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Braneworld solutions from scalar field in bimetric theory
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We investigate the presence of braneworld solutions in a bimetric theory, with gravity and the scalar
field coupling differently. We consider a nonstandard model, with a Cuscuton-like scalar field, and we
show how to generate braneworld solutions in this new scenario. In particular, we found no gravitational

instabilities for the braneworld solutions.
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I. INTRODUCTION

The brane theory has been investigated as a candidate
for solving the hierarchy problem and other problems in
high-energy physics. In the Randall-Sundrum model [1],
we can add scalar fields with usual dynamics and allow
them to interact with gravity in the standard way [2]. The
study of scalar fields coupled to gravity in warped geome-
tries has been frequently reported in the literature [3-6],
and in the current Letter we consider a model driven by a
single real scalar field.

In recent years, there appeared some interesting models
with noncanonical dynamics with focus on early time
inflation or dark energy as good candidates to solve the
coincidence problem [7]. These kinds of models have also
been discussed in investigations of topological defects [8].
Basically, in these theories ones considers generalized
dynamics, using in the Lagrange density a term in the
form F(X), with X = %g“baagbabd).

In Ref. [9] the generalized models are used in the brane-
world scenario with nonstandard kinetic terms coupled
with standard gravity and applied to a five-dimensional
space-time to find new thick brane solutions. Two specific
examples of nonstandard terms were considered in [9]:
(I F(X) =X+ a|X|X and (II) F(X) = —X>2. In (D), in
particular, one considers the case of small « and discusses
perturbations around the case of a canonical scalar field
due to the intrinsic nonlinear character of the Einstein
equations, which usually result in a system of coupled
ordinary differential equations that are very hard to solve.

On the other hand, a new class of actions with non-
canonical kinetic terms has been used in Refs. [10,11]. In
the proposed theory, the equation of motion does not
have the usual second-order time derivative, and the field
becomes a nondynamical auxiliary field, which plays the
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role of following the dynamics of the fields that couple
to it. For this reason, this field is known as Cuscuton.

In the current work, we consider that the nonstandard
kinetic term arises due to the coupling with a different
metric used to describe the gravitational field, that is, we
use a bimetric theory [12—-14]. Bimetric theories have been
proposed as varying speed of light theories, motivated to
solve the horizon, flatness, and dark matter problems. In the
model proposed in Ref. [12], there are two metrics: g,,,
(which we refer to as the “gravitational metric”’), used to
construct the Einstein-Hilbert action and g,, (which we
refer to as the “matter metric’’), used to construct the matter
action via minimal coupling, providing the geometry on
which matter fields propagate and interact. Despite the
simple structure of the equations of motion (in the case of
a purely unconventional kinect term), such as the absence
of second derivatives, we see that the model can describe
brane solutions with a very simple potential. However, in
this context, transformation connecting the two metrics has
an additional term that comes from a vector normal to the
brane. This term allows us to get to a tachyonic action.

We organize the work as follows. In Sec. II we look for
flat, thick 3-brane solutions in a five-dimensional theory of
gravity, minimally coupled with standard scalar field plus a
five-dimensional cosmological constant in bimetric theory,
generating a field with a nonconventional kinetic term. In
Sec. III we use the first-order formalism [3,5,6] to find
solutions for some specific superpotentials. In Sec. IV we
analyze the case in which the theory only contains the
nonconventional term, the pure Cuscuton model, and we
investigate localization of gravity for the solutions we find.
We end this work in Sec. V, where we include some
conclusions and perspectives for future investigations.

II. BIMETRIC AND NONCONVENTIONAL
DYNAMICS FOR THE SCALAR FIELD

The nonstandard braneworld scenario that we investi-
gate is described by a theory of five-dimensional gravity
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coupled to scalar and other matter fields governed by the
action

S = S,lgl+ Syl dah, g1+ Syltp, 0,4, 81 (1)

Here the gravitational action, S o is the Einstein-Hilbert
action, constructed using the “Einstein” frame (g,;) in the

standard way,
1
S =~ [ @uisir @

The action for the scalar field is given by
1
S¢ = /dsx\/g[ﬁigabaa¢3b¢ - V(¢)], 3)

where 7 is a real parameter and Sy,[, 2] is the matter
action, where i represents all the matter fields, with g
being the metric on which the matter fields interact. To be
explicit, we let the dynamics be driven by a bulk cosmo-
logical constant in the matter frame [14],

sulwr 81 = [ exyfielis )

Thus, the full action can be written as

5= —2%% dex\/TQR
+ [exlengera,pae-vie]
~|—/d5x\/|gT|/~\5.

