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We present a renormalization group analysis to Einstein-Rosen waves or vacuum spacetimes with

whole-cylinder symmetry. It is found that self-similar solutions appear as fixed points in the renormal-

ization group transformation. These solutions correspond to the explosive gravitational waves and the

collapsing gravitational waves at late times and early times, respectively. Based on the linear perturbation

analysis of the self-similar solutions, we conclude that the self-similar evolution is stable as explosive

gravitational waves under the condition of no incoming waves, while it is weakly unstable as collapsing

gravitational waves. The result implies that self-similar solutions can describe the asymptotic behavior

of more general solutions for exploding gravitational waves and thus extends the similarity hypothesis in

general relativity from spherical symmetry to cylindrical symmetry.
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I. INTRODUCTION

Renormalization group analysis is a powerful tool for
obtaining asymptotic behavior of solutions of partial dif-
ferential equations [1]. Koike et al. [2,3] have applied this
method to a self-gravitating system in general relativity
and successfully explained critical behavior together with
the critical exponent in gravitational collapse. Ibáñez and
Jhingan [4,5] have applied this method to inhomogeneous
cosmology and analyzed the stability of scale-invariant
asymptotic states (see also Refs. [6–8]).

Fixed points under renormalization group transfor-
mation are very important for the asymptotic analysis.
The fixed-point solutions in general relativity generally
correspond to self-similar solutions, which are defined as
spacetimes that admit a homothetic Killing vector. Self-
similar solutions arise from the scale invariance of general
relativity. Carr [9,10] has conjectured that under certain
physical circumstances, spherically symmetric solutions
will naturally evolve to a self-similar form from compli-
cated initial conditions, and this is termed as the similarity
hypothesis. This conjecture has been strongly supported in
the gravitational collapse of a perfect fluid by numerical
simulation and linear stability analysis [11].

Although the similarity hypothesis has been proposed
originally in spherical symmetry, there is evidence that
supports the validity of the conjecture also in cylindrical
symmetry. Nakao et al. [12] have numerically simulated
the collapse of the dust cylinder and the subsequent emis-
sion of gravitational waves in special cylindrical symme-
try. Their numerical simulation suggests that gravitational
waves gradually approach a self-similar form.

The vacuum Einstein equations in this symmetry can
be analytically integrated, and solutions are called the

Einstein-Rosen waves [13]. Since this system admits two
commutative spatial Killing vectors and still retains the
dynamical degrees of freedom corresponding to gravita-
tional waves, it provides us with a good toy model in
which we can learn the physical nature of gravitational
waves. Harada et al. [14] have derived self-similar
Einstein-Rosen waves and identified one of them with
the attractor solution that Nakao et al. [12] reported. In
this paper, we recover the self-similar Einstein-Rosen
waves as a fixed point of the renormalization group analy-
sis. Then, we perform the linearized perturbation analysis
of these solutions (fixed points) and determine their stabil-
ity analytically using an eigenvalue analysis.
This paper is organized as follows. In Sec. II, we show the

field equations for Einstein-Rosen waves. In Sec. III, we
introduce the renormalization group analysis as a scaling
transformation and self-similar Einstein-Rosen waves as
fixed points. In Sec. IV, we apply linear perturbation theory
to the self-similar solutions. In Sec. V, we analyze the
behavior of the perturbations at the boundaries. In Sec. VI,
we show that the self-similar Einstein-Rosen waves are
stable and unstable at late times and at early times, respec-
tively, under appropriate boundary conditions. In Sec. VII,
we conclude the paper. We use the units in which c ¼ 1.

