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We present analytical solutions of Maxwell’s equations around a rotating non-Kerr black hole

immersed in an external uniform magnetic field. The influence of a magnetic field on the effective

potential of the radial motion of a charged test particle around a rotating non-Kerr black hole immersed in

an external magnetic field are investigated by using the Hamilton-Jacobi equation of motion. The

dependence of the minimal radius of the circular orbits rmc and the radius of the innermost stable circular

orbits (ISCOs) from the deformation and the magnetic parameters for the motion of charged particles

around a rotating non-Kerr black hole are also presented. An increase of the magnetic field decreases the

ISCO radius, while the negative deformation parameter may lead to a larger ISCO radius. A comparison

of the numerical results of ISCOs around a non-Kerr black hole with the observational data for the ISCO

radius of rapidly rotating black holes [R. Shafee et al., Astrophys. J. 636, L113 (2006)] provides the upper

limit for the deformation parameter as � � 22.
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I. INTRODUCTION

A rotating astrophysical black hole without an electric
charge is uniquely described by the Kerr metric, which
only possesses two parameters—the total mass M and
the specific angular momentum a of the black hole—
within four-dimensional general relativity according to
the no-hair theorem [1–5]. However, in the regime of
strong gravity, general relativity could break down, and
astrophysical black holes might not be the Kerr black holes
predicted by the no-hair theorem [6–8].

Recently, Johannsen and Psaltis proposed a deformed
Kerr-like metric suitable for the strong field of the no-hair
theorem, which describes a so-called rotating non-Kerr
black hole [7]. The study of the particle orbits could
provide an opportunity for constraining the allowed pa-
rameter space of solutions, as well as deeper insight into
the physical nature and properties of the corresponding
spacetime metrics. Therefore, in this work we study the
electromagnetic field and charged particle motion around a
rotating non-Kerr black hole immersed in an external
magnetic field.

In a recent paper [9] the properties of the ergosphere and
energy extraction by the Penrose process in a rotating non-
Kerr black hole were investigated. The direct imaging of
rapidly rotating non-Kerr black holes and their shadows
were studied in Ref. [10]. Strong gravitational lensing by a
rotating non-Kerr compact object was investigated in

Ref. [11]. The strong dependence of the predicted energy
spectra, the energy-dependent polarization degree, and the
polarization direction on the parameters of a rotating non-
Kerr black hole were found in Ref. [12]. A brief review of
testing the Kerr black hole hypothesis was given in
Ref. [13]. The accretion disc properties around a rotating
non-Kerr compact object were considered in Ref. [14].
In principle, the properties of innermost stable circular

orbits (ISCO) could provide a good tool for understand-
ing the energetic processes of a black hole. The accelera-
tion of particles, circular geodesics, the accretion disk, and
high-energy collisions in the Janis-Newman-Winicour
spacetime have been considered in Refs. [15,16].
Understanding the motion of test particles and particle
acceleration mechanisms in an axial-symmetric spacetime
may provide new tools for studying new important general
relativistic effects, which are associated with nondiagonal
components of the metric tensor and have no Newtonian
analogues [17,18]. It has been recently shown in Ref. [19]
that primordial Kerr superspinars—extremely compact
objects with an exterior described by the Kerr naked sin-
gularity geometry—can serve as efficient accelerators for
extremely high-energy collisions. The properties of the
event horizon, the static limit for a charged rotating black
hole solution of minimal supergravity theory, and particle
motion have been considered in Ref. [20].
The paper is organized as follows. In Sec. II we look for

exact solutions of the vacuum Maxwell’s equations in the
spacetime of a nonrotating black hole immersed in a
uniform magnetic field. The equations of motion of
charged particles and their motion at the equatorial plane
in the vicinity of the rotating non-Kerr black hole are
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considered in Sec. III. We obtain the effective potential for
a charged test particle with a specific angular momentum,
orbiting around the black hole, as a function of the external
magnetic field, deformation parameter, and angular mo-
mentum of the non-Kerr black hole. In Sec. IV we find the
exact expression for the dependence of the minimal radius
of a circular orbit on the parameters of the spacetime
metric around a rotating non-Kerr black hole. Some con-
cluding remarks are given in Sec. V.