For n=1 (np=—1) and [\5 = 0, we have a standard
(phantom) scalar field theory coupled to gravity in the
conventional way. For n = 0 and AS # 0, we have a
pure Cuscuton model in bimetric theory.

The Ricci scalar is related to the Einstein frame (g,,),
while matter fields are coupled to the ‘“‘matter metric,”
where we mostly take K§ = 2, except as explicitly stated
otherwise. Here g, and g,, describe the five-dimensional
spacetime, witha, b = 0, 1, 2, 3, 4 and x, = y standing for
the extra dimension. The disformal transformation be-
tween the two metrics can be governed by a choice of
dynamics. In the simplest case we can use a biscalar field ¢
to write the relationship,

gab = 8ab + 6Bzaa¢ab¢ + Cuaub- (5)

Here u* = (0,0,0,0,1) is a normal vector to the brane
surface. The main purpose of this decomposition in terms
of the normal vector is to change dynamics in bimetric
theory, such as DBI-like to Cuscuton dynamics; see below.
One could also consider other decompositions. Another
simple possibility is a four-dimensional cosmological
scenario counterpart of this setup that could be achieved
by taking the coordinate time ¢ to develop the role of y
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and assuming u® = (1,0, 0, 0). Since [¢] = 3/2 then we
have to have [B] = —5/2 with € and C being both real
dimensionless parameters. The line elements related to
8ap and g, are given by

ds* = e Vy, dxtdx” — dy? (6)
and
d§? = Xy, dxtdx” — [(1 = C) — eB*¢™]dy*>. (1)

Here we suppose that the scalar field only depends on the
extra coordinate y, with the prime standing for derivative
with respect to y. e?4 is the warp factor, and A = A(y) a
real function of the extra dimension which gives rise to the
warped geometry. Also, 1, = diag(+ — ——) describes
the four-dimensional flat spacetime, with u, v =0, 1, 2, 3.
The geometry of the five-dimensional spacetime is then
described by A(y) and is driven by the extra coordinate y
alone. We can express the full metric in g,, framework.
Using (6) and (7) we can write (5) as

= —% dexJQR + jd5x\/|?||:—g¢’2 = V(qﬁ)]
+ [ Bryflgy(1 — ©) — eB>¢7Rs. ®)

Making C = 0, e = —1 and B = 1 the third term becomes

a DBI-like action with a constant potential /~\5. For
C=—1,e= —1and B =1 we have

S = —% fdsx\/l(?lR + [dsx\/l(?l[—gcﬁ’z - V((]S)]
+ [anflelispe. ©)

Here L, = —1n¢” + AsB¢' — V(¢) is an effective sca-
lar field Lagrangian containing a nonstandard kinetic term.
The Lagrange density describing the scalar field can be
written in the form L, = F(X, ¢) — V(¢), with F(X) =
%X + As/[X] and X = g"0, ¢, ¢. Similar theory with a
time-dependent scalar field was explored in the Cuscuton
cosmological model [10,11]. Other more general models
appear in the braneworld scenario driven by scalar
fields with nonstandard kinetic terms coupled to standard
gravity [9].

III. FIELD EQUATIONS AND FIRST-ORDER
FORMALISM

Variation of (9) with respect to g,, leads (making
n = 1) to the equations:

1 1
AR =g =V, 10
c? 73 (10)

and
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2 2
AT = =3¢+ ZAsBY. (11)

The nonlinear character of the Einstein equations usually
result in an intricate system of coupled ordinary differen-
tial equations that are hard to solve. To find analytic
solutions one can consider specific situations where first-
order differential equations appear describing the scalar
field and metric functions, with the potential having a
specific form [9,15].

To get to the first-order formalism, we introduce the
function, the superpotential W = W(¢), which can be
used to see the warp factor as a function of the scalar
field. We do this writing the first-order equation

1
Al = _§W' (12)

We use this equation and (11) to get to
1 -

with the potential in (10) with the specific form
1 1T1 ~ 2

—_ W2
3
The two Egs. (12) and (13) are the first-order differential
equations we have to deal with to construct explicit solu-
tions, for the potential given by (14). In the following we
illustrate the procedure with two distinct examples.

