼ g�	�2½i=4ð4�Þ2� in sharp

cutoff regularization [39] while they are both zero in
DReg. As for the examples we presented earlier, it is
immediate that A ¼ B within our approach because sum-
ming and subtracting m2 in the numerator of A leads to B.
Whenever even powers of internal momenta appear in the
numerator, one can always make use of such artifice to
avoid ambiguous symmetric integration [40]. As for �1 in
Eq. (14) one obtains within implicit regularization

�IR
1 ¼ �

�	
0 p	: (32)

In Ref. [21] we demonstrate that momentum routing in-
variance in Feynman diagrams (enforced by setting all
surface terms �’s to zero) leads automatically to Abelian
gauge invariance at arbitrary loop order.
For the sake of completeness we draw a few remarks

regarding renormalization and generalization to arbitrary
loop order in four space-time dimensions within this ap-
proach. To define a mass independent scheme we use the
regularization-independent relation

Ilogðm2Þ ¼ Ilogð
2Þ þ b ln

�

2

m2

�
; (33)

where 
 � 0 plays the role of renormalization group scale
(see Ref. [21] and references therein). After subtraction of
subdivergences according to BPHZ formalism we may
define the divergence of nth-loop order in terms of basic
divergent integrals for both massive and massless theories
[26] in the form
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IðnÞlogðm2Þ �
Z
k

1

ðk2 �m2Þ2 ln
n�1

�
�ðk2 �m2Þ


2

�
; (34)

which obeys

Iðnþ1Þ
log ðm2Þ ¼ Iðnþ1Þ

log ð
2Þ � b
Xnþ1

i¼1

n!

i!
ln i

�
m2


2

�
: (35)

Likewise

dIðnÞlogð
2Þ
d
2

¼�ðn�1Þ

2

Iðn�1Þ
log ð
2Þþbd


2
AðnÞ;

dIðnÞ�	
log ð
2Þ
d
2

¼�ðn�1Þ

2

Iðn�1Þ�	
log ð
2Þþg�	

2

bd

2

BðnÞ:

(36)

After some algebra one can demonstrate that the parame-
trization below respects (36),

IðnÞlogð
2Þ ¼ Xn
i¼1

ðn� 1Þ!
ði� 1Þ!

� ð�bdÞAðiÞ

ðn� iþ 1Þ! ln
n�iþ1

�
�2


2

�

þXn�i

j¼0

an�j�iþ1

j!ðn� j� iÞ! ln
j

�
�2


2

��
;

I
ðnÞ�	
log ð
2Þ ¼ g�	

2

Xn
i¼1

ðn� 1Þ!
ði� 1Þ!

� ð�bdÞBðiÞ

ðn� iþ 1Þ! ln
n�iþ1

�
�2


2

�

þXn�i

j¼0

a0n�j�iþ1

j!ðn� j� iÞ! ln
j

�
�2


2

��
; (37)

where

AðiÞ � �ðd=2Þlim
�!0

�
�ðn� 1ÞXn�2

l¼0

n� 2

l

 ! ð�1Þ1þl

�n�2

� �ð1��ðn� 2� lÞÞ
�ðd=2þ 1��ðn� 2� lÞÞþ

�
d

2

�Xn�1

l¼0

n� 1

l

 !

�ð�1Þ1þl

�n�1

�ð1��ðn� 1� lÞÞ
�ðd=2þ 1��ðn� 1� lÞÞ

�
;

BðiÞ � �ðd=2Þlim
�!0

�
�ðn� 1ÞXn�2

l¼0

n� 2

l

 ! ð�1Þ1þl

�n�2

� �ð1��ðn� 2� lÞÞ
�ðd=2þ 2��ðn� 2� lÞÞþ

�
dþ 2

2

�Xn�1

l¼0

n� 1

l

 !

