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We present a theorem which allows one to recognize and classify the asymptotic behavior and causal

structure of McVittie metrics for different choices of scale factor, establishing whether a black hole or a

pair black-white hole appears in the appropriate limit. Incidentally, the theorem also solves an apparent

contradiction present in the literature over the causal structure analysis of the McVittie solution. Although

the classification we present is not fully complete, we argue that this result covers most if not all

physically relevant scenarios.
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I. INTRODUCTION

The century-old problem of describing a gravitationally
bound system in an expanding universe in the frame-set of
general relativity has seen many attempts to find a solution.
Despite its apparent simplicity, a full understanding of
the mechanisms involved when general and realistic
systems are considered has yet to be found. This can be
seen, for instance, by taking a look at the vast and often
contradictory literature on one of the oldest proposed
models, and possibly what could be considered the second
simplest scenario after the Schwarzschild-de Sitter metric,
namely, the McVittie solution [1].

Our current understanding of the history of the Universe,
built over an increasing amount of data from accurate
measurements such as the cosmic microwave background
and supernovae distances, tells us that we are most likely
living in a homogeneous and isotropic universe which is
undergoing a phase of accelerated expansion. The �CDM
model, our best fit to observations yet, is far from being a
complete model, given that it does not properly include
baryons and that we lack a reliable understanding of star
formation and feedback [2]. Therefore, it is evident that
studying how bound systems feel the expansion of the
Universe, from collapsing star-forming matter up to galaxy
superclusters at recent times, is of vital importance for a
better understanding of the cosmos.

The first step in studying bound systems interacting with
an expanding background is to consider a related problem:
the formation and evolution of black holes in an expanding
universe. Some of the simplest metrics which display these
features belong to the Kustaanheimo-Qvist class of solu-
tions to Einstein’s equations for a comoving shear-free
perfect fluid in a spherically symmetric configuration
[3–5]. The oldest and perhaps most famous member of
this class is the McVittie solution [1]. Throughout the years
it has been studied in this context, either in its original form

(see Refs. [6,7] and references therein) or in a generalized
version with a time-dependent mass [8–11].
In this work we consider the original McVittie solution

to Einstein’s equations, which, together with its physical
interpretation, has been debated for almost 80 years.
Recently, there have been considerable advances towards
understanding such a metric; for instance, after a long
debate it has been proved [12] that the central object
satisfies necessary and sufficient conditions to be charac-
terized as a black hole, provided that the line element
asymptotes to the Schwarzschild-de Sitter metric at tem-
poral infinity. In the samework, it has also been established
that the metric possesses a singularity which lies in the past
of every causal trajectory, the McVittie big bang.
Moreover, these results have been shown to be valid for a
generalized version of the McVittie metric, at least for
some time-dependent masses [11].
The causal structure of the McVittie spacetime is one of

the crucial points that have been debated in the literature.
Its analysis led the authors of Ref. [12] to conclude that the
internal apparent horizon present in the solution does
asymptote to a black hole horizon. At the same time,
following a similar path and using detailed numerical
integrations of the light curves, the authors of Ref. [13]
found that the inner horizon ends up separating the bound-
ary of the spacetime into two sections, a black hole horizon
in the future and a white hole horizon in the past. In this
brief work we want to focus on this issue to clarify a
peculiar aspect of the McVittie solution. We will show, in
fact, that the presence or absence of the white hole part, as
discussed in Ref. [13], crucially depends on the choice of
the function describing the expansion. Incidentally, this
means that the causal structures presented in the works
cited above do not need to be considered as contradictory,
since they are both possible depending on the particular
choices of expansion function made in each work.
The aim of the theorem presented in the following

sections is to allow one to recognize the asymptotics, and
thus the possible embeddings of the spacetime once the
expansion function is chosen. Although we succeeded in
describing a wide class of possible solutions, the theorem
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falls short of giving a prediction for a specific class of
expansion functions that decay exponentially in a very
peculiar way (as will be explained in detail in Sec. IVA)
for which a case-by-case study is necessary. On the bright
side, all realistic models of expansion nicely fit into the two
groups of functions for which the theorem is able to
identify the corresponding spacetime causal structure.