A. Flat brane solutions

The first example is given by the well-known A ¢* model
obtained with [15],

W(g) = 2ab(¢> - %2¢3). (15)

For this model one finds, for the scalar field

f AsB f AsB
d(y) = ——i-?t h|:b3bz+ Z3y:|, (16)

and for the warp factor

2AsB 4 AsB
Aly) = _(T bz) In |:cosh (ab3 3 + Wy>j|
1/AsB 1 1  AsB
— —(—=5 + = Jtanh?| ab®q|—= + —y |. (17
9(ab3 bz) an ( Vo2 " y) 17

Let us now analyze the asymptotic behavior of the poten-
tial in the limits y — *oo. Here we have

1/1 AsB\(4ab
Vo) =As=—-|5+——)— —
(0} = As 3<b2 ab3)< 33
where As is an effective five-dimensional cosmological
constant. Note that for A5 = 2ab/B, we have A5 =0

2ASB)2’ (18)
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which corresponds to a five-dimensional Minkowski

(Ms) vacuum. For As # 2ab/B (1/b* + AsB/ab® > 0),

we have A5 <0, which corresponds to an AdSs vacuum.
Another example is given by the superpotential [9]

W(¢p) = 3asin (bo). (19)

For this model we find the scalar kink profile,

2 2AsB + 3ab

= — arctan ———

0 =5 \JZASB ~3ab
X tan (Z\/M\%BZ - 9a2b2y) . (20

and the warp factor

2 ~

b =
- 6abcos2<Z \/4/\232 — 9a2b2y)], 21)
where we assume 1~\5 > 3ab/2B. In the limits y — *y~,

where y* = 277/19\/4]\%32 — 9a%b?, the potential in this

case has the asymptotic behavior given by
1 -

Following an analysis similar to that in the previous case,
we find that for /~\5 = 3ab/2B we have A5 = 0, which
would correspond to a five-dimensional Minkowski (M5)
vacuum. However, this is not possible since the kink solu-
tion diverges in all space through this choice. On the other
hand, for As # 3ab/2B we have A5 >0, which corre-
sponds to a dSs vacuum. This corresponds to an array of
periodic kinks singular at *y*, representing an array of
braneworlds.

Now assuming the /~\5 < 3ab/2B, the solutions (20)
and (21) become

2AsB + 3ab

2
= — arctan =
0 =7 12AsB — 3ab]

b =
% tanh (Z\/|4A§B2 - 9a2b2|y) . @)
and

2
A(y) = —751In I:ZASB + 3ab

b o
- 6abcosh2(z\/|4A§Bz - 9a2b2|y)]. (23)

We analyze the asymptotic behavior of the potential in the
limits y — *o0 to get
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V(+o0) = Ag = — %(3@ — 2AsB)(3ab + 2A;B).
(24)

Again as in the previous case we find that for /~\5 =
3ab/2B, we have A5 = 0, which would correspond to a
five-dimensional Minkowski (Ms) vacuum, but this
choice is not possible, because the kink solution would
diverge in all space. On the other hand, for A5 # 3ab/2B,
we have A5 <0, which corresponds to an AdSs vacuum.
Thus, the solution (22) corresponds to a regular kink
representing a flat braneworld with geometry (23) em-
bedded in a AdS;5 space.

We see from the above results that in both examples, the
part /~\SB related to the Cuscuton tends to even out the
AdSs and dSs spaces as AsB — 2ab or AsB — 3ab/2.
These results show that the Cuscuton induces the tendency
of a transmission of the gravitational dynamics to the scalar
sector. We shall further explore this effect for the pure
Cuscuton dynamics in the next section.

IV. SOLUTION WITH PURE
NONCONVENTIONAL DYNAMICS

In this section we consider the case where the theory
does not contain the conventional kinetic term [making
n = 0in Eq. (9)]. So in this case the field equations are

4RoA = — %ff), 25)
2
A% =-3v, (26)
and
2 ~
Al = %A5B¢’. 7)

Equations (26) and (27) lead naturally to the following
result for the potential

V(g) = — % k2A3B2¢2, (28)

and (25) is a consistency equation. This is the only poten-
tial allowed in this case. However, in spite of its simplicity,
we may find distinct solutions for the model. Let us sup-
pose that there is a kinklike solution in the form

¢(y) = btanh (ay). (29)
For this model the warp factor is
2BbA
Aly) = — k] > In (cosh (ay)). (30)

We note that the potential approaches the negative values
As = V(*o0) = —2x2A3B%p% in the asymptotic limit
y — *o00. This shows that the bulk is asymptotically AdSs.
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We can use the above results to construct the thin-brane
limit for this solution, by taking the particular limit, a — o
and b — 0, with the product ab fixed to a finite value.
From (29) we see that

@'(y) = absech?(ay), 31)
such that in the thin-brane limit one obtains
@'(y) = abd(y). (32)

We note that the presence of the delta function in (27)
and the absence of singularity in (26) entail that T8 =
—«2AsB¢' + V — —ktAsBabd(y) because T3 =V =
0 in the limit y — 0. Thus, the effective brane tension
becomes o = —K§/~\58ab, and then we find that the solu-
tion (30) approaches