�ð�1Þ1þl

�n�1

�ð1��ðn� 1� lÞÞ
�ðd=2þ 2��ðn� 1� lÞÞ

�
; (38)

and ai, a
0
i are arbitrary constants. The surface terms read

1

2

Xn
j¼1

�
2

d

�
j ðn� 1Þ!
ðn� jÞ! �

ðnÞ�	
0 ¼ �IðnÞ�	

log ð
2Þ þ g�	

2

Xn
j¼1

�
2

d

�
j

� ðn� 1Þ!
ðn� jÞ! I

ðl�jþ1Þ
log ð
2Þ: (39)

Generalization to an arbitrary number of Lorentz indices is
equally straightforward.

III. HIGGS DECAY INTO TWO PHOTONS

In this section we will study theW-loop contributions to
the Higgs decay into two photons. Using the unitary gauge
we have only three Feynman diagrams to evaluate (Fig. 1).
Notice that we are not choosing a specific routing for the
diagrams since we want to study how the final amplitude
depends on it.
The sum of the three diagrams can be simplified to the

expression (Feynman rules as well as the basic steps to
arrive at the equations below are presented in the
Appendix)1

M ¼ ie2gMw½MðaÞ
�	 þMðbÞ

�	 þMðcÞ
�	�ð�1�Þ�ð�2	Þ�

þ ðp1 $ p2; � $ 	Þ; (40)

MðaÞ
�	 ¼ � 4

M2
w

½g�	ðp1Þ�ðp2Þ�Ið3Þ�� þ ðp1 � p2ÞIð3Þ�	

� ðp1Þ	ðp2Þ�Ið3Þ�� � ðp2Þ�ðp1Þ�Ið3Þ	��
þ 2

M2
w

½g�	ðp1 � p2Þ � ðp2Þ�ðp1Þ	�Ið3Þ2 ; (41)

MðbÞ
�	 ¼

Z
k

3ðg�	k
2 � 4k�k	Þ

ðq21 �M2
wÞðq22 �M2

wÞðq23 �M2
wÞ

; (42)

MðcÞ
�	 ¼ 6g�	

�
ðp1 � p2ÞIð3Þ0 � ðp1Þ�Ið3Þ� �M2

w

2
Ið3Þ0

�
þ 6½2ðp1Þ	Ið3Þ� � ðp2Þ�ðp1Þ	Ið3Þ0 �; (43)

Ið3Þ0;2;�;�	 ¼
Z
k

1; k2; k�; k�k	

ðq21 �M2
wÞðq22 �M2

wÞðq23 �M2
wÞ

: (44)

As one may notice onlyMðaÞ
�	 and MðbÞ

�	 contain divergent
terms. At this point we must choose a regularization in order
to deal properly with such terms. We employ IReg, which
allows us to express divergent integrals in terms of loop
momenta only (for a review see Ref. [21] and references
therein). A characteristic of IReg is that all regularization-
dependent objects (surface terms) can be consistently
treated, allowing a clear discussion about ambiguities as
will be seen below. Explicitly they are given by

�
�	
0 ¼ g�	�0 ¼

Z
k

@

@k�

k	

ðk2 �M2
wÞ2

¼
Z
k

g�	

ðk2 �M2
wÞ2

� 4
Z
k

k�k	

ðk2 �M2
wÞ3

: (45)

Therefore the first term can be expressed as

1We define qi ¼ kþ �i, �qi ¼ kþ ��i,
R
k ¼

R
d4k
ð2�Þ4 and use

relations p2
i ¼ 0 and ðp1 þ p2Þ2 ¼ M2

h.
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MðaÞ
�	 ¼ ½ðp2Þ�ðp1Þ	 � g�	ðp1 � p2Þ�

M2
w

�
i

16�2
� 2�0

�
: (46)

The first point to be noticed is that this term is gauge
invariant and, in general, ambiguous since it depends on a
surface term. Another feature is that it does not depend on2