We use a systemof units inwhich c ¼ G ¼ 1, a spacelike
signature ð�;þ;þ;þÞ, and a spherical coordinate system
ðt; r; �; ’Þ. Greek indices are taken to run from 0 to 3.

II. BLACK HOLE IMMERSED
IN A UNIFORM MAGNETIC FIELD

The deformed Kerr-like metric that describes a station-
ary axisymmetric and asymptotically flat vacuum space-
time, in the standard Boyer-Lindquist coordinates, can be
expressed as [7]

ds2 ¼ g00dt
2 þ g11dr

2 þ g22d�
2 þ g33d’

2 þ 2g03dtd’;

(1)

with

g00 ¼ �
�
1� 2Mr

�2

�
ð1þ hÞ;

g11 ¼ �2ð1þ hÞ
�þ a2hsin 2�

; g22 ¼ �2;

g33 ¼ sin 2�

�
�2 þ a2ð�2 þ 2MrÞsin 2�

�2
ð1þ hÞ

�
;

g03 ¼ � 2aMrsin 2�

�2
ð1þ hÞ;

where

�2¼ r2þa2cos2�; �¼ r2�2Mrþa2; h¼�M3r

�4
;

and the constant � is the deformation parameter. The
quantity � > 0 or � < 0 corresponds to the cases in which
the compact object is more prolate or oblate than the
Kerr black hole, respectively. As � ¼ 0, the black hole is
reduced to the typical Kerr black hole known in general
relativity.

Here we will exploit the existence in this spacetime
of a timelike Killing vector, ��

ðtÞ ¼ @x�=@t, and a spacelike

one, ��
ð’Þ ¼ @x�=@’, which are responsible for the statio-

narity and axial symmetry of the geometry, such that they
satisfy the Killing equations

��;� þ ��;� ¼ 0; (2)

which—according to theWald method [21]—allows one to
write the solution of the vacuum Maxwell’s equations
hA� ¼ 0 for the vector potential A� of the electromag-

netic field in the Lorentz gauge in the simple form

A� ¼ C1�
�
ðtÞ þ C2�

�
ð’Þ: (3)

The constant C2 ¼ B=2 where the gravitational source
is immersed in the uniform magnetic field B, which is
parallel to its axis of rotation. The value of the remaining
constant C1 can be easily calculated from the asymptotic
properties of the spacetime (1) at infinity. Indeed, in order
to find the remaining constant one can use the electrical
neutrality of the black hole, 4�Q ¼ 0, evaluating the
integral through the spherical surface at the asymptotic
infinity. Then one can easily get the value of the constant
as C1 ¼ aB.
Thus the four-vector potential A� of the electromagnetic

field will take the following form:

A0 ¼�aB
�2� 2MrþMrsin 2�

�2
ð1þhÞ;

A1 ¼ A2 ¼ 0;

A3 ¼ 1

2
Bsin 2�

�
�2þð2Mrþ�2Þsin 2�� 4Mr

�2
a2ð1þhÞ

�
:

(4)

The orthonormal components of the electromagnetic
fields measured by zero-angular-momentum observers
(ZAMO) with four-velocity components

ðu�ÞZAMO �
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

�2ð1þ hÞð�þ a2hsin 2�Þ

s
; 0; 0;

� 2Mar
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ h

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð�þ a2hsin 2�ÞRp

1
A; (5)

ðu�ÞZAMO �
0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð1þ hÞð�þ a2hsin 2�Þ

R

s
; 0; 0; 0

1
A (6)

are given by the expressions

Er̂ ¼ aBM

256
ffiffiffiffiffiffi
R

p
�6ð1þ hÞP 1; (7)

E�̂ ¼ aBMr

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�þ a2sin 2�ÞRp P 2; (8)