After a brief summary of the main characteristics of the
McVittie solution in Sec. II, we perform in Sec. III an analysis
of the inner apparent horizon, around which the behavior of
geodesics defines the asymptotic structure of the spacetime.
In Sec. IV we present the main result of this paper, a theorem
that allows us to find out whether the inner horizon is an
accumulation point for geodesics from both above and below
or just onone side. Finally,we conclude inSecs.VandVIwith
an instructive example—�CDM—and some remarks.

Throughout the paper we use the convention of repre-
senting the derivative with respect to the time coordinate t
with a dot, and with respect to the radial coordinate rwith a
prime.

II. MCVITTIE CAUSAL STRUCTURE

The McVittie metric with constant mass parameter
m> 0 can be written in the form [11,12]

ds2¼�ðR2�H2r2Þdt2�2Hr

R
drdtþdr2

R2
þr2d�2; (1)

where RðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m=r

p
, and HðtÞ ¼ _a=a is the Hubble

parameter. H is assumed to be a smooth function with the
following properties:

lim
t!1HðtÞ ¼ H0; (2a)

1

3
ffiffiffi
3

p
m
>H0 > 0; (2b)

_HðtÞ< 0; t > 0: (2c)

Drawing the Penrose diagram of a fully dynamical
metric such as (1), which satisfies certain conditions as
described in Ref. [14], reduces to integrating geodesics and
is thus mostly a numerical effort. As already pointed out,
we will make some remarks on previous works on this
topic, and for an easier comparison, we will then adopt the
choices made in Ref. [13]. Singularities of the metric (1)
have been studied in Refs. [12,13]. There, using the fact
that all future-oriented null geodesics move away from the
singularity in its neighborhood, it has been shown that the
spacelike surface defined by r ¼ 2m lies to the past of
every event of the spacetime covered by our coordinates,
and it is thus dubbed the ‘‘McVittie big bang.’’ It has also
been shown that t ¼ 0, in general, does not belong to the
spacetime. We thus choose the singular surface at r ¼ 2m
as our reference point, identifying it with a horizontal line
in the conformal diagram. As in Ref. [13], every event will
then be connected to the McVittie big-bang surface via

ingoing (‘‘�’’) and outgoing (‘‘þ’’) null rays, which are
solutions of the geodesic equation _r ¼ RðHr� RÞ, as can
be seen in Fig. 1. We take the function transforming from
times to coordinates in the causal diagram to be Eq. (35) in
Ref. [13].
The behavior of the outgoing geodesics is well under-

stood, and their integration does not present difficulties. On
the other hand, due to the fact that the apparent horizons of
the McVittie metric are antitrapping surfaces, and thus
influence the behavior of ingoing geodesics, the latter
are to be treated more carefully and present the only source
of possible confusion. In particular, the presence of an
accumulation point for the ingoing geodesics makes nu-
merical analysis and integration challenging. Therefore, in
what follows we focus on such geodesics represented by
solutions of the differential equation for the function
r: ðt0;1Þ ! ð2m;1Þ [12],

_rðtÞ ¼ RðrÞ½rHðtÞ � RðrÞ� � Xðt; rÞ; (3)

with the initial condition

rðtiÞ ¼ r0 > 2m; (4)

which ensures that the coordinates in (1) describe the
physical space above the singularity. Note that property
(2c) implies _X < 0.
By integrating the ingoing geodesics backward in time,

we can define a first time t0, the time at which each
geodesic leaves the singularity at r ¼ 2m, taken to be the
reference for the conformal diagram. Correspondingly, we
will refer to the geodesic starting at t0 as rt0ðtÞ, so that

lim
t!t0

rt0ðtÞ ¼ 2m:

FIG. 1 (color online). An example of the McVittie apparent
horizons plotted in spacetime coordinates. Some ingoing (rin)
and outgoing geodesics (rout) are also shown, as well as some
light cones that are represented by the shaded regions, where the
arrows indicate the future direction. The singularity at r ¼ 2m is
represented by a thick dotted line.
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Let us denote fðt; rÞ ¼ Xðt;rÞ
RðrÞ ; the apparent horizonH is

the locus of points in the ðt; rÞ plane in which fðt; rÞ ¼ 0.
In other words, the horizon is the set of points where
Xðt; rÞ ¼ 0 above the singularity. An example of horizons
for the McVittie metric for a specific choice of scale factor
is depicted in Fig. 1.