II. EINSTEIN-ROSEN WAVES

We consider cylindrically symmetric spacetimes with
the azimuthal Killing vector @=@� and the translational
Killing vector @=@z. We additionally assume that these
two Killing vectors are hypersurface orthogonal for
whole-cylinder symmetry. Vacuum spacetimes with
whole-cylinder symmetry are called Einstein-Rosen waves
[13]. The line element in Einstein-Rosen waves is given by

ds2 ¼ e2ð��c Þð�dt2 þ dx2Þ þ e�2c x2d�2 þ e2c dz2:

(2.1)
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The nontrivial Einstein equations take the following form:

�c ;tt þ c ;xx þ 1

x
c ;x ¼ 0; (2.2)

�;x ¼ xðc 2
;x þ c 2

;tÞ; (2.3)

�;t ¼ 2xc ;xc ;t: (2.4)

We define new variables hðx; tÞ and fðx; tÞ, which are more
convenient to our analysis, by

f2 ¼ h2

x2
e2� and h2 ¼ xe�2c ; (2.5)

respectively. Then, the line element is rewritten in the
following form:

ds2 ¼ f2ð�dt2 þ dx2Þ þ xðh2d�2 þ h�2dz2Þ; (2.6)

where f and h satisfy

f;t ¼ �2xf
h;x
h

�
1

4x2
þ 1

x

f;x
f

� h2;x
h2

�
1=2

(2.7)

and

h;t ¼ �h

�
1

4x2
þ 1

x

f;x
f

� h2;x
h2

�
1=2

; (2.8)

respectively, where (and hereafter), in the case of double
sign, we should uniformly choose either an upper sign or
lower sign. The wave equation (2.2) is identically satisfied
from the above two equations. Hence, we have the desired
evolution equations for the metric functions in a form
suitable for a renormalization group analysis.

III. RENORMALIZATION GROUP ANALYSIS

Since we are interested in the solution in the asymptotic
regime, we shall explore now the scale-invariant properties
of the system. We consider the following scale transforma-
tion and define the scaled functions, hðLÞðx; tÞ and fðLÞðx; tÞ,
as follows:

x ! Lx; (3.1)

t ! L�t; (3.2)

h ! LahðLx; L�tÞ ¼ hðLÞðx; tÞ; (3.3)

f ! LbfðLx; L�tÞ ¼ fðLÞðx; tÞ: (3.4)

Here, L is the scaling parameter, and scaled quantities
hðLÞ and fðLÞ satisfy the same evolution equations, i.e.,

Eqs. (2.7) and (2.8). From the structure of dynamical
system, it is easy to see that t scales in the same way as
x, fixing � ¼ 1. There is no further constraint on scaling
exponents a and b. Putting t ¼ 1 and redefining, in suc-
cession, Lx by x and L by t, in Eqs. (3.3) and (3.4), we find

hðx; tÞ ¼ t�ahðLÞðx=t; 1Þ; (3.5)

fðx; tÞ ¼ t�bfðLÞðx=t; 1Þ (3.6)

in the scaling regime. Note that the quantities hðLÞðx=t; 1Þ
and fðLÞðx=t;1Þ are evaluated at some initial time (t¼1
here) and are determined as fixed points of the renormal-
ization group equations as illustrated below.
In what follows, we adopt the mechanism developed by

Bricmont et al. [1]. Defining L ¼ exp ð�Þ, we can rewrite
the scaling behavior of Eqs. (3.3) and (3.4) into a set of
coupled ordinary differential equations:

dhðLÞ
d�

¼ ahðLÞ þ xhðLÞ;x þ hðLÞ;tjt¼1; (3.7)

dfðLÞ
d�

¼ bfðLÞ þ xfðLÞ;x þ fðLÞ;tjt¼1; (3.8)

where the quantities on the right-hand side are evaluated at
initial time and are functions only of x. The fixed-point
solutions h�ðLÞ and f�ðLÞ are defined by

dh�ðLÞ
d�

¼ 0;
df�ðLÞ
d�

¼ 0: (3.9)

Therefore, we have fixed points as solutions of a set of
coupled nonlinear ordinary differential equations:

ahðLÞ þ xhðLÞ;x þ hðLÞ� ¼ 0; (3.10)

bfðLÞ þ xfðLÞ;x þ 2xfðLÞ
hðLÞ;x
hðLÞ

� ¼ 0; (3.11)

where � is defined as

� ¼ �
�
1

4x2
þ 1

x

fðLÞ;x
fðLÞ

�
�
hðLÞ;x
hðLÞ

�
2
�
1=2

: (3.12)