� which gives us a clue that it may be the term missing on
Ref. [3]. In fact, if one performs a symmetric regularization
in four dimensions (by replacing k�k	 ! g�	k

2=4), it will

be null. In other words a four-dimensional regularization
that resorts to such substitution evaluates the surface term
to a precise value, in this case i=32�2. On the other hand, if
one uses DReg the surface term will vanish which fur-
nishes a non-null amplitude in the limit ��1 ! 0. In the
framework of IReg there is no reason a priori to favor one
of these two values since we are dealing with ambiguous
objects in nature. From our perspective, physical condi-
tions, other than the regularization method, should con-
strain the value the surface term should assume. In general,
one such condition is to impose gauge invariance; however,
since this term is already gauge invariant, this considera-
tion will not fix it. Therefore, we should leave it arbitrary
and proceed with the calculation of the amplitude for now.
The sum of the two last terms is3

MðbÞ
�	 þMðcÞ

�	 ¼ i

16�2M2
w

½ðp2Þ�ðp1Þ	 � g�	ðp1 � p2Þ�

�
�
3��1

2
þ 3ð2��1 � ��2Þfð�Þ

2

�

þ g�	ðp1 � p2Þ
�
3��1

2M2
w

�0

�
: (47)

Readily one may notice the appearance of another sur-

face term due to MðbÞ
�	 which explicitly breaks gauge in-

variance. Since there are no other terms to consider, one

should impose gauge invariance as a physical condition
that the whole amplitude should fulfill. Thus the otherwise
arbitrary surface term must assume a precise value which
in our case is null. This choice also fixes the surface term
appearing in (46) since in the framework of IReg there is no
distinction between surface terms coming from integrals
with the same degree of divergence and the same Lorentz
structure. This approach is different from the one found in
Ref. [10] where a cutoff scheme is used and the ambigu-
ities are parametrized by different boundary conditions for
the integrals appearing in (46) and (47). Since the authors
of Ref. [10] consider that each integral is arbitrary and
integrals are unrelated to each other, they conclude that the
imposition of gauge invariance is not enough to give an
unambiguous result.
After all these considerations we obtain the amplitude

for the Higgs decay into two photons in the framework of
IReg,

M ¼ � e2g

16�2Mw

½ðp2Þ�ðp1Þ	 � g�	ðp1 � p2Þ�

� ½2þ 3��1 þ 3ð2��1 � ��2Þfð�Þ�ð�1�Þ�ð�2	Þ�;
(48)

which agrees with previous ones found in the literature
[4–6].
In the time this work was written another paper devoted

to this decay appeared [41]. Its authors have a point of
view similar to ours in the sense that ambiguities should
be fixed on physical grounds.4 They use the equivalence
theorem as well as the conservation of charge as inputs
that their amplitude must fulfill. Since these are conse-
quences of gauge invariance there is no surprise that just
the imposition of such a requirement gives us an unam-
biguous result.
Another interesting point discussed there is the role

played by momentum routing freedom. From their point
of view the loop momentum of the three diagrams must be

FIG. 1. Diagrams with arbitrary momentum routing �.

2We define � ¼ M2
h

4M2
w
.

3Where we define

fð�Þ ¼

8>>><
>>>:
arcsin 2ð ffiffiffi

�
p Þ for � � 1;

� 1
4

�
ln 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1���1

p
1�

ffiffiffiffiffiffiffiffiffiffiffi
1���1

p � i�

�
2

for � > 1:

4It should be emphasized that their definition of the ambiguity
is more closely related to the one found in Ref. [42]. We, on the
other hand, define it by (45), which is more closely related to the
preservation of Abelian gauge invariance [21].
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chosen in a particular way as to reduce the superficial
degree of divergence of the amplitude to a logarithmic
one.5 However, from our point of view MRI is a symmetry
that must be respected since it is connected with Abelian
gauge invariance as well as supersymmetry preservation
[21]. The importance of this statement is particularly clear
if, instead of considering the calculation of the whole
amplitude, one evaluates each diagram individually.
Following the reasoning of Ref. [21] one finds out that
momentum routing dependent terms will arise always
multiplied by arbitrary-valued objects (surface terms).
Therefore, since individual diagrams are not supposed to
be gauge invariant, the only symmetry left in order to fix
the ambiguities is demanding momentum routing invari-
ance. As can be seen, we could have adopted this approach
since the beginning of our work, avoiding completely the
discussion of gauge invariance (since the two symmetries
are connected it is not a surprise that the surface terms must
be null in both cases). However, in order to make contact
with the literature we performed the calculation of the
whole amplitude with the same routing for all three dia-
grams, which evidently is not the more general situation.
Therefore, it is not a surprise that our result is independent
of the momentum routing �1 even though we still have an
ambiguity expressed by �0.

IV. TWO-PHOTON SCATTERING

In this brief section we would like to comment on the
result found in Ref. [14]. As in the case just analyzed, the
problem lies on divergent integrals which appear as inter-
mediate steps of the calculation. Explicitly we have [15]

A�	�� ¼
Z
k

m4S�	��
1 þ 2m2ð2S�	��

2 � k2S�	��
1 Þ

ðk2 �m2Þ4

þ
Z
k

24k�k	k�k� þ ðk2Þ2S�	��
1 � 4k2S

�	��
2

ðk2 �m2Þ4 ;

(49)

where

S
�	��
1 ¼ g�	g�� þ g��g	� þ g��g�	;

S�	��
2 ¼ g�	k�k� þ g��k	k� þ g��k�k	 þ g�	k�k�

þ g�	k�k� þ g��k�k	: (50)

As can be readily seen, the integral above is divergent,
thus ambiguous. Such a statement is particularly clear

in the framework of IReg since it is evaluated to ð�ð2Þ
0 �

4�ð4Þ
0 ÞS�	��

1 where �ðiÞ
0 is a surface term coming from an

integral with Lorentz structure k	1 . . . k	i . Therefore, there

is no preferred value this integral should assume—it should
be left arbitrary being fixed by the imposition of physical
conditions. As discussed in Ref. [15], a non-null value for
A�	�� implies the breaking of gauge invariance which

means the surface terms must obey �ð2Þ
0 ¼ 4�ð4Þ

0 in order

to respect such symmetry. Thus, there is no ambiguity left
on the final amplitude which as expected agrees with
previous results found in the literature [15]. In summary,
as in the case of Ref. [3], the authors of Ref. [14] performed
a symmetric regularization on the integral above which in
turn gave a precise value to the surface terms (A�	�� ¼
ði=96�2ÞS�	��

1 ). Such a choice resulted in a different cross
section for the two-photon scattering than the one found
previously in the literature [16,17]. However, since the
integral is ambiguous in nature there is no reason to assume
a precise value for the surface terms which must be fixed on
physical grounds.

V. CONCLUDING REMARKS

In this work we studied the decay of the Higgs boson
into two photons as well as the two-photon scattering
amplitude. Both processes must have only finite correc-
tions since the photon does not couple with the Higgs
boson and neither with itself. However, in the intermediate
steps of the calculation one may encounter divergent
integrals and the issue of regularization is particularly
important in order to give a meaningful result. To discuss
the ambiguities inherent in such processes we used the
framework of implicit regularization which can consis-
tently separate the divergent, finite, and ambiguous part
of any integral. We found out that although the divergent
parts cancel as expected, there are some ambiguities left
(parametrized as surface terms). These should not be fixed
by the regularization scheme a priori, but should be left
arbitrary as has been determined by physical conditions. In
the cases studied here, the condition used was the gauge
invariance of the final result which univocally fixed the
surface terms thus recovering the amplitude for the Higgs
decay as well as the cross section of the two-photon
scattering found previously in the literature.
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APPENDIX A: SOME EXPLICIT CALCULATIONS
OF THE AMPLITUDE H ! ��

In this Appendix we will show how the terms presented
in the calculation of the Higgs decay into two photons can
be simplified. We will use the Feynman rules defined in
Fig. 2.