K% 12
Aly) = — ?AstM- (33)

A. Gravity localization

Let us now examine gravitational fluctuations in the
above scenario. We do this perturbing the “‘gravitational
metric,” using

ds? = eXA0)(n,, + hy,)dxtdx’ —dy*. (34
The wave function of graviton modes due to a linearized

gravity equation of motion in an arbitrary number of
dimensions (d > 3) is given by [3]

aa(ﬁgabab®) —0. (35)

Let us consider ® = h(y)@(x*) and Vi = m?¢ into (35),
where V3¢ is the flat four-dimensional Laplacian on the
tangent frame. Thus the wave equation for the graviton
through the transverse coordinate y reads

ay(\/Lnggyy 9yh(Y)) _
gl

This is our starting point to investigate both zero and
massive gravitational modes on the 3-brane. Using the
components of the metric (6) into Eq. (36), we have

02h + 49,A0.h = m*e*Ah. (37)

m?|g%|h(y). (36)

Now considering the following changes of variables,

h(y) = ¢(2)e ™ and z(y) = fe4Wdy, we can write
(37) as a Schroedinger-like equation,

—029(2) + U@ y(2) = m* (), (38)
with a potential U(z) given by

Ulz) = %(?EA(Z) + %(@A(z))z. (39)

This equation can be factorized as
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d 3 d 3
——+ A —+ A =m?y(z). (4
[~ L340 4@ [pe = mee. 6o
So, there are no graviton bound states with negative mass,
and the graviton zero mode #((z) = ¢~ *©/2 is the ground
state of the quantum mechanical problem. Using (30) and
making a = x3AsBb/3, we obtain

1
A(z) =1n [7] 41)
V1 + a?7?
The Schroedinger-like potential has the explicit form
21 4.2 3 2
UR) = ——2=% - 42)

40+ a2 201+ d?2)

Let us now investigate the zero mode that corresponds to
the solution of Eq. (38) with m = 0. The general solution is
given by

o(z) =

(1 + a2Z2)3/4 0 (1 + a222)3/4

ap +b |:3 In(az + V1 + a?z?)

4 2a(5/2 + azzz)z:| 43)

(1 + a212)1/4

In the brane scenario that we have just examined, in
order for the zero mode to describe localized four-
dimensional gravity, normalizability is essential. To ensure
normalizability, the zero mode as a function of z must fall
off faster than z~!/2. To satisfy the normalization condition
121 0(2)1> = 1, we will consider ay = v/a/2 and by =
0 in (43) to obtain

a 1
Po(z) = \/;W-
This is the zero mode that governs the localization of
four-dimensional gravity on the brane. We use A5 =
—2k2A3B2b?, as previously found, and the fact that a =
k2A5Bb/3 to find that A5 ~ —a?; this means that ~1/a is
then related to the AdSs radius. This shows that the

(44)
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Cuscuton fully controls the AdSs curvature, just as in
conventional theories.

We end this section by commenting on the consistency
of the whole theory. Since this braneworld setup is inspired
in its cosmological counterparts [12—14], Eq. (5) leads to a
relationship among g,, and g,,. Thus, despite our demon-
stration above, which shows that there are no gravitational
instabilities, they may appear in the scalar sector. However,
the coupling B in (5), in general, may be running with the
scalar field [16] in such a way to compensate instabilities
from the scalar field. In the present study we are simply
assuming that B = B(¢) runs to a very small constant.

V. CONCLUSIONS

In this paper we connected two distinct and important
issues addressed in high-energy physics in relatively recent
years. The first issue concerns the use of bimetric theories,
whose main interest is to achieve realistic cosmological
models; the other issue is the presence of generalized
dynamics, such as the Cuscuton model, whose dynamics
itself is trivial but may, when coupled to another sector of
gravitational or scalar theory, become nontrivial and gen-
erate solutions. Here we also studied how to suitably fine-
tune the parameters of the theory, in order to turn the
Cuscuton model into the class of DBI-like theories.

In addition, we have studied how the model behaves in
the braneworld scenario. We found explicitly that the pure
Cuscuton sector acquires dynamics from the gravitational
field to produce a braneworld solution that is able to localize
four-dimensional gravity. In future investigations, one must
now study the construction of multiple Cuscuton theories,
which can be obtained from the presence of several scalar
fields. Such studies should be compared with multi DBI-like
theories, both in the braneworld and in the cosmological
scenario, in an effort to understand how such distinct types
of models evolve in the two scenarios.
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