Here and henceforth, we have dropped superscript * from
hðLÞ and fðLÞ for brevity. These equations decouple on

recombination, and we have the following master equation
for hðLÞ:

hðLÞ;x
hðLÞ

¼ �a

x
�

�
a2 þ b� 1=4

x2ð1� x2Þ
�
1=2

: (3.13)

The other metric function fðLÞ can now be recovered as a

solution to an ordinary differential equation:

fðLÞ;x
fðLÞ

¼ �b

x
þ 2ða2 þ b� 1=4Þ

xð1� x2Þ � 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b� 1=4

p
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p :

(3.14)

We are interested in the domain 0< x< 1, which now
corresponds to the spacetime inside the light cone 0<x<t.
This restricts the parameter space to a2 þ b� 1=4> 0.
Equations (3.13) and (3.14) can be easily integrated to give
the fixed points
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hðLÞ ¼ x�a��ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þ��; (3.15)

fðLÞ ¼ cfx
�bþ2�2�2a�ð1� x2Þ��2ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þ�2a�;

(3.16)

where cf is a constant of integration and� ¼ a2 þ b� 1=4.

Recovering time dependence through Eqs. (3.5) and (3.6),
we obtain

hðx; tÞ ¼ x�a��ðt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2

p
Þ��; (3.17)

fðx; tÞ ¼ cfx
�bþ2�2�2a�ðt2 � x2Þ��2ðt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � x2

p
Þ�2a�:

(3.18)

The light cone splits the spacetime domain t > 0 into two
parts, and we have another solution corresponding to the
region x > t > 0 and �< 0. In fact, Fig. 1 shows that the
light cone splits the spacetime into four parts if we consider
both t > 0 and t < 0. For the moment, we focus on domain I
and later on IV, i.e., the interior of the light cone. For
domains II and III, i.e., the exterior of the light cone, we
have another solution corresponding to x > jtj> 0 and
�< 0, which is out of the scope of the present paper.

These solutions coincide with the self-similar or homo-
thetic solutions derived in Ref. [14], in which the solutions
are further restricted by imposing the solution to be either
with a regular axis or a conically singular axis. Then, the
solutions are parametrized by two parameters � and �. The
parameter � plays a more important role since it deter-
mines the physical nature of the spacetime, while � just
controls the deficit angle of the axis. The correspondence
between a, b, and cf in the above obtained expression

and � and � in the expression given in Ref. [14] is the
following:

�� ¼ �; a ¼ �� 1=2;

b ¼ �; c2f ¼ 2�4�2
e2�;

(3.19)

where we should note that � � 0. Note that we have
started the analysis in the domain 0< x< t. Here, it
should also be noted that both � ¼ 0 and 1=2 correspond
to the flat spacetime, and � ¼ �1=2 corresponds to the
Kasner solution with exponents (� 1=2, 2/3, 2/3) or the
locally rotationally symmetric Kasner solution. The x ¼ t
surface is a null singularity for 0< �2 < 1=4 and 1=4<
�2 < 3=8, a regular surface admitting an extension beyond
it for 3=8< �2 < 1=2, and a null infinity for �2 � 1=2. For
3=8< �2 < 1=2, if �2 ¼ 1=2� 1=ð4nÞ (n ¼ 2; 3; . . . ), the
x ¼ t surface admits an analytic extension beyond it,
while, if not, this surface only admits a finitely differen-
tiable extension. In general, these solutions describe ex-
ploding gravitational waves. If we flip the sign of t, these
solutions describe the collapse of gravitational waves. The
fully detailed description of the physical nature and causal
structure of these solutions is given in Ref. [14]. The
parameter value which fits the result of the numerical
simulation by Nakao et al. [12] is � ¼ �0:0206, for which
the surface x ¼ t corresponds to a null singularity, which
is physically a shock of gravitational waves, and the space-
time cannot be extended beyond it.