5They find that all three diagrams must contain the same
momentum routing. Therefore it is no surprise that our result
before regularization (44) contains at most logarithmic divergent
integrals since we also adopted the same momentum routing for
all three diagrams (�1).
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Defining qi ¼ kþ xi, �qi ¼ kþ �xi, and
R
k ¼

R
d4k
ð2�Þ4 , the diagrams of Fig. 1 are expressed as

M1 ¼ ie2gMw

Z
k

1

q21 �M2
w

�
�g�� þ q�1 q

�
1

M2
w

�
V���ð�p1;�q2; q1Þ 1

q22 �M2
w

�
�g�� þ q�2q

�
2

M2
w

�

� V	�ð�p2;�q3; q2Þ 1

q23 �M2
w

�
�g� þ q�3 q


3

M2
w

�
ð�1�Þ�ð�2	Þ�; (A1)

M2 ¼ ie2gMw

Z
k

1

q21 �M2
w

�
�g�� þ q�1 q

�
1

M2
w

�
U��	

1

q23 �M2
w

�
�g� þ q�3 q


3

M2
w

�
ð�1�Þ�ð�2	Þ�; (A2)

M3¼ ie2gMw

Z
k

1

q21�M2
w

�
�g��þq�1 q

�
1

M2
w

�
V	��ð�p2;� �q2;q1Þ 1

�q22�M2
w

�
�g��þ �q�2 �q

�
2

M2
w

�
�V��ð�p1;�q3; �q2Þ

� 1

q23�M2
w

�
�g�þq�3 q


3

M2
w

�
ð�1�Þ�ð�2	Þ�: (A3)

The strategy now is to classify the terms of the integrand according to their dependence on M�n
w .

FIG. 2. Feynman rules.
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1. Terms M�6
w

The term coming from M1, which we call Mð�6Þ
1 , is6

Mð�6Þ
1 ¼

�
q�1 q

�
1

M2
w

�
V���ð�p1;�q2; q1Þ

�
q
�
2q

�
2

M2
w

�

� V	�ð�p2;�q3; q2Þ
�
q�3 q


3

M2
w

� ð�1�Þ�ð�2	Þ�
Dðq22 �M2

wÞ
;

(A4)

where

1

D
� 1

ðq21 �M2
wÞ

1

ðq31 �M2
wÞ

: (A5)

Using that q�1 q
�
2V���ð�p1;�q2; q1Þð�1�Þ� ¼ 0 we ob-

tain a null contribution. A similar reasoning can be applied
to the term coming from M3.

2. Terms M�4
w

The diagramM1 has two contributions. However, one of

them is null [due to identity q�1 q
�
2V���ð�p1;�q2; q1Þ�

ð�1�Þ� ¼ 0] leaving us with the following term:

Mð�4Þ
1 ¼q�1 q

�
1

M2
w

V���ð�p1;�q2;q1Þð�g��Þ

�V	�ð�p2;�q3;q2Þq
�
3 q


3

M2
w

ð�1�Þ�ð�2	Þ�
Dðq22�M2

wÞ
: (A6)

With the help of identity

q�1 V���ð�p1;�q2; q1Þð�1�Þ�
¼ f�ðq2Þ�ðq2Þ� þM2

wg�� þ ½ðq2Þ2 �M2
w�g��gð�1�Þ�;

(A7)

we can separateMð�4Þ
1 into three terms. The first one is null

due to identity

q3q
�
2 V	�ð�p2;�q3; q2Þð�2	Þ� ¼ 0: (A8)