Br̂ ¼ B cos �

�4
ffiffiffiffiffiffi
R

p P 3; (9)

B�̂ ¼ B sin �

2�8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ a2hsin 2�

R

s
P 4; (10)

where the following notations have been introduced:

R ¼ �4 þ a2ð1þ hÞð2Mrþ�2Þsin 2�;
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P 1 ¼ 1

Mr
fa4ðh cos4�� 4� hÞ � 8r4 � 4a2r½2ð1þ hÞMþ ð3þ hÞr�

� 4a2½a2 þ rf�2ð1þ hÞMþ r� hrg�cos2�gf3a4hþ 12r3ðMþ 4hM� 2hrÞ � a2r½7ð1þ 2hÞMþ 8hr�
þ 4½a4hþ ð1þ 4hÞMr3 � 2a2rðMþ 2hMþ hrÞ� cos2�þ a2½a2h� ð1þ 2hÞMr�cos4�g
� 2ð1þ hÞf2a6hþ 64r6 þ 16a2r3½6ð1þ 4hÞMþ ð4� 3hÞr�
� 8a4r½7ð1þ 2hÞMþ ð�3þ hÞr� þ a2½a4h� 32a2ð2Mþ 4hM� rÞr
þ 16r3ð2Mþ 8hMþ 4rþ 3hrÞ� cos2�� 2a4½a2h� 4rð�M� 2hMþ rþ hrÞ� cos4�� a6h cos6�gsin 2�; (11)

P 2 ¼ �2ð1þ hÞ
�
�

2
þ r4 � a4

�4
3hMrþ h

�2
½a4 þ 2a2r2 þ r3ð�4Mþ rÞ� �Mr

�8

�
a4 þ �þMr

Mr
h�4 � r4

��
sin 2�

þ 1

16�8
R
��
5a6 þ 32a2h

2M� r

M
�4 þ a4

�
11r2 � 16h�4

Mr

�
� 16ðr6 þ hr2�4Þ

�
sin 2�

þ 4a2
�
a4 � 2r4 þ 2h�4 þ a2

�
r2 � 2h�4

Mr

��
sin 4�þ a4ða� rÞðaþ rÞ sin 6�

�
; (12)

P 3 ¼ a2�2ð4hr2 þ �2ð1� 2hÞÞ � 2a4½Mðrþ 3hrÞ � h�2� þ r½r�2ð2hr2 þ �2ð1� 2hÞÞ
þ 2Mðr2 � �2Þðr2ð1þ 3hÞ þ �2ð1� hÞÞ�; (13)

P 4 ¼ 2a8rcos 8�þ 2cos 6�ð�2a8Mþ 4a6r3 þ a8Msin 2�Þ

� 2a2rcos 2�

�
�4r6 þ a2

�
�2Mr3 þ 4hM�4

r

�
þ a2Mr

�
r2 þ h�4

Mr

�
sin 2�

�

þ cos 4�

�
�4a6Mr2 þ 12a4r5 þ a6M

�
2r2 þ h�4

Mr

�
sin 2�

�

þ r3
�
2

�
r6 þ 2a2Mr3 þ 42a2Mh�4

r

�
� a2M

�
2r3 þ 8Mþ 3r

Mr
�4h

�
sin 2�

�
þ a4hM�4sin 22�: (14)

The electromagnetic field (7)–(10) depends on the angular
momentum and the deformation parameter in complex
way. Astrophysically, it is interesting to know the limiting
cases of the expressions (7)–(10); for example, in either the
linear or quadratic approximation Oða2=r2; �Þ—which
gives a physical interpretation of the possible physical
processes near the rotating non-Kerr compact object—
they take the following form:

Er̂ ! aBM

r3

�
cos 2�� 3þ 3

�
M2

r2
� 2M3

r3
þM3

r3
sin 2�

�
�

�
;

(15)

E�̂ ! aBM

r

2r3 þ �M3

r3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2Mr

p sin 2�; (16)

