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We formulate a model of Nf ¼ 4 flavors of relativistic fermion in 2þ 1d in the presence of a chemical

potential � coupled to two flavor doublets with opposite sign, akin to isospin chemical potential in QCD.

This is argued to be an effective theory for low energy electronic excitations in bilayer graphene, in which

an applied voltage between the layers ensures equal populations of particles on one layer and holes on the

other. The model is then reformulated on a spacetime lattice using staggered fermions, and in the absence

of a sign problem, simulated using an orthodox hybrid Monte Carlo algorithm. With the coupling strength

chosen to be close to a quantum critical point believed to exist for Nf < Nfc � 4:8, a range of � below

saturation is found where both the carrier density and a particle-hole ‘‘excitonic’’ condensate scale

anomalously with increasing �, much more rapidly that the corresponding quantities in free field theory,

while the conventional chiral condensate is strongly suppressed. The corresponding ground state is

speculated to be a strongly correlated degenerate fermion system, with a remnant Fermi surface distorted

by a superfluid excitonic condensate. The model thus shows qualitatively different behavior to any model

with � � 0 previously studied by lattice simulation.
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I. INTRODUCTION

The study of quantum systems containing a nonzero
density of conserved charge beyond perturbation theory
remains a challenging but fascinating problem. Estimating
Euclidean Green functions via Monte Carlo importance
sampling of the discretized path integral is rendered inop-
erable once �=T � 1, where � is the chemical potential
associated with the conserved charge such that the charge
density n ¼ @ lnZ=@�, because generically the integrand

e�SEð�Þ, with SE the action in Euclidean metric, is not
positive definite once� � 0. There remain a small number
of interesting problems with real SE which can be tackled
by orthodox methods: fermionic models such as Gross-
Neveu and NJL, which with� � 0 are either Fermi liquids
[1] or weakly interacting BCS superfluids [2,3]; certain
gauge theories with groups such as SU(2) [4] or G2 [5]
containing real matter representations; and QCD with non-
zero isospin density [6]. There is also a recent study of the
interacting relativistic Bose gas which deals with a com-
plex SE by sampling a complexified configuration space
using Langevin dynamics [7].

In the present paper we claim to add to this list a model of
strongly interacting fermions in 2þ 1d inspired by recent
developments in graphene. Recall that due to the special
properties of the honeycomb lattice (with just two isolated

zeros or ‘‘Dirac points’’ of the dispersion Eð ~kÞ in the first
Brillouin zone), low energy excitations of either electron
or hole nature are naturally described by a 2þ 1d Dirac
equation. For monolayer graphene, the counting of
degrees of freedom (2Dirac points�2Catoms per unit

cell�2electron spin components) results inNf ¼ 2 flavors

of 4-component relativistic spinor fields.Herewe consider a
model of bilayer graphene comprising Nf ¼ 4 relativistic

flavors, in which a biassing voltage is applied across the
layers so that a nonzero density of electrons is induced on
the negative sheet and an equal density of holes induced on
the positive. It will be shown in Sec. II that this is equivalent
to introducing an equal and opposite chemical potential �
on each sheet, so that the resulting relativistic effective
theory has an ‘‘isospin’’ chemical potential �I with two
‘‘u’’ and two ‘‘d’’ flavors. Just as for QCD, it is straightfor-
ward to show the resulting SE is real and positive so that
Monte Carlo simulation is applicable.
The role for numerical simulation becomes apparent once

interelectron interactions are considered. The Coulomb
interaction between charges in graphene is effectively en-
hanced by a factor vF=c � 300, where vF ¼ @E=@kjk¼kF is

the Fermi velocity of the charge carriers, which is constant
for a linear dispersion. Since in undoped graphene with
carrier density nc ¼ 0 only quantum fluctuation (namely
vacuum polarization) effects contribute to screening, the
resulting effective theory of relativistic electrons has an
effective fine structure constant �eff �Oð1Þ, albeit with a
noncovariant ‘‘instantaneous’’ interaction of the form
A0

�c�0c due to vF � c. This implies that the theory must
be treated as strongly interacting, and the possibility of non-
perturbative effects such as particle-hole condensation
h �c c i � 0, resembling chiral symmetry breaking and result-
ing in dynamical mass gap generation leading to a Mott
insulator phase, should be considered. Son [8], in the context
of a model withNf relativistic species and variable coupling
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strength �, has suggested that gap generation occurs for Nf

sufficiently small and � sufficiently large. Moreover, the
critical coupling �cðNfÞ defines a quantum critical point

(QCP) where the scaling of operators and correlation func-
tions inprinciple receive anomalous corrections,which could
for instance modify the linearity of the electron dispersion.