The second is proportional to M�2
w and will be treated in

the next section (we call it Mð�2;�4Þ
1 ). In the third one

(Mð�4;2dÞ
1 ) we cancel one of the denominators to obtain

Mð�4;2dÞ
1 ¼ q�1

M2
w

g��ð�g��ÞV	�ð�p2;�q3; q2Þ

� q�3 q

3

M2
w

ð�1�Þ�ð�2	Þ�
D

: (A9)

Performing the exchange p1 $ p2 and � $ 	 we ob-
tain the contributions from diagram M3. For diagram M2

we have

Mð�4Þ
2 ¼ q�1 q

�
1

M2
w

U��	

q�3 q

3

M2
w

ð�1�Þ�ð�2	Þ�
D

: (A10)

Summing Mð�4;2dÞ
1 þMð�4Þ

2 þMð�4;2dÞ
3 we obtain a null

result.

3. Terms M�2
w

The contributions coming from the diagram M1 are

Mð�2Þ
1 ¼ q�1 q

�
1

M2
w

V���ð�p1;�q2; q1Þð�g��ÞV	�ð�p2;�q3; q2Þð�g�Þ ð�1
�Þ�ð�2	Þ�

Dðq22 �M2
wÞ

þ ð�g��ÞV���ð�p1;�q2; q1Þ

� q
�
2q

�
2

M2
w

V	�ð�p2;�q3; q2Þð�g�Þ ð�1
�Þ�ð�2	Þ�

Dðq22 �M2
wÞ

þ ð�g��ÞV���ð�p1;�q2; q1Þð�g��ÞV	�ð�p2;�q3; q2Þ

� q�3 q

3

M2
w

ð�1�Þ�ð�2	Þ�
Dðq22 �M2

wÞ
: (A11)

We use identities

q�1 V���ð�p1;�q2;q1Þð�1�Þ�¼f�ðq2Þ�ðq2Þ�þM2
wg��

þ½ðq2Þ2�M2
w�g��gð�1�Þ�;

(A12)

q3V	�ð�p2;�q3; q2Þð�2	Þ� ¼ f�ðq2Þ	ðq2Þ� þM2
wg	�

þ½ðq2Þ2 �M2
w�g	�gð�2	Þ�;

(A13)

in order to separateMð�2Þ
1 into three terms:Mð�2;2dÞ

1 , which
has only two denominators, Mð0;�2Þ

1 , which is proportional
to M0

w, and Mð�2;3dÞ
1 .

As before, the diagram M3 furnishes similar contribu-
tions. The diagram M2 gives

6In the following we will omit the common factor ie2gMw as
well the integral in k.

(UN)DETERMINED FINITE REGULARIZATION- . . . PHYSICAL REVIEW D 87, 065011 (2013)

065011-9



Mð�2Þ
2 ¼

�
q�1 q

�
1

M2
w

U��	ð�g�Þ þ ð�g��ÞU��	

q�3 q

3

M2
w

� ð�1�Þ�ð�2	Þ�
D

: (A14)

Adding Mð�2;2dÞ
1 , Mð�2Þ

2 , and Mð�2;2dÞ
3 , we obtain a null result. Therefore, the remaining terms proportional to

M�2
w are Mð�2;3dÞ

1 , Mð�2;�4Þ
1 , and similar contributions from M3. Using now the definitions of qi and identities such as

ðq2Þ2 ¼ ½ðq2Þ2 �M2
w� þM2

w, these terms can be simplified to

Mð�2;3dÞ
1 þMð�2;�4Þ

1 ¼ Mð�2;divÞ
1 þMð0;finÞ

1 ;

Mð�2;divÞ
1 ¼ 2k2

M2
w

½g�	ðp1 � p2Þ � ðp2Þ�ðp1Þ	� ð�1
�Þ�ð�2	Þ�

Dðq22 �M2
wÞ

þ 4

M2
w

½�g�	ðp1Þ�ðp2Þ�k�k� þ ðp1Þ	ðp2Þ�k�k�

þ ðp2Þ�ðp1Þ�k	k� � ðp1 � p2Þk�k	� ð�1
�Þ�ð�2	Þ�

Dðq22 �M2
wÞ

; (A15)