Br̂ ! B cos �

�
1þ a2

r2

�
1� 2M

r

��
1þ �M3

r3

�

� a2M

r3

�
2þ �M2

r2
þ 2�M3

r3

�
cos 2�

�
; (17)

B�̂ ! B sin �

�
1þ 2a2M

r3

�
1þ 4�M3

r3

�

� a2M

2r3

�
2þ 8�M3

r3
þ 3�M2

r2

�
sin 2�

�
: (18)

In the limit of flat spacetime, i.e., for M=r ! 0, expres-
sions (7)–(10) give

Er̂ ¼ E�̂ ! 0; (19)

Br̂ ! B cos �; B�̂ ! B sin �: (20)

As expected, expressions (19) and (20) coincide with the
solutions for the homogeneous magnetic field in the
Newtonian spacetime.

III. THE MOTION OF CHARGED PARTICLES
AROUND A ROTATING BLACK HOLE

We now study in detail the motion of charged particles
around a rotating non-Kerr black hole immersed in a uni-
form magnetic field given by the four-vector potential (4),
with the aim of testing modified gravity theories.
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Hereafter we will take into account the fact that the
induced electric charge of the compact object will be
rapidly neutralized due to the process of selective accretion
of charges from the surrounding plasma. We shall study
the motion of the charged test particles around a rotating
non-Kerr black hole using the Hamilton-Jacobi equation,

g��

�
@S

@x�
þ eA�

��
@S

@x�
þ eA�

�
¼ �m2; (21)

where e andm are the charge and the mass of a test particle,
respectively. Since t and’ are the Killing variables one can
write the action in the form

S ¼ �EtþL’þ Sr�ðr; �Þ; (22)

where the conserved quantities E andL are the energy and
the angular momentum of a test particle at infinity. By
substituting this into Eq. (21) one can get the equation for
the inseparable part of the action.
One can easily separate variables in this equation in the

equatorial plane, � ¼ �=2, and obtain the equation for
radial motion,

�
d	

ds

�
2 ¼ E2 � 1� 2V2

eff ; (23)

where s is the proper time along the trajectory of a particle,
	 ¼ r=M, and

V2
eff ¼

1

8	6ð	3 þ �Þ2 ½16aEL	6ð	3 þ �Þ þ a4b2ð2þ 	Þð	3 þ �Þ3

þ 	6f	5ðb2ð	� 2Þ	2 � 8Þ þ 	2f	ð8E2 � 4þ b2ð	� 2Þ	Þ � 8g�þ 4ðE2 � 1Þ�2
þ 4Lð	� 2Þð	3 þ �Þðb	þLÞg þ 2a2	4ð	3 þ �Þf½2þ bf2Lþ bð	2 � 2Þg�ð	3 þ �Þ � 2E2	2ð2þ 	Þg� (24)

can be interpreted as an effective potential of the radial
motion, where b ¼ eBM=m is the magnetic parameter.

In Fig. 1 the radial dependence of the effective potential
for the radial motion of charged particles in the equatorial

plane of a rotating non-Kerr black hole immersed in a
magnetic field is shown for the different values of the
magnetic parameter, deformation parameter, and angular
momentum of the black hole. From this dependence one
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FIG. 1 (color online). The radial dependence of the effective potential of the radial motion of a charged particle around a rotating
non-Kerr black hole’s equatorial plane. The figures (a), (b), and (c) correspond to the case of a ¼ 0. The figures (d), (e), and
(f) correspond to the case of a ¼ 0:5. The figures (g), (h), and (i) correspond to the case of a ¼ 0:98. The figures (a), (d), and
(g) correspond to the case of b ¼ 0. The figures (b), (e), and (h) correspond to the case of b ¼ 0:05. The figures (c), (f),
and (i) correspond to the case of b ¼ 0:2.
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can obtain a modification of the radial motion of a charged
particle in the equatorial plane in the presence of the
deformation parameter. One can now obtain how the mag-
netic, rotational, and deformation parameters may change
the character of the motion of the charged particles. The
magnetic parameter is responsible for shifting the shape of
the effective potential towards the central black hole,
which means that the minimum distance of the charged
particles to the central object may decrease. As is seen
from the Fig. 1 the deformation parameter changes the
shape of the effective potential in the vicinity of the central
object. This is caused by the appearance of the new term,
which proportional to the deformation parameter as 1=r3