The scenario was tested in a Monte Carlo simulation
with 2þ 1d staggered fermions (at a QCP the underlying
lattice should become irrelevant) [9]; in the strong cou-
pling limit � ! 1 the QCP is found for Nfc ¼ 4:8ð2Þ.
Simulations incorporating a more realistic long-ranged
Coulomb interaction estimated �c ¼ 1:11ð6Þ [10] for the
case Nf ¼ 2 relevant for monolayer graphene, suggesting

there is a real possibility of gap generation for suspended
samples (the effective value of � is sensitive to the dielec-
tric properties of the substrate and is expected to be maxi-
mal when the substrate is absent). To date there is no
definitive experimental signal for chiral symmetry break-
ing or mass gap generation; however, nonlinearities in the
electron dispersion as a result of interactions have been
reported in Ref. [11]. Even if gap generation does not take
place, it is possible that physical graphene lies close to
the QCP in the chirally symmetric phase, implying
modifications to electron transport.

For the case of a voltage-biased bilayer a new condensa-
tion channel, between particles in one layer and holes in the
other, opens up; in what follows we will refer to this as
excitonic condensation. Because of the increasing density of
states, as the Fermi energy is raised this should become the
preferred channel even though interlayer interactions are
weaker than intra-layer ones. Once again, the result is gap
formation implying an insulating phase; since this can be
controlled by the external voltage the possibility of
graphene-based electronic components arises [12]. A self-
consistent treatment however, taking into account the en-
hanced screening due to Nf ¼ 4, finds the resulting gap

�=��Oð10�7Þ, suggesting that excitonic condensation
will be difficult to achieve experimentally [13].

Our purpose in this paper is to reexamine excitonic
condensation in the nonperturbative setting required by
the vicinity of a QCP.Wewill reformulate the lattice model
used for the investigation of the QCP in undoped graphene
in Refs. [9,14] to include Nf ¼ 4 continuum Dirac fermi-

ons and a nonzero isospin chemical potential � to repre-
sent the voltage bias. In order to formulate the model with a
local interaction on a 2þ 1d lattice, the interaction be-
tween fermions is forced to have the form of a contact
between local charge densities, schematically ð �c�0c Þ2,
and hence no long-range Coulombic tail. As argued in
Ref. [9], we expect that large vacuum polarization effects
make this irrelevant near the QCP (or equivalently in the
large Nf limit). The model is presented in detail in Sec. II.

An important and necessary simplification is that inter- and
intra-layer interactions between fermions have a common
coupling and hence the same strength. Since � � 0 boosts

the density of available particle-hole states, we again
expect this to become less relevant as � is increased.
In Sec. III we present results from numerical simulation

of the model on lattice volumes 323 and 483. Since it
supposedly describes a continuum effective theory in the
vicinity of a QCP it is difficult at this exploratory stage to
assign physical units to the simulation results, or even in
principle to know the physical anisotropy ratio at=as. We
choose a coupling strength close to the putative QCP for
Nf ¼ 4; since the strong-coupling limit is hard to isolate

for our formulation [15] this proves to be a nontrivial
exercise, and indeed we will see it appears our simulations
lie just in the chirally symmetric phase at � ¼ 0. Next, we
introduce� � 0 and monitor the chiral condensate, carrier
density and exciton condensate as it is increased. It will be
shown that excitonic condensation does indeed take place
and that both carrier density and exciton condensate con-
siderably exceed the values expected for free fermions
(augmented by a small symmetry-breaking source term),
whereas the chiral condensate is suppressed. We discuss
our findings in Sec. IV. Although the model is motivated by
condensed matter physics, we will argue the results are
of wider interest and yield perhaps the first insight into
Fermi surface physics in the presence of genuinely strong
interactions.

II. FORMULATION AND INTERPRETATION
OF THE MODEL

Here we outline the formulation of an effective field
theory for the graphene bilayer. Physically, the idea is
that there are Nf ¼ 2 flavors of relativistic fermion on

each monolayer, described by an action in Euclidean
metric [8,16]

Smono ¼
X

a¼1;2

Z
dx0d

2xð �c a�0@0c a þ vF
�c a ~� � ~rc a

þ iA0
�c a�0c aÞ þ 1

2e2

Z
dx0d

3xð@iA0Þ2; (1)

where e is the effective electron charge (whose value
depends on the dielectric properties of the substrate), and
the 4� 4 Dirac matrices satisfy f��; ��g ¼ 2���, � ¼ 0,