It can be easily proved by convexity arguments that, for
each fixed value of t, f has up to two real roots for positive
values of r, and the roots always belong to the interval
ð2m;1Þ. Moreover, if fðt̂; rÞ has at least one real root, then
fðt; rÞ has two real roots for every t > t̂. It can also be noted
that when the two roots are distinct, and thus have multi-
plicity 1, one has f0ðt; rÞ � 0 at the root.

We call the inner horizon H� the locus defined by the
smallest real root of fðt; rÞ for each t for which it exists.
Calling tmin the smallest value of t for which fðt; rÞ admits
at least one real root, the inner horizon H� is then
represented by the curve ðt; r�ðtÞÞ, where r�: ½tmin ;1Þ !
ð2m;1Þ is a smooth function. We will call r� the inner
horizon function, or, when there is no room for confusion
with the setH�, just inner horizon for short. All points of
H� correspond to points in which the geodesic flow is
horizontal in the ðt; rÞ plane, as the tangent to the flow is
given by the value of Xðt; rÞ.

A useful characteristic of the inner horizon function is
that it has a negative slope for all times for which it is
defined. Explicitly, by taking the gradient of fðt; rÞ along
the curve, the slope reads

_r�ðtÞ ¼ �r�ðtÞ _HðtÞ
HðtÞ � R0ðr�ðtÞÞ ; (5)

provided that f0ðt; r�ðtÞÞ ¼ HðtÞ � R0ðr�ðtÞÞ � 0. The
numerator of (5) is clearly positive following (2c), and
it is easy to show that the denominator f0ðt; r�ðtÞÞ< 0.
In fact, noticing that fðt; 2mÞ ¼ 2mHðtÞ> 0, by continuity
for any time for which r�ðtÞ is a simple root, it follows
that fðt; r�ðtÞ � �Þ> 0, for � > 0, ensuring that f0 is
negative on the inner horizon. This also implies that the
ingoing geodesics increase monotonically in the inner
region 2m< r < r�.

A. The first-time projector �

To prepare for our main result, we are going to introduce
a function which will play a crucial role in the rest of this
work, the first-time projector �. This function, or better,
the image of the inner horizon under it, will contain the
information on the causal structure of the spacetime
considered.

Let us call M the set of events covered by our
coordinates ðt; rÞ, so that M � ð0;1Þ � ð2m;1Þ, and
define the application �: M ! I , where I � ð0;1Þ,
which associates to each element of M the first time t0
of the ingoing geodesic rt0ðtÞwhich passes by that point. In
other words, �ðMÞ corresponds to the time component of

the points in the intersection between the singularity and
the image of M under the ingoing geodesic flow; it is the
set of values of t0 one can reach by integrating geodesics,
starting at any event in M back to the singularity.
It is easy to show that � is well defined, in the sense

that the image of each coordinate pair ðt; rÞ in its domain is
at most one point of the interval (or empty); in fact, it is
straightforward to check that the system given by Eqs. (3)
and (4) satisfies the hypotheses of the Picard–Lindelöf
theorem, which means that the ingoing geodesics at each
event above the singularity are unique. Then, the image of
an event by the first-time projector �, if it exists, is a
unique first time t0.

III. INNER HORIZON ASYMPTOTIC BEHAVIOR

Why are we interested in the image of the geodesic flow
projected on the singularity? The main reason for that
can be understood by looking at two cases considered in
the literature. In Ref. [12] one can see that the image of
H� under the projector � defined in Sec. II A is un-
bounded, and the asymptotic analysis shows the presence
of a black hole (see Fig. 2). On the other hand, the analysis
done in Ref. [13], where the projection of the inner horizon
is bounded, finds that the spacetime presents a bifurcation
two-sphere that separates an asymptotic black hole and a
white hole (see Fig. 4). We agree with the results presented
by both groups, and we will show in what follows that the
discrepancies can be explained by assuming that a different
choice for the function describing the expansion of space-
time has been made. In fact, we want to show that the
connection between the projected flow and the asymptotic
behavior is what allows one to distinguish between the two
possibilities of inevitably finding a white hole accompany-
ing a black hole or not. So the problemwe are facing can be
restated as follows: is the image ofH� under� bounded?
A negative answer would imply the presence of a black
hole alone, while a positive one would change the structure
at infinity and produce a white hole as well.
To answer the question of boundedness, we will need

some preliminary results in order to reduce the problem to
a simpler one. First, let us define the limiting values at