in the spacetime metric tensor. When the deformation
parameter is positive, � > 0, the shape of the effective
potential shifts towards the central object, which corre-
sponds to a decrease of the radius of the circular orbits of
the test particles. The opposite effect can be observed when
the deformation parameter is negative, � < 0: the graph
shifts to the observer at infinity and corresponds to an
increase of the radius of the stable orbits. With an increase
of the magnetic parameter and angular momentum of
the central object the minimum of the graphs shifts towards
the central object. With an increase of the magnetic
parameter the influence of the deformation parameter
becomes weaker. Compared to the deformation parameter,
the strong magnetic field dominates the behavior of the
motion of the charged particles.

In a recent paper [22] it was shown that for protons
and electrons the value of the dimensionless magnetic
parameter is not weak, which indicates that the effect of
the magnetic field on a charged particle motion is not
negligible. In general such a magnetic field can essentially
modify the motion of charged particles (for more details
on the estimation of the magnetic parameter see, e.g.,
Ref. [22]). For this reason we will now study the case
when the dimensionless magnetic parameter b � 1.

The radial dependence of the effective potential pre-
sented in Fig. 2 indicates the modification of the radial

motion of charged particle in the equatorial plane in the
presence of the strong magnetic field and the deformation
parameter. As mentioned above, the magnetic parameter is
responsible for the shift of the minimum distance of the
charged particles towards the central object. The influence
of the deformation parameter is strong in the vicinity of the
central object, which is due to the strong decay of the
spacetime metric tensor as 1=r3 with an increase of
the radial coordinate. With an increase of the deformation
parameter towards the positive-value side the shape of the
effective potential shifts towards the central object, which
corresponds to a decrease of the radius of the circular orbits
of the test particles. An increase of the magnetic parameter
shifts the effective potential upwards. The total energy of a
test particle will increase due to the increase of the poten-
tial energy of the interaction between the magnetic field
and the test charge. Compared to the deformation parame-
ter, the strong magnetic field dominates the behavior of the
motion of the charged particles.

IV. CIRCULAR ORBITS AROUND A ROTATING
NON-KERR BLACK HOLE

In order to find a solution for the ISCO radius rISCO we
assume that the external magnetic field is absent.
The expression (23) can now be written as�
d	

ds

�
2 ¼ fð	Þ

¼ 1

	2ð	3 þ �Þ ½2	
2ðaE �LÞ2 þ 	3ða2E2 �L2Þ

� a2ð	3 þ �Þ� þ 	2

ð	3 þ �Þ2 ½2	
3 þ ðE2 � 1Þ	4

� ð	� 2Þ��: (25)

First we will consider the case when j�j � 1 in order
to get an approximate analytical solution for rISCO. Here
we will take the spin parameter of the black hole as a ¼ 0
in order to get the expression for the pure dependence of
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FIG. 2. The radial dependence of the effective potential of radial motion of charged particle around rotating non-Kerr black hole in
equatorial plane. The figures correspond to the case of almost extreme black hole when a ¼ 0:99. The figure (a) corresponds to the
case when b ¼ 103 and the figure (b) corresponds to the case when b ¼ 104.
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the ISCO radius from the deformation parameter. Using
Eq. (25) and the condition of the occurrence of circular
orbits [fðrÞ ¼ 0, f0ðrÞ ¼ 0], one can easily find expres-
sions for the energy E and angular momentum L of a
particle at a circular orbit of radius rc, which are given as

E2 ¼ ð	� 2Þ2
	ð	� 3Þ

�
1� �

2	2ð	� 3Þ
�
þOð�2Þ; (26)