IV. LINEAR PERTURBATION ANALYSIS

We introduce the perturbation of the fixed point solution
as follows:

hðLÞ ¼ h�ðLÞð1þ �hðLÞÞ; (4.1)

fðLÞ ¼ f�ðLÞð1þ �fðLÞÞ: (4.2)

Assuming j�hðLÞj � 1 and j�fðLÞj � 1, we linearize the

field equations for the perturbation. The linearized per-
turbed equations take the form

d�h

d�
¼

�
x� 1

�

h�;x
h�

�
�h;x þ 1

2x�
�f;x; (4.3)

d�f

d�
¼ 2x

�
�� 1

�

�
h�;x
h�

�
2
�
�h;x þ

�
xþ 1

�

h�;x
h�

�
�f;x; (4.4)

where we have dropped the subscript (L) from the metric
functions for brevity. Note that all the quantities are eval-
uated at the fixed points (emphasized by an *) and, hence,
are known functions of x given by Eqs. (3.15) and (3.16).
We now compute the normal modes with the depen-

dence �h ¼ e!��ðxÞ and �f ¼ e!�	ðxÞ, where ! is a
constant. From Eqs. (4.3) and (4.4), we obtain

!� ¼
�
xþ 1

x
þ a

x�

�
�;x þ 1

2x�
	;x; (4.5)

FIG. 1. The light cone splits the spacetime into four parts. In
the current paper, we focus on domains I and IV, i.e., the interior
of the light cone.
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!	¼
�
2

�
x��1

x
�� a2

x�

�
�4a

x

�
�;xþ

�
x�1

x
� a

x�

�
	;x:

(4.6)

Combining the two equations, we can solve for 	 as

!	 ¼ �2!ða� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Þ�� 2�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
�;x: (4.7)

We can recover a master equation for �ðxÞ from Eqs. (4.5),
(4.6), and (4.7), i.e.,

�;xx þ 2ð!� 1Þx2 þ 1

xð1� x2Þ �;x �!ð!� 1Þ
1� x2

� ¼ 0: (4.8)

Again, the above is estimated at t ¼ 1, and, hence, x should
be regarded as x=t in the notation of Harada et al. [14].
Note that there is no a priori reason to assume that ! is
real.

We define 
 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
and g ¼ 
!�. Then, Eq. (4.8)

transforms to

d

d


�
ð1� 
2Þ dg

d


�
þ!ð!þ 1Þg ¼ 0; (4.9)

where 0< x < 1 corresponds to 
 > 1. This is the
Legendre differential equation. Note that this equation
has symmetry for the replacement of the parameter ! $
�ð!þ 1Þ. The Legendre functions of the first and second
kinds—P!ð
Þ and Q!ð
Þ, respectively—are solutions of
the Legendre differential equation. General solutions can
be expressed in terms of the Legendre functions simply as

� ¼ ð1� x2Þ!=2

�
c1P!

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

�
þ c2Q!

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

��
:

(4.10)

The above expression is convenient for Reð!Þ � �1=2.
For Reð!Þ<�1=2, due to the symmetry of the Legendre
differential equation, we can express the solutions in terms
of the Legendre functions with indices � ¼ �ð!þ 1Þ in
the range Reð�Þ>�1=2. Then, we find the following
expression that is more convenient:

� ¼ ð1� x2Þ!=2

�
�c1P�ð!þ1Þ

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

�

þ �c2Q�ð!þ1Þ
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
��

: (4.11)

The solution for another perturbation 	 of the metric
functions can be constructed by Eq. (4.7).