1, 2. Note that for this reducible representation of the Dirac
algebra there exist two independent matrices �3 and �5 �
�0�1�2�3 which anticommute with the �-matrices present
in (1). A0 is a fluctuating 3þ 1d electrostatic potential field
sourced by the charge density �c�0c and is a remnant of
the full electromagnetic field in the instantaneous approxi-
mation justified for vF � c.
Now, for a perfect bilayer formed from two monolayers

stacked in AB configuration with interlayer coupling
strength t0 �Oð0:1Þt where t is the hopping parameter in
the monolayer tight-binding Hamiltonian, it is known that
the dispersion relation for massless fermions in the low-
energy limit in the vicinity of the Dirac point is quadratic,
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only becoming approximately relativistic (i.e., linear) for
ka * t0=t [17]. For � � t the dispersion then takes the
expected form "2 ¼ ð�	 vFkÞ2 [18]. However, recent
theoretical studies of strained bilayers suggest that under
mechanical deformation the parabolic bands split to form
separate Dirac cones, so that in this case a description in
terms of Nf ¼ 4 relativistic species is not a bad approxi-

mation [19]. Our formulation makes the additional,
perhaps unwarranted, approximation that interactions be-
tween charge carriers on different layers are of identical
strength and character to interactions within a layer—the
necessity for this will become clear below.

The second ingredient of the model is that the layers are
given equal and opposite constant bias voltages 	�, in-
ducing on one layer a negatively charged concentration of
particles and on the other a positively charged concentra-
tion of holes. As the notation implies, the bias voltage is
equivalent to a chemical potential, and in fact the theory is
formally very similar to the case of QCD with isospin
chemical potential �I ¼ �1 ¼ ��2, where the subscripts
which here label the layers usually stand for the light quark
flavors u and d. Euclidean formulations of systems with
� � 0 are generally afflicted with a ‘‘Sign Problem,’’ i.e.,
the Lagrangian density L is no longer positive definite, or
even real, since the inequivalence under time reversal
translates into inequivalence under complex conjugation
in Euclidean metric. This makes Monte Carlo importance
sampling as a means to handle strongly fluctuating observ-
ables inoperable. However, the case of isospin chemical
potential is known not to have a Sign Problem and is hence
simulable using orthodox methods, as we shall now
demonstrate.

If we denote the fermion degrees of freedom on one
layer by c and on the other by �, define units so that
vF¼1, and write

P
�¼0;1;2@���þðiA0þ�Þ�0¼D½A;�
,

then the fermion part of the Lagrangian can be written

L ¼ ð �c ; ��Þ D½A;�
 þm ij

�ij D½A;��
 �m

 !
c

�

 !

� ��M�: (2)

Here we have introduced two new real parameters: m is an
artificial bare mass which induces a gap in the fermion
dispersion relations and whose sign has no physical con-
sequence for a single flavor in the absence of interactions; j
a source strength coupling c to �, thus linking the layers
and eventually enabling calculation of the exciton conden-
sate. In principle both m ! 0 and j ! 0 limits need to be
taken in order to make contact with physical bilayer
graphene. Integration over the Grassmann bispinors �,
�� then results in the functional measure detM½A
.
An important identity which the model inherits from the

gauge theory is

Dy½A;�
 ¼ �D½A;��
: (3)

It is then straightforward to check (assuming the dimension
of D is even) that

detM ¼ det ½ðDþmÞðDþmÞy þ j2
> 0; (4)

and

MyM

¼ ðDþmÞyðDþmÞ þ j2

ðDþmÞðDþmÞy þ j2

 !
;

(5)

implying both that

detMyM � det 2M; (6)

and also that the desired functional measure detM results
from integrating over bosonic fields � starting from a
nonlocal ‘‘pseudofermion’’ Lagrangian

L pf ¼ �y½ðDþmÞyðDþmÞ þ j2
�1�: (7)

This has the practical advantage that � has half as many
degrees of freedom as�, and makes Eq. (7) the appropriate
starting point for the design of a hybrid Monte Carlo
simulation algorithm.
The specific version of Dþm in our lattice model

employs single-component staggered fermion fields c x,
�x defined on the sites of a 2þ 1d square lattice, with a
noncompact formulation of the electrostatic potential Ax

formally defined on the link joining sites x and xþ 0̂,

ðDþmÞxy ¼
X
i¼1;2

�ix

2
½�y;xþ{̂ � �y;x�{̂


þ �0x

2
½ð1þ iAxÞe��y;xþ0̂

� ð1� iAx�0̂Þe���y;x�0̂
 þm�xy; (8)

where the signs ��x ¼ ð�1Þx0þ���þx��1 ensure Lorentz co-

variance in the long wavelength limit. It can be shown that
the relation between the number of staggered fields N
(counting c , � yields N ¼ 2) and the number Nf of

continuum Dirac 4-spinors is [20]

Nf ¼ 2N: (9)