FIG. 2 (color online). An extension of McVittie spacetime
with an unbounded image of the inner horizon over the singu-
larity. Ingoing geodesics are represented by lines inclined 45� to
the left. The left part of the graph shows the appearance of a
black hole whose horizon is given by r� in the limit t ! 1.
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temporal infinity for r�ðtÞ and fðt; rÞ as r1 � lim t!1r�ðtÞ
and f1ðrÞ � lim t!1fðt; rÞ. Then,

2m< r1 < r�ðtÞ
and

f1ðr1Þ ¼ r1H0 � Rðr1Þ ¼ 0: (6)

We note that, in the case in which the image of the inner
horizon by the first-time projector � is bounded, there
exists te such that, for each � > te, the ingoing geodesic
r�ðtÞ that leaves the singularity at instant � never crosses
the inner horizon r�ðtÞ and tends to it at time infinity. This
means that �ðH�Þ � ð0; te�.

In what follows we show some consequences of taking
as a hypothesis the fact that �ðH�Þ is bounded.

Proposition III.1. Let rt0ðtÞ be an ingoing geodesic. If rt0
satisfies rt0ðtÞ< r�ðtÞ for all t > t0, then

rt0ðtÞ< r1; 8 t > t0 (7)

and

lim
t!1rt0ðtÞ ¼ r1: (8)

Proof. Consider the sequences tn ¼ t0 þ n�, rn ¼
rt0ðtnÞ, hn ¼ r�ðtnÞ, n 2 N, � > 0. By hypothesis, and

by making use of the monotonic increase of inner geo-
desics, the two sequences satisfy the following properties:

2m � rn < hn; (9a)

rn > rm , n > m: (9b)

To prove (7), we consider by reductio ad absurdum the
case rn > r1, for some n. Then, as lim n!1hn ¼ r1, this
would imply rn > hm, for some m> n. But, by property
(9a), rm < hm, which implies rn > rm for n < m, and con-
tradicts property (9b). The case rn ¼ r1 follows by noting
that if it holds for some n, then rnþ1 > rn > r1, by prop-
erty (9b), which leads us to the previous case.
Moving on to (8), note that rn is monotonic and

bounded; therefore, it converges. Let us call lim n!1rn �
r	 � r1 its limit. Recalling the definition of Xðt; rÞ in (3)
and the mean value theorem, there exist sequences �tn and
�rn ¼ rt0ð�tnÞ such that

rn < �rn < rnþ1; rnþ1 � rn ¼ �Xð�tn; �rnÞ: (10)

Since lim n!1 �rn ¼ r	, the limit of (10) is 0¼
�Rðr	Þf1ðr	Þ; then for this to hold, it must be that
r	 ¼ r1. j
The importance of proposition III.1 is clear; in fact,

thanks to this proposition, one only has to analyze
geodesics crossing r1, a fixed surface, eliminating the
complication of having to consider the time-varying inner
horizon. Moreover, this implies that the r1 surface behaves
as an accumulation point for the geodesics, as we will see
in the following corollary.
Corollary III.2. If rt0ðtÞ is an ingoing geodesic, then for

all � satisfying 0< �< r1 � 2m, there exists �t > t0 such
that rt0ð�tÞ ¼ r1 � �.

This means that, given enough time, all geodesics either
cross r1 or reach values arbitrarily close to it. By propo-
sition III.1, every ingoing geodesic that never crosses the
inner horizon never reaches r1. Conversely, if an ingoing
geodesic does traverse r1 in a finite time interval, then it
eventually crosses the inner horizon. Then, by studying
only the neighborhood of r1, we may tell if geodesics do or
do not cross the horizon.
To complete our set of preliminary results, we will show

now that geodesics that start at a later first time remain
below (that is, at smaller values of r than) those which start
at earlier first times. This can be stated precisely by the
following.
Proposition III.3. Let rt1ðtÞ and rt2ðtÞ be two ingoing

geodesics. Therefore, if t1 < t2, then rt1 > rt2 .

Proof. Using the fact that the ingoing geodesic
passing by any event ðt; rÞ of the plane is unique for
t > 0, r > 2m, then we conclude that they cannot cross
in the same region. Moreover, as for any � > 0,
rt0ðt0 þ �Þ> rt0þ�ðt0 þ �Þ ¼ 2m, then by continuity

rt0ðtÞ � rt0þ�ðtÞ> 0 for all t>t0. j

Propositions III.1 and III.3 imply that, if we prove that
there exists one ingoing geodesic that never reaches r1,
then �ðH�Þ is bounded, as every geodesic which leaves
the singularity later will never reach the inner horizon as

FIG. 3 (color online). A possible null geodesically complete
extension of Fig. 2, where a time-reversed McVittie metric with
a big crunch also appears [15].