V. BEHAVIOR OF THE LINEAR PERTURBATIONS

We impose the boundary conditions from the physical
requirements and study the allowed range of !. To do this,
we need the asymptotic behavior of P�ðzÞ and Q�ðzÞ, for
Reð�Þ � �1=2 at z ¼ 1 and z ¼ 1, which are given in
Refs. [15–17]. The asymptotic behavior of P�ðzÞ andQ�ðzÞ
at z ¼ 1 are given by

P�ð1Þ ¼ 1 (5.1)

and

Q�ðzÞ ’ � 1

2
ln
z� 1

2
� �� c ð�þ 1Þ;

ð� � �1;�2;�3; . . . ; Þ; (5.2)

where � is the Euler number and c ðzÞ ¼ d
dz ðln �ðzÞÞ is the

polygamma function. The asymptotic behavior of P�ðzÞ
and Q�ðzÞ for z ! 1 is given by

P�ðzÞ ’ 2���1=2�ð�þ 1=2Þz�=�ð1þ �Þ;
ðReð�Þ>�1=2Þ (5.3)

P�1=2ðzÞ ’
ffiffiffi
2

p
�

ln ð8zÞffiffiffi
z

p ; (5.4)

P�1=2þipðzÞ ’ ið2zÞ�1=2

� tanh ð�pÞ
�
�ð1=2þ ipÞ2
�ð1þ 2ipÞ ð2zÞ�ip

� �ð1=2� ipÞ2
�ð1� 2ipÞ ð2zÞip

�
; (5.5)

where p � 0, p 2 R and

Q�ðzÞ ’ 2���1�1=2�ð�þ 1Þz���1=�ð�þ 3=2Þ; (5.6)

respectively.
To make the discussion clear, we hereafter concentrate

on the stability of self-similar solutions with a regular or
only conically singular axis. If we assume � ¼ 0 for
the parametrization of Harada et al. [14], we find all the
solutions of the family are flat. Thus, we can assume � � 0
or � � 0 without the loss of generality. The asymptotic
behavior of the solutions at x ¼ 0 and x ¼ 1 are given as
follows.

A. Reð!Þ >�1=2 and ! � 0

For Reð!Þ>�1=2, we find

� ’ c1 þ c2½� ln xþ ln 2� �� c ð!þ 1Þ�; (5.7)

	 ’ �2c1ða��Þ þ 2c2½�ða� �Þ½� ln xþ ln 2

� �� c ð!þ 1Þ� � �=!� (5.8)

at x ¼ 0 and

� ’ c12
!��1=2 �ð!þ 1=2Þ

�ð!þ 1Þ
þ c22

�!�1�1=2 �ð!þ 1Þ
�ð!þ 3=2Þ ð1� x2Þ!þ1=2; (5.9)
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	 ’ �2c1a2
!��1=2 �ð!þ 1=2Þ

�ð!þ 1Þ
� 2c2�2

�!�1�1=2 ð!þ 1=2Þ�ð!þ 1Þ
�ð!þ 3=2Þ ð1� x2Þ!

(5.10)

at x ¼ 1, where (and hereafter) only the relevant terms are
shown. Note that the gamma function has no zeroes.

B. Reð!Þ <�1=2

For Reð!Þ<�1=2, we find

� ’ �c1 þ �c2½� ln xþ ln 2� �� c ð�!Þ�; (5.11)

	 ’ �2 �c1ða� �Þ þ 2�c2½�ða� �Þ½� ln xþ ln 2

� �� c ð�!Þ� ��=!� (5.12)

at x ¼ 0 and

� ’ �c1
2�!�1

�1=2

�ð�!� 1=2Þ
�ð�!Þ ð1� x2Þ!þ1=2

þ �c22
!þ1=2�1=2 �ð�!Þ

�ð�!þ 1=2Þ ; (5.13)

	 ’ � �c2a2
!þ3=2�1=2 �ð�!Þ

�ð�!þ 1=2Þ � �c1�
2�!�1=2

�1=2

� ð!þ 1=2Þ�ð�!� 1=2Þ
!�ð�!Þ ð1� x2Þ! (5.14)

at x ¼ 1.