It is worth noting the global symmetries present in the
model. For � ¼ m ¼ j ¼ 0 the continuum action (2) is

invariant under a U(8) rotation � � U�, ~� � ~�Uy

where ~� � i ���3�5. This symmetry is broken to ðUð4ÞÞ2
by � � 0, and then to ðUð2ÞÞ4 by m � 0. Setting the
interlayer coupling j � 0 with m ¼ 0 locks the c and �
components together, so that in this case the residual
symmetry is U(4). For the staggered lattice fermions of
(8) the original symmetry is Uð2Þ � Uð2Þ", where the sec-
ond rotation can be written as Uð�; xÞ ¼ exp ði"x�a�aÞ,
where �a is one of the four Hermitian generators of U(2)
and "x � ð�1Þx0þx1þx2 . Setting � � 0 breaks this to
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ðUð1Þ � Uð1Þ"Þ2, followed bym � 0, j ¼ 0 to ðUð1ÞÞ2, and
m ¼ 0, j � 0 to Uð1Þ � Uð1Þ".

The fermion action is supplemented by a Gaussian
weight for the A fields

Saux ¼ N

4g2
X
x

A2
x; (10)

where g2 is a parameter governing the strength of
the coupling between the potential and the fermions. The
resulting dynamics describes A fluctuations having the
same form as the continuum action (1) in the strong-
coupling or large-Nf limits, but for which explicit screen-

ing removes the long-ranged r�1 tail away from these
limits; further justification for this approximation is given
in Refs. [9,14]. For Nf ¼ 2 this formulation yields an

identical path integral to the lattice action couched in terms
of compact link variables given in Eq. (7) of Ref. [14]. For
Nf > 2, however, the two approaches are not equivalent

since the compact formulation leads to extra terms of the
form ð �c c ���Þ2 in the effective action—although these
operators may well be irrelevant at the critical point. The
exact lattice version of the noncompact action for � ¼ 0
and arbitrary Nf once A is integrated out is given in

Eq. (2.2) of Ref. [21]. Another consequence of the non-
compact formulation is the violation of reflection positiv-
ity; indeed, the absence of unitarity in similar models in the
strong-coupling limit g2 ! 1 has been discussed exten-
sively in Refs. [15,22]. We note that graphene models with
compact link variables have formulated directly on honey-
comb lattices in Refs. [23,24].

Next we discuss the implications of relaxing the require-
ment that inter- and intra-layer interactions between fer-
mions are identical. The nontrival terms in the action are of
the form �cUe�c , �cU�e��c , where U is a complex
number not constrained to have unit modulus. Integration
over U leads to repulsive particle-particle and hole-hole
interactions, and attractive particle-hole interactions.
Suppose we wanted to make the model more realistic by
introducing a distinction between intra-layer and interlayer
interactions. One way to do this would be to introduce a
second boson field coupling to c and � with opposite
signs, in effect introducing repulsion between c -particles
and �-holes so that the �c -� and ��-c couplings are
weaker than those of �c -c or ��-�. The interaction terms
could then be written �c xUVe�c xþ0̂,

��xUV�e���xþ0̂,

� �c xU
�V�e��c x�0̂, � ��xU

�Ve��x�0̂, etc. In the limit

V ! 1 integration over c , �c leads to a factor detD½�
,
while integration over �, �� gives detD½��
. With the
help of (3) we confirm the resulting functional measure
detD½�
Dy½�
 is positive definite. In the limit U ! 1,
however, the same process leads to detD½�
D�½��
 ¼
det 2D½�
, which is no longer positive definite. In other
words, attempting to make the model more realistic rein-
troduces a Sign Problem, although a more detailed study
would be needed to determine its severity.

Now let us discuss observables. The usual chiral con-
densate (which has been called the exciton condensate in
our earlier work [9,14]) is given by

h ���i � @ lnZ
@m

¼ h �c c i � h ���i: (11)

Note the sign of the condensate is not physical, and that the
two terms on the rhs of (11) give equal contributions. From
the discussion above it should be clear that for � � 0
formation of this condensate spontaneously breaks ðUð1Þ �
Uð1Þ"Þ2 to ðUð1ÞÞ2, resulting in two Goldstone modes in
the limit m ! 0, j ! 0. The exciton condensate discussed
in Ref. [13] and which is the main focus of this paper is
given by

h��i � @ lnZ
@j

¼ ih �c�� ��c i: (12)

In this case the symmetry breaks to Uð1Þ � Uð1Þ" implying
the same number of Goldstones. In fact for � ¼ 0 and

m ¼ j, h ���i and h��i are physically indistinguishable,
both being equivalent to the chiral condensate of theNf¼2

theory. Figure 1 below confirms that with � ¼ 0 our code

generates results consistent with h ���i=h��i � m
j .