L2 ¼ 	2

	� 3

�
1� 3ð	� 2Þ2�

2	3ð	� 3Þ
�
þOð�2Þ: (27)

Figure 3 shows the radial dependence of both the energy
and the angular momentum of a test particle moving on
circular orbits around a non-Kerr black hole in the equato-
rial plane. One can easily see that the presence of the
negative deformation parameter � < 0 forces a test particle
to have both a larger energy and angular momentum in
order to be kept in its circular orbit. This is a consequence
of the increase of the gravitational potential of the rotating
non-Kerr black hole with the negative deformation parame-
ter. In the case of a positive deformation parameter, � > 0,
the shape of the graphs shifts towards the origin, which
means that the stable orbits shift towards the central object.

For the expressions (26) and (27) one can easily find a
minimum radius for the circular orbits 	mc ¼ rmc=M as

	mc ¼ 3þ �

18
þOð�2Þ: (28)

In the limiting case when � ¼ 0, rmc ¼ 3M, which exactly
coincides with the Schwarzschild limit. The minimum
radius for a stable circular orbit will occur at the point of
inflexion of the function fð	Þ, or in other words, we must
supplement the condition fð	Þ ¼ f0ð	Þ with the equation
f00ð	Þ ¼ 0. The solution in the limit of small � has the
following form:

	ISCO ¼ 6� 2�

9
þOð�2Þ: (29)

In Tables I and II we provide the numerical results
for the ISCO radius of a charged particle around a
rotating non-Kerr black hole immersed in an external
magnetic field for different values of deformation, rotation,
and magnetic parameters. From these results, one can
easily get (in the case of the Schwarzschild spacetime,
a ¼ � ¼ b ¼ 0) the standard value for the ISCO radius,
	ISCO ¼ 6M. With an increase of the deformation parame-
ter � from �2 to 2, the radius of the ISCO as well as the
relative distance from the event horizon (rISCO � rhÞ=rh
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FIG. 3 (color online). Radial dependence of the energy and angular momentum of a particle moving around the rotating non-Kerr
black hole on circular orbits for the different values of the deformation parameter when the dimensionless rotational parameter
a=M ¼ 0:5.

TABLE II. The innermost stable circular orbits and the value
of the expression ðrISCO � rhÞ=rh of particles moving around the
rotating non-Kerr black hole (for the case of a ¼ 0:5).

� �2 �1 �0:5 0 0.5 1 2

b ¼ 0 4.9286 4.5947 4.4172 4.233 4.0426 3.848 3.460

1.58 1.43 1.35 1.27 1.18 1.09 0.90

b ¼ 0:05 4.5857 4.3246 4.1828 4.0331 3.8758 3.7121 3.3941

1.41 1.29 1.23 1.16 1.09 1.01 0.87

b ¼ 0:2 5.6081 5.5336 3.3261 3.2377 3.1527 3.0656

1.94 1.93 0.77 0.74 0.70 0.66

TABLE I. The innermost stable circular orbits and the value of
the expression ðrISCO � rhÞ=rh of particles moving around the
rotating non-Kerr black hole (for the case of b ¼ 0).

� �2 �1 �0:5 0 0.5 1 2

a ¼ 0 6.4345 6.22 6.1106 6.0 5.8884 5.776 5.5503

2.22 2.11 2.06 2.0 1.94 1.89 1.78

a ¼ 0:5 4.9286 4.5947 4.4172 4.233 4.0426 3.848 3.460

1.58 1.43 1.35 1.27 1.18 1.09 0.90

a ¼ 0:7 4.3383 3.9069 3.6625 3.3931 3.0933 2.7567

1.38 1.20 1.10 0.98 0.84 0.69

a ¼ 0:8 4.0604 3.5629 3.2633 2.9066 2.4431

1.30 1.10 0.98 0.82 0.61

a ¼ 0:98 3.6209 2.9849 2.5295 1.614

1.17 0.93 0.75 0.35
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monotonically decrease,where the radiusof the event horizon
is for the equatorial plane defined from �þa2h¼0
(Table I). The presence of the magnetic field also decreases
the radius of the ISCO (Table II).