C. ! ¼ 0

For ! ¼ 0, from Eq. (4.7), we find � ¼ const.
Substituting this into Eq. (4.6), we find 	 ¼ const. This
corresponds to the rescaling of t and x by At and Ax, where
A is a positive constant. Hence, this is not a physical mode
but a gauge mode. In the following, we exclude this zero
mode from the analysis for this reason.

D. ! ¼�1=2

For ! ¼ �1=2, we find

� ’ c1 þ c2½� ln xþ ln 2� �� c ð1=2Þ�; (5.15)

	 ’ �2c1ða� �Þ þ 2c2½�ða� �Þ½� ln xþ ln 2

� �� c ð1=2Þ� � 2�� (5.16)

at x ¼ 0 and

� ’
ffiffiffi
2

p
�

c1 ln
8ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p þ �ffiffiffi

2
p c2; (5.17)

	 ’ � 2
ffiffiffi
2

p
�

c1

�
a ln

8ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p � 2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
�
� ffiffiffi

2
p

�c2a

(5.18)

at x ¼ 1.

E. ! ¼� 1=2þ ip (p � 0 and p 2 R)

For ! ¼ �1=2þ ip, we find

� ’ c1 þ c2½� ln xþ ln 2� �� c ð1=2þ ipÞ�; (5.19)

	 ’ �2c1ða��Þ þ 2c2½�ða��Þ½� ln xþ ln 2

� �� c ð1=2þ ipÞ� � 2�� (5.20)

at x ¼ 0 and

� ’ c1i
2�1=2þip

� tanh ð�pÞ
�
�ð1=2þ ipÞ2
�ð1þ 2ipÞ 2�2ipð1� x2Þip

� �ð1=2� ipÞ2
�ð1� 2ipÞ

�
þ c22

�1=2�ip�1=2

� �ð1=2þ ipÞ
�ð1þ ipÞ ð1� x2Þip; (5.21)

	 ’ � 23=2�ip

�1=2þ ip
�

�
c1

� tanh ð�pÞ
�ð1=2þ ipÞ2
�ð1þ 2ipÞ

þ c2�
1=2 �ð1=2þ ipÞ

�ð1þ ipÞ
�
ð1� x2Þ�1=2þip (5.22)

at x ¼ 1.

VI. NORMAL MODES AND STABILITYANALYSIS

To see the stability in terms of normal modes, we impose
boundary conditions at x ¼ 0 and x ¼ 1 and see whether a
growing mode exits or not. It is not trivial what boundary
conditions we should impose on the solution. At least, the
perturbation must be regular at both points; otherwise, the
linear perturbation scheme should break down. Noting
a� � ¼ �1=2, the regularity at x ¼ 0 requires c2 ¼ 0
for Reð!Þ � �1=2 and �c2 ¼ 0 for Reð!Þ<�1=2 because
of the logarithmic divergence of the Legendre function of
the second kind at x ¼ 0. We additionally impose regularity
at x ¼ 1 and then find that only Reð!Þ>�1=2 is allowed.
Conversely, for Reð!Þ>�1=2 and c2 ¼ 0, the normal
modes are regular and analytic both at x ¼ 0 and x ¼ 1.

A. Stability of the late-time solutions

Our first motivation is to explain the numerical simula-
tion by Nakao et al. [12]. The parameter value for the
background is � ¼ �0:0206, for which the surface x ¼ t
is an outgoing null singularity, as is shown by Harada et al.
[14]. Since this null singularity is naked, we could inject an
incoming wave mode there, in principle. However, the
numerical simulation by Nakao et al. [12] will correspond
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to no injection of such an incoming wave. This corresponds
to the condition that � ¼ 	 ¼ 0 at x ¼ 1. This, as well as
the regularity at x ¼ 0, excludes all normal mode pertur-
bations. This conclusion is valid also for all late-time
(t > 0) solutions with any values of � under the condition
of no incoming wave. Note also that if we do not impose
the no incoming wave condition but only the regularity
condition at x ¼ 1, all normal mode perturbations with
Reð!Þ>�1=2 are allowed, and, hence, the self-similar
evolution is strongly unstable.