With � � 0 we next define the charge carrier density

nc � @ lnZ
@�

¼ h �cD0c i � h ��D0�i: (13)

Once again, both terms on the rhs give equal contribu-
tions—the first term represents the density of electrons in
layer 1, and the second the density of holes in layer 2.
Figure 1 shows the results of a pilot run on 83 at g�2 ¼

0:4 andma ¼ 0:05. For ja ¼ 0:05 the two condensates are
degenerate at � ¼ 0 as argued above. As � increases, our
naive expectation is that a Fermi surface of radius � forms
on each layer, one containing particles, the other holes,
implying nc / �2. As � grows, c �c and � �� pairing are

0 0.2 0.4 0.6 0.8
µ

0

0.05

0.1

0.15

0.2

<ΨΨ>  j=0.05
<ΨΨ>  j=0.10
<ΨΨ>  j=0.05
<ΨΨ>/2  j=0.10
n

c
/10  j=0.05

n
c
/10  j=0.10

FIG. 1 (color online). Fermion condensates as a function of �
at g�2 ¼ 0:4 on 83 with bare mass ma ¼ 0:05, ja ¼ 0:05, 0.1.
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suppressed because a free particle-hole pair costs energy
2� to create at either Fermi surface, whereas c �� pairing is
promoted, because it costs zero energy to create a particle
on one Fermi surface and a hole at the other, with the

density of states at either increasing / �. Thus h ���i
decreases as � rises from 0, while h��i increases. The
rise in h��i seems to be relatively more pronounced for
smaller j. This trend persists until �at ’ 0:3. What hap-
pens after that should be understood in terms of saturation,
an artifact which sets in when the fermion density is a
significant fraction of its maximal value of one per lattice
site. With our normalization of nc this sets in for �at ’
0:5, a surprisingly small value based on experience with
other models. In a saturated world fermion excitations of
all kinds are kinematically suppressed, and the condensates
tend to zero in this limit.

III. NUMERICAL RESULTS

Our strategy in this paper is to investigate the effect of
varying � in our bilayer model (8) and (10) starting close
to the quantum critical point. The first task is to find the
coupling g2c where the QCP is located for Nf ¼ 4; we use

the approach [9,15] of searching for a maximum of h ���i
as g�2 is varied and identifying that with the strong cou-
pling limit of the continuum model. We then assume
g�2
c * g�2

peak, since if the value Nfc ¼ 4:8ð2Þ obtained in

Ref. [9] is universal there should only be a narrow range of
g�2 corresponding to the chirally broken phase. The results

for h ���ðmÞi in Fig. 2 show that g�2
peak � 0:30, much larger

than the value � 0:05 obtained with the compact formula-
tion [9]. Another contrast with previous work is that it is
also apparent that g�2

peak increases with m, from roughly

0.275 atma ¼ 0:07 to 0.35 forma ¼ 0:01, although at this

stage we cannot exclude the possibility that finite volume
effects influence the result. For small m a linear extrapo-
lation to the chiral limit seems reasonable; we conclude,
conservatively, that in this limit g�2

peak 2 ð0:275; 0:35Þ.
Figure 3 shows h ���i data as a function of m for g�2 �

g�2
peak. While the quadratic extrapolation to the chiral limit

is not conclusive, the marked nonlinearity of the fits sug-
gests the QCP value g�2

c lies close to this region; however,
a much more extensive simulation campaign would be
needed to pin it down. For our purposes it suffices to
work close to a strongly interacting QCP, while leaving
the issue of whether chiral symmetry spontaneously breaks
unresolved. Henceforth, all numerical results are obtained
with the coupling value g�2 ¼ 0:4—this implies that the
lattice cutoff is constant as � is varied. Unless otherwise
stated, the chiral limit m ¼ 0 will be assumed.
Figure 4 shows the exciton condensate h��i as a func-

tion of � for three different j. The figure shows the same

FIG. 2 (color online). h ���i vs g�2 for Nf ¼ 4 and various m
near g�2

peak � 0:30. The simulations were performed on both 323

and 483 lattices.

FIG. 3 (color online). h ���i vs m for g�2 ¼ 0:35, 0.375, 0.40
fitted to a quadratic polynomial.

0 0.2 0.4 0.6 0.8 1
µa

0

0.1

0.2

<ΨΨ>

ja=0.01
ja=0.02
ja=0.03

FIG. 4 (color online). h��i vs � on 323 for m ¼ 0 and ja ¼
0:01, 0.02, 0.03. Dashed lines show the same quantity evaluated
for free fields.
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broad features as Fig. 1, namely a rapid rise to a fairly
sharp maximum at �a � 0:3, followed by a still more
rapid fall; the signal is very small indeed by �a ¼ 0:6.
As we shall see, at this value of � the system has reached
saturation with a maximum possible density of particle-
hole pairs consistent with the Pauli exclusion principle on a
fixed lattice; our model can only be interpreted as a de-
scription of bilayer graphene for values of � much smaller
than this.