FIG. 4 (color online). A null geodesically complete extension
of a McVittie spacetime characterized by a bounded upper value
for �ðH�Þ, the first-time projector of the inner horizon. Notice
that geodesics starting after te do not reach the horizon in a finite
time. This completion shows the presence of a white hole and a
black hole region, separated at the branching surface b, as
discussed in Ref. [13].
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well. Otherwise, �ðH�Þ is unbounded if every ingoing
geodesic reaches r1 in a finite time.

Using corollary III.2, we only need to study the geodesic
flow in a small neighborhood below r1, as we know that it
represents the point separating geodesics crossing the inner
horizon or staying under it.

IV. THE MAIN RESULT

We are finally ready to state the main result of this
work, a theorem which allows one to find out whether all
geodesics leaving at late times from the singularity are
bound to cross the McVittie inner apparent horizon, or if
there exists a time for which all geodesics leaving the
singularity at subsequent times never reach the inner hori-
zon and accumulate under it. In other words, we want to
state here how the form of the Hubble parameter HðtÞ can
select the properties of the image of the inner horizon
under the first-time projection function �.

Theorem IV.1. Let there be the real-valued function
�HðtÞ ¼ HðtÞ �H0, and the constants A ¼ Rðr1Þ þ
r1R0ðr1Þ, B ¼ Rðr1ÞðR0ðr1Þ �H0Þ and ti > 0. If there
exists � > 0 such that

Fþðti; tÞ �
Z t

ti

eðB��Þue�A
R

u

ti
�HðsÞds

�HðuÞdu

diverges as t ! 1, then the image of H� under � is
unbounded.

Analogously, if there exists �� > 0 such that

F�ðti; tÞ �
Z t

ti

eðBþ ��Þue�A
R

u

ti
�HðsÞds

�HðuÞdu

converges as t ! 1, then the image of H� under � is
bounded.

Proof. Let us analyze the flow of Eq. (3) near r1, sincewe
have already seen in Sec. III that geodesics that cross r1 are
bound to reach the inner horizon in a finite time. Consider
0< �< r1 � 2m. Let zðtÞ ¼ r1 � rðtÞ, satisfying

_zðtÞ ¼ �Xðt; r1 � zÞ
and

zðtiÞ ¼ z�0; 0< z�0 < �:

Now, the crossing of r1 by an ingoing geodesic is equivalent
to a change of sign in zðtÞ.

By the definition of the differential of X (with respect to
the second variable), at r ¼ r1, we may write

_zðtÞ ¼ �Xðt; r1Þ þ dXðt; r1ÞzþOðzÞz:
Then, there exists �� > 0, continuous in �, such that
lim �!0�� ¼ 0 and

�� 
 OðzÞ 
 ���;

for 0< z < �. We also define the curves z�þðtÞ, z��ðtÞ,
which are solutions of

_z ��ðtÞ ¼ �Xðt; r1Þ þ ½dXðt; r1Þ � ���z��; (11)

with the initial condition

z��ðtiÞ ¼ z�0;

and verify z��ðtÞ � zðtÞ � z�þðtÞ as long as jz��ðtÞj 2 ½0; �Þ.
Therefore, if z��ðtÞ is always positive, then zðtÞ never
changes sign and the geodesic rðtÞ never crosses r1.
Conversely, if z�þðtÞ does change sign, then so does zðtÞ,
and consequently, rðtÞ crosses r1.
The next step of the proof is to solve (11), which is

a nonhomogeneous linear differential equation, for-
mally solvable by the method of variation of constants.
Explicitly,

dXðt; r1Þ ¼ @X

@r

��������r¼r1

¼ R0ðr1Þ½r1ðH0 þ �HðtÞÞ � Rðr1Þ�
þ Rðr1Þ½H0 þ�HðtÞ � R0ðr1Þ�;

which, after using Eq. (6) and some rearrangement,
gives us

dXðt; r1Þ ¼ ½R0ðr1Þr1 þ Rðr1Þ��HðtÞ
þ Rðr1Þ½H0 � R0ðr1Þ�

¼ A�HðtÞ � B: (12)