B. Stability of the early-time solutions

So far, we have implicitly assumed late-time solutions,
i.e., t > 0. However, it is also interesting to study the
stability of early-time (t < 0) solutions in the context of
gravitational collapse. The early-time solutions can be
obtained by just flipping the sign of t. Since in this case
x ¼ �t is an ingoing null singularity or regular surface, we
can impose the regularity at x ¼ 0 and x ¼ 1. We have
seen that under the regularity at both x ¼ 0 and x ¼ 1, only
Reð!Þ>�1=2 is allowed. Since the physical time evolu-
tion from t ¼ �1 to t ¼ 0 corresponds to the decrease of
� from � ¼ 1 to � ¼ �1, we can conclude that the self-
similar early-time solutions are weakly unstable inside the
null surface x ¼ �t against the normal modes with eigen-
value ! satisfying �1=2< Reð!Þ< 0. If Reð!Þ>�1=2,
all the values for ! are allowed. However, during the time
evolution, the most rapidly growing mode will dominate
the perturbation. In this sense, growing modes with the
growth rate Reð!Þ ¼ �1=2þ 0 will dominate the pertur-
bation, and this suggests that the critical exponent is 2 if
there appears a scaling law for the quantity of the mass
dimension. However, there exist a countably infinite num-
ber of unstable modes; critical behavior in this system
would be very different from those which have been
studied so far. In the present context, we do not need to
refer to the behavior of the perturbation outside the surface
x ¼ �t. This is consistent with the renormalization group
analysis for the spherically symmetric gravitational col-
lapse, initiated by Koike et al. [2,3]. If we additionally
impose the condition � ¼ 	 ¼ 0 at x ¼ 1 as in the late-
time case, all normal mode perturbations are excluded,
and, hence, the self-similar evolution becomes stable.

VII. CONCLUSION

The numerical simulation by Nakao et al. [12] strongly
suggests that a self-similar gravitational wave acts as an
attractor in the vacuum region at late times after the
explosive burst of cylindrically symmetric gravitational
radiation in whole-cylinder symmetry. Motivated with

this numerical result, we study the stability of self-similar
Einstein-Rosen waves. There are exact solutions that de-
scribe the self-similar Einstein-Rosen waves. The parame-
ter values are identified for the numerical solution found in
Ref. [12], in which the null surface x ¼ t corresponds to a
null singularity or a shock gravitational wave.
We have analyzed the behavior of cylindrically symmet-

ric linear perturbation around the self-similar solutions in
terms of the normal mode analysis. We have found that the
late-time self-similar solutions are stable inside the surface
x ¼ t of gravitational waves at late times under the no
incoming wave condition. This is the case for all the self-
similar Einstein-Rosen waves at late times.
We have also investigated the stability of self-similar

Einstein-Rosen waves at early times, which describe the
collapse of gravitational waves. This is important in the
context of gravitational collapse. We find that self-similar
Einstein-Rosen waves are weakly unstable inside the
surface x ¼ �t against regular cylindrically symmetric
perturbations.
The former case provides us with the demonstration that

self-similar solutions that arise from the scale-invariance of
general relativity play an important role in the dynamics
of gravitational waves and, hence, extends the applicability
of the similarity hypothesis [10], which was originally
proposed for spherically symmetric spacetimes. We should
note that the locally rotationally symmetric Kasner solu-
tion is known to be unstable against some sorts of home-
genous but anisotropic perturbations [18]. This suggests
that the self-similarity hypothesis is a consequence of the
restriction to the models with few enough degrees of free-
dom, which, hence, stabilize the self-similar solutions that
are not stable in general. The renormalization group analy-
sis together with linear perturbation scheme is quite useful
to understand the asymptotic behavior of the somewhat
general solutions of partial differential equations.
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