The dashed lines in Fig. 4 show h��i evaluated using
the same measurement code but with g2 set to zero, yield-
ing the value for free fields. Since the ðUð1Þ � Uð1Þ"Þ2
symmetry is manifest for j ¼ 0 the free field condensate
must vanish in this limit, and the curves are consistent with
this expectation. The large disparity between h��iint
and h��ifree notable in the range 0:2 & �a & 0:4 signals
that ðUð1Þ � Uð1Þ"Þ2 is surely spontaneously broken here.
Close inspection of the figure reveals that h��ifree rises
monotonically, but not quite smoothly, with � until reach-
ing a maximum at �a & 0:9. The disparity with the
apparent saturation observed in the interacting model will
be further discussed below. The barely visible wiggles are
probably a finite volume artifact similar to that noted in
studies of another system with a Fermi surface [3]. Figure 5
plots the same scan but this time showing that the effect of
varying m is negligible except for the very smallest values
of�. Since the operator�� is constructed to be conjugate
to j, not m, this is as expected.

In order to interpret the condensate data it is necessary to
extrapolate j ! 0. Figure 6 shows h��i for several j on
two different volumes, together with extrapolations of the
form

h��i ¼ h��ðj ¼ 0Þi þ Ajþ Bj2 þ Cj3: (14)

Taking finite volume effects into account, it seems that at
least for �a  0:10 the fitted intercept is nonvanishing,
confirming the spontaneous breaking of particle-hole

symmetry due to excitonic condensation h��i � 0.
The extrapolated condensate is shown fitted to a power
law of the form h��ðj ¼ 0Þi ¼ a1�

a2 in Fig. 7: the fitted
parameters are

a1 ¼ 7:0ð2Þ; a2 ¼ 2:39ð2Þ: (15)

The power-law rise is more rapid than would be expected
from a BCS-style mechanism driven by condensation of
particle-hole pairs in the immediate vicinity of a Fermi
surface. This is because in a BCS condensation the density
of available pairing states scales with the area of the Fermi
surface, / �d�1 in d space dimensions. Despite this some-
what empirical approach, the nonlinear increase of h��i
with � is a robust conclusion at variance with a conven-
tional weakly interacting BCS scenario.
Next we consider the carrier density nc defined in (13),

and shown in Fig. 8. This rises monotonically from zero
with � until �a� 0:5, when saturation sets in; the effect

0 0.1 0.2 0.3 0.4 0.5
µa

0

0.1

0.2

<ΨΨ>

m=0.01
m=0.02
m=0.03
m=0

FIG. 5 (color online). h��i vs � on 323 for ja ¼ 0:02 and
ma ¼ 0, 0.01, 0.02, 0.03. The dashed line shows the same
quantity evaluated for m ¼ 0 for free fields.

0 0.02 0.04 0.06 0.08
ja

0

0.05

0.1

0.15

0.2

0.25

0.3

<ΨΨ> µ=0.00
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FIG. 6 (color online). h��i vs j for m ¼ 0 and various � on
323 (open) and 483 (closed symbols). Dotted lines show fits to
Eq. (14). Dashed lines show the same quantities evaluated for
� ¼ 0, 0.2 on 483 for free fields.

0 0.05 0.1 0.15 0.2 0.25
µa

0

0.05

0.1

0.15

0.2

<ΨΨ>

FIG. 7 (color online). h��ðj ¼ 0Þi vs � on 483 fitted to a
power law for � ¼ 0:05–0:20. The dashed line corresponds to
exponent a2 ¼ 2:39ð2Þ.

WES ARMOUR, SIMON HANDS, AND COSTAS STROUTHOS PHYSICAL REVIEW D 87, 065010 (2013)

065010-6



of j � 0 is to round off this behavior by reducing the
carrier susceptibility j@nc=@�j slightly. Once again, the
contrast with the free field behavior, which only reaches
saturation at �a � 1:3 and is shown by the dashed line, is
marked.

How should we interpret the finding that nintc � nfreec ?
For degenerate fermions the carrier density, remembering
to count both particle and hole states, is given by nc ¼
k2F=2�. For free massless fermions the Fermi energy � is
equal to Fermi momentum kF; if we wish to retain the
notion of a Fermi surface (albeit one distorted by exciton
condensation) for the interacting system, we are forced to
conclude � � EF < kF implying strong self-binding, i.e.,
the degenerate fermions have a large negative contribution
to their bulk energy. This is a feature of working near a
QCP, and was not observed, e.g., in studies of relatively

weakly interacting systems at nonzero density such as the
Gross-Neveu model in 2þ 1d [25] where interactions are
suppressed by 1=Nf, or two color QCD [4] where the quark

density nq * nfreeq all the way to saturation.