Now we will analyze the ISCO in the astrophysical
situation where b � 1. Using the expression for the effec-
tive potential (24) and the conditions d	=ds ¼ V 0

eff ¼
V 00
eff ¼ 0, one can easily find the analytic expression for

the ISCO to be

rISCO ¼ 1þ 1� 2a2=M2 � �ffiffiffi
6

p
b

þOðb�2; �2Þ: (30)

The relation (30) shows the qualitative dependence of
the ISCO radius on both the magnetic and deformation
parameters. In the limit of a strong magnetic interaction the
magnetic field and the deformation parameter decrease the
ISCO radius.

V. CONCLUSION

Analytic expressions for the vacuum electromagnetic
fields external to a rotating non-Kerr black hole embedded
in an asymptotically uniform magnetic field were pre-
sented. We derived exact expressions [Eqs. (7)–(10)] for
the vacuum electromagnetic field in the vicinity of the
spacetime of a rotating non-Kerr black hole, which indicate
that the electromagnetic field will be affected by the de-
formation parameter. However, the induced electric field
[Eqs. (15) and (16)] depends on the deformation parameter
� linearly, while the magnetic field [Eqs. (17) and (18)]
depends on � quadratically.

Further, the motion of charged particles around a rotat-
ing non-Kerr black hole immersed in an external uniform
magnetic field have been investigated using the Hamilton-
Jacobi equations of motion. We have shown that the mag-
netic parameter b—being responsible for the interaction
between the magnetic field and he charged particles—
shifts the minimum of the effective potential towards the
central object, which means that the minimum distance of
the charged particles to the central object decreases. The
deformation parameter changes the shape of the effective
potential near the central object. This is caused by the
appearance of the new term, which is proportional to the
deformation parameter as 1=r3 in the spacetime metric.
When the deformation parameter is positive a decrease of
the radius of the circular orbits can be observed. The
opposite effect can be observed when the deformation
parameter is negative, i.e., when � < 0 an increase of the
radius of the stable orbits takes place.

We have studied in detail the influence of the magnetic,
rotational, and deformation parameters on the ISCO radius
of charged particles around a rotating non-Kerr black hole.

An increase of the magnetic field and angular momentum
of the black hole decreases the radius of the stable circular
orbits. While the deformation parameter is negative the
ISCO radius of the test particles becomes bigger than that
for the undeformed case. For positive values of the defor-
mation parameter the ISCO radius decreases.
The recent measurements of the ISCO radius in accre-

tion disks around black holes may also give alternate
constraints on the numerical values of the deformation
parameter. All astrophysical quantities related to the ob-
servable properties of the accretion disk can be obtained
from the black hole spacetime metric, and observations in
the near infrared or X-ray bands have provided important
information about the spin of the black holes [23]. It was
stated that rotating black holes have spins in the range
0:5 & a & 1, according to the observation that the ISCO
radii are essentially shifted towards the central objects.
Because of the spacetime structure the negative defor-

mation parameter presents some important differences
with respect to the disc accretion properties when com-
pared to the standard general relativistic Schwarzschild
and Kerr ones. Therefore the study of the innermost stable
orbits in the vicinity of compact objects is a powerful
indicator of their physical nature. Since the ISCO radius
decreases with an increase of the deformation parameter
for the non-Kerr black holes, one may compare these
effects with the standard general relativistic ones. Finally,
since there is a correlation between the deformation pa-
rameter and the stable orbits around black holes one may
numerically calculate the upper limit of the deformation
parameter corresponding to the observable ISCO radius.
One can put the observable values of the ISCO radius into
the inequality V 00

effðrÞ< 0 with the condition a ¼ 0 and

numerically solve it with respect to the deformation pa-
rameter � in order to get an upper limit for the deformation
parameter as � � 22.
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