Mð0;finÞ
1 ¼ f½g�	½�ðp2Þ�k� þ ðp1Þ�k��

� 2½�ðp2Þ�k	 þ ðp1Þ	k��g ð�1
�Þ�ð�2	Þ�

Dðq22 �M2
wÞ

:

(A16)

4. Terms M0
w

As before, the terms of order M0
w coming from diagram

Mi will be called Mð0Þ
i . Therefore, all the terms we have to

deal with are summarized below:

Mð0;�2Þ
1 ¼ ½ðq1ÞV	�ð�p2;�q3; q2Þ

þ ðq3Þ�V�	�ð�p1;�q2; q1Þ� ð�1
�Þ�ð�2	Þ�

Dðq22 �M2
wÞ

;

(A17)

Mð0;finÞ
1 ¼ f½g�	½�ðp2Þ�k� þ ðp1Þ�k��

� 2½�ðp2Þ�k	 þ ðp1Þ	k��g ð�1
�Þ�ð�2	Þ�

Dðq22 �M2
wÞ

;

(A18)

Mð0Þ
1 ¼ ð�g��ÞV���ð�p1;�q2; q1Þð�g��Þ

� V	�ð�p2;�q3; q2Þð�g�Þ ð�1
�Þ�ð�2	Þ�

Dðq22 �M2
wÞ

;

(A19)

Mð0;�2Þ
3 ¼ Mð0;�2Þ

1 ðp1 $ p2; � $ 	Þ; (A20)

Mð0;finÞ
3 ¼ Mð0;finÞ

1 ðp1 $ p2; � $ 	Þ; (A21)

Mð0Þ
3 ¼ Mð0Þ

1 ðp1 $ p2; � $ 	Þ; (A22)

Mð0Þ
2 ¼ ð�g��ÞU��	ð�g�Þ ð�1

�Þ�ð�2	Þ�
D

: (A23)

The last term can be expressed as

Mð0Þ
2 ¼ Mð0;1Þ

2 þMð0;3Þ
2 ; (A24)

Mð0;1Þ
2 ¼ 1

2
ð�g��ÞU��	ð�g�Þ ðq22 �M2

wÞ
Dðq22 �M2

wÞ
ð�1�Þ�ð�2	Þ�;

(A25)

Mð0;3Þ
2 ¼ Mð0;1Þ

2 ðp1 $ p2; � $ 	Þ: (A26)

Adding Mð0;�2Þ
1 , Mð0;finÞ

1 , Mð0Þ
1 , and Mð0;1Þ

2 together we

obtain

Mð0;�2Þ
1 þMð0;finÞ

1 þMð0Þ
1 þMð0;1Þ

2 ¼ Mð0;divÞ
t þMð0;finÞ

t ;

(A27)

Mð0;divÞ
t ¼ ½3ðg�	k

2 � 4k�k	Þ� ð�1
�Þ�ð�2	Þ�

Dðq22 �M2
wÞ

; (A28)

Mð0;finÞ
t ¼ 3g�	½2ðp1 � p2Þ � 2ðp1Þ�k� �M2

w�

þ 6½2ðp1Þ	k� � ðp2Þ�ðp1Þ	� ð�1
�Þ�ð�2	Þ�

Dðq22 �M2
wÞ

:

(A29)

Therefore, it can be easily seen that the termsMðaÞ
�	,M

ðbÞ
�	,

and MðcÞ
�	 are given by

Mð�2;divÞ
1 ¼ MðaÞ

�	ð�1�Þ�ð�2	Þ�; (A30)

Mð0;divÞ
t ¼ MðbÞ

�	ð�1�Þ�ð�2	Þ�; (A31)

Mð0;finÞ
t ¼ MðcÞ

�	ð�1�Þ�ð�2	Þ�: (A32)
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