As before, the region of physical interest is for � well
below saturation: Fig. 9 plots the variation of nc with
source strength j, togther with a quadratic extrapolation
to j ¼ 0, showing that the effect of j � 0 for this observ-
able is regular but certainly not negligible. Finally Fig. 10
plots ncð�; j ¼ 0Þ together with a power law fit nc ¼
b1�

b2 . The fitted parameters are

b1 ¼ 18:6ð4Þ; b2 ¼ 3:32ð1Þ: (16)

As expected, the fitted value of b2 considerably exceeds the
naive expectation nc / �d based on a weakly interacting
system.
In Fig. 11 we show the chiral condensate order parame-

ter h ���i as a function of � for various values of the
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FIG. 8 (color online). Carrier density nc vs � on 323, m ¼ 0
and j ¼ 0:01, 0.02, 0.03. The dashed line shows the same
quantity evaluated with j ¼ 0:01 for free fields.
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FIG. 9 (color online). Carrier density nc vs j on 48
3 for various

�. Dotted lines show a quadratic extrapolation j ! 0. Dashed
lines show the same quantity evaluated for free fields with
� ¼ 0:1, 0.2.
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FIG. 10 (color online). Carrier density ncðj ¼ 0Þ vs � on 483

fitted to a power law for � ¼ 0:05–0:20. The dashed line
corresponds to exponent b2 ¼ 3:32ð1Þ.
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FIG. 11 (color online). Chiral condensate h ���i vs � on 323

for j ¼ 0:02 and m ¼ 0:01, 0.02, 0.03. Dashed lines show the
same quantity evaluated for free fields.
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symmetry breaking parameter m at fixed ja ¼ 0:02. Its
magnitude at � ¼ 0 falls approximately linearly with m
implying restoration of chiral symmetry as m ! 0. Even
so, it exceeds the free field value by over a factor of two,

reflecting the vicinity of the QCP. Note though that jh ���ij,
a measure of the density of particle-hole pairs in the
condensate, is roughly one-third of the peak value of the
exciton condensate jh��ij seen in Fig. 4. As � increases

jh ���ij falls monotonically reflecting the increasing diffi-
culty of particle-hole pairing within a layer as the biassing
voltage rises. We deduce that near the QCP the impact of
the biassing voltage is to favor interlayer over intra-layer
pairing; indeed, the interlayer pairing is suppressed com-
pletely, falling below even the free field value, by �a ¼
0:5 where saturation sets in.

Finally we report on a preliminary calculation of the
spectrum of quasiparticle excitations, obtained from analy-
sis of the following fermion correlators:

CNð ~k; tÞ ¼
X
~x

hc ð~0; 0Þ �c ð ~x; tÞie�i ~k: ~x;

CAð ~k; tÞ ¼
X
~x

hc ð~0; 0Þ ��ð ~x; tÞie�i ~k: ~x:

(17)

Because of the form of the staggered fermion action (8) the
set of two-dimensional sites ~x only includes those dis-
placed from the origin by an even number of lattice
spacings in any direction, and the physically accessible
momenta have ki ¼ 2�ni=Ls with ni ¼ 0; 1; . . . ; Ls=4. We
distinguish between the normal propagator CN describing
carrier motion within a layer, and anomalous propagator
CA describing interlayer hopping, which relates e.g., de-
struction of an electron on layer 1 to creation of an antihole
on layer 2. On a finite system CA is nonvanishing only
for j � 0.

In this first study we have considered ~k ¼ ~0 only. In
accordance with a study of quasi-particle propagation in a
thin-film BCS superfluid [2] we find that the correlator
signal resides in ReðCNÞ and ImðCAÞ, and that in the chiral
limit m ! 0 CNðtÞ � 0 for t even and CAðtÞ � 0 for t odd.
We thus fit the correlators on every second time slice for
the excitation energy E using the forms

ReðCNð ~k; tÞÞ ¼ Ae�Et þ Be�EðLt�tÞ;

ImðCAð ~k; tÞÞ ¼ Cðe�Et � e�EðLt�tÞÞ;
(18)

where in general A � B for � � 0. The resulting energies
are shown for small � as a function of j in Fig. 12. Two
features are apparent: firstly normal and anomalous chan-
nels yield consistent results, as expected [2], although the
normal data have smaller errorbars; secondly, the extrapo-
lation j ! 0 appears smooth and suggests lim j!0EðjÞ> 0

for � � 0. In other words, a voltage bias induces anoma-
lous propagation indicative of particle-hole mixing, a
manifestation of excitonic condensation h��i � 0. This
should also result in a nonvanishing energy gap at the

Fermi surface, but confirmation requires a study of propa-

gation with ~k � ~0 [3].

IV. DISCUSSION

In this paper we have set out an effective (albeit sim-
plified) field theory for low-energy charge transport in
voltage-biased bilayer graphene, and shown how it can
be simulated using orthodox lattice field theory methods,
because its action in Euclidean metric is real. An interest-
ing feature of the numerical formulation is that it is pos-
sible to run in the chiral limit m ¼ 0 so long as the c�
coupling j � 0. There are formal similarities to QCD with
nonzero isospin density [6]; however, the resulting dynam-
ics differ sharply. While QCD is an asymptotically free
theory implying that eventually a weakly coupled descrip-
tion becomes valid as � ! 1, here the field correlations
remain strong at all scales, even in the absence of confine-
ment, due to the vicinity of the QCP. For this reason the
model is of intrinsic theoretical interest independent of any
possible physical applications for graphene.
Precise location of the QCP by numerical means has

proved challenging; nevertheless, the curvature of the chi-

ral condensate data h ���ðmÞi of Fig. 3 are suggestive of a

critical scaling h ���i / m
1
� expected at or near a QCP.

Equation of state fits predict � in the range 2.7 (the value
for monolayer graphene withNf ¼ 2) [14] to 5.5 (the value

in the strong coupling limit Nf ¼ Nfc � 4:8ð2Þ) [9].

Considerably more work would be needed to confirm this
quantitatively.
Our main results in this first study are therefore qualita-

tive. Runs with j � 0 yield measurements of the exciton
condensate h��iwhich show a rapid rise as� is increased
from zero. The data extrapolated to j ! 0 suggest that
condensate remains nonvanishing in this limit consistent
with spontaneous symmetry breaking and superfluidity;
indeed, the data of Fig. 7 permit a power-law fit
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FIG. 12 (color online). Normal and anomalous fermion
energies Eðk ¼ 0Þ vs j on 483 for � ¼ 0, 0.1, 0.2.
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h��i / �2:4. This is notable because a weak-coupling
BCS description of superfluidity predicts the condensate
should scale with the area of the Fermi surface, namely
h��i / �. Similarly, the carrier density nc / �3:3

(Fig. 9), to be contrasted with the weak-coupling behavior
nc / �2. With the resolution we are working with there is
no sign of an onset value of the chemical potential �o >
0, such that nc ¼ 0, h��i ¼ 0 for �<�o. This is
another important contrast with the systems studied in
Refs. [1–6]. The likely reason is that at the couplings
studied there is no mechanism for spontaneous mass
generation, so that the lightest degrees of freedom carry-
ing a conserved charge remains massless. The final inter-
esting observation, shown in Fig. 11, is that the chiral

condensate h ���i is strongly suppressed as � rises, pre-
sumably because of the rapidly increasing energy cost of
a particle-hole pair within a layer, and is consistent with
zero post-saturation.

Another observation to note is that below saturation both
nc � nfreec and h��i � h��ifree. Once again, this is
indicative of strong correlations among the fields, such
that EF < kF, as is the precocious value of �a at which
saturation sets in. It suggests that the self-consistent
diagrammatic approach of Kharitonov and Efetov [13]
(which employs large-Nf methods so may not be valid

near the QCP) may yield an unduly small estimate of the

condensate. It must be stressed, however, that in the
absence of a physical scale setting any phenomenogical
applications of the model to real graphene are premature.
In conclusion we claim to have initiated a lattice

Monte Carlo study of strongly interacting degenerate fer-
mions, which displays significant qualitative differences to
other degenerate systems studied previously. A final ques-
tion worth discussing is to what extent the concept of a
Fermi surface, either sharp or distorted by particle-hole
excitonic condensation, remains intact in a strongly inter-
acting environment? Departures from the canonical weak-
coupling are manifested as anomalous scaling with Fermi
energy � [see Eqs. (15) and (16)]; however, recall that in
an interacting Fermi liquid the relation between particle
density and Fermi momentum kF, namely nc / kdF, should
remain inviolate (this is guaranteed by Luttinger’s theo-
rem—see Ref. [26] for a nonperturbative discussion). In
the BCS picture, the density of condensed particle-hole
pairs h��i arising from plane wave states within a shell of
thickness �ð�Þ around the Fermi surface implies

h��i / �kd�1
F / �n

d�1
d
c : (19)

To test whether the scaling (19) could be retained even at

strong coupling, Fig. 13 plots the ratio h��i=n1
2
c vs � for

various j on two volumes, together with the j ! 0 extrapo-
lation on 483. It is plausible for �a & 0:2, on the assump-
tion that the gap �ð�Þ has a near-linear �-dependence,
which should be the case for near-conformal dynamics. It
may well prove possible, therefore, to define a Fermi
surface in the vicinity of a quantum critical point.
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