We note that the last constant term in (12) is

�B � Rðr1Þf01ðr1Þ ¼ r1H2
0 �

m

ðr31H0Þ
� 0;

as f is positive between the singularity and the inner
horizon. The case f01ðr1Þ ¼ 0 corresponds to the extremal
case where f has two coincident real solutions and the
spacetime asymptotes to an extremal the Schwarzschild-de
Sitter metric, which has been discarded by hypothesis,
since property (2b) does not hold in this case. Thus,
B> 0. The constant

A � R0ðr1Þr1 þ Rðr1Þ ¼ m

ðr31H2
0Þ
þ r1H0

is also strictly positive.
The inhomogeneous term Xðt; r1Þ in (11) can be

written as

Xðt; r1Þ ¼ C�HðtÞ; (13)

where we define the positive constant

C � Rðr1Þr1 ¼ r21H0 > 0:

Then, substituting Eqs. (12) and (13) into (11), we obtain

_z��ðtÞ ¼ ½A�HðtÞ � B� ���z��ðtÞ � C�HðtÞ; (14)

whose solutions are, with the initial conditions z��ðtiÞ ¼ z�0,
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z��ðtÞ¼eðB���Þðt�tiÞeA
R

t

ti
�HðsÞds

�
�
z�0�C

Z t

ti

eðB���Þðu�tiÞe�A
R

u

ti
�HðsÞds

�HðuÞdu
�
:

(15)

Next we need to find out under which conditions z��
change sign or not. Note that only the factor between
brackets in (15) can be nonpositive, depending on the
values taken by the integrals

C
Z t

ti

eðB���Þðu�tiÞe�A
R

u

ti
�HðsÞds

�HðuÞdu

� Ceð�B���ÞtiF��ðti; tÞ:
In particular, the convergence of F� or the divergence of
Fþ in the t ! 1 limit immediately tells us about the
behavior of z��. Given that F�ðti; tÞ 
 Fþðti; tÞ, for all
� > 0 there are only three possible cases:

(a) There exist MðtiÞ> 0 and � > 0 such that
lim t!1F��ðti; tÞ ¼ MðtiÞ.

(b) For all � > 0, lim t!1F�þðti; tÞ ¼ 1.
(c) There exist NðtiÞ> 0 and � > 0 so that

lim t!1F�þðti; tÞ ¼ NðtiÞ but lim t!1F��ðti; tÞ ¼ 1
for all � > 0.

Case (c) does not respect the hypothesis of the theorem;
rather, it is the case inwhich themethod presented here cannot
be applied, and we will discuss it later. We can start then with
case (a) in which the term between brackets in (15) becomes

z�0 � Ce�ðBþ��ÞtiMðtiÞ:
However, as lim ti!1Ce�BtiMðtiÞ ¼ 0, there exists � > 0

such that for all t > �, z�0 � Ce�BtMðtÞ> 0. This means

that after the instant �, the z�� curves do not change sign
anymore, and since they are a lower bound for z, neither do
the curves with ti > �. It follows that the ingoing geodesics
rt0ðtÞ, which reach r1 � z�0 at times equal to � or later, do not

cross the inner horizon at a finite coordinate time. As t0 < �,
this gives us an upper bound to the image of the inner horizon
under the first-time projector as �ðH�Þ � ð0; ��.

In the case described by (b) instead, we see that there is
no upper bound to �ðH�Þ. In fact, in this case there
always exists a time Tti > 0 such that, for each ti > 0,

F�þðti; TtiÞ>
z�0e

ðB���Þti

C
;

which means that z�þ becomes negative for finite t, inde-
pendently of the initial time t0. Following the reasoning of
case (a), z changes sign, and all ingoing geodesics even-
tually cross the inner horizon independently of the time at
which they leave the initial singularity. j

Summarizing the results of the theorem, we have that the
divergence (convergence) of the integral defining Fþ (F�)
allows us to find curves below (above) any geodesic around
r1 forcing them to cross (to stay below) the inner horizon.
Crossing the inner horizon in a finite time independently of

the starting point means, of course, that the geodesics that
reach it leave the singularity at all times, while finding
geodesics that never reach the inner horizon means that
there exists a point in time where horizon-crossing geo-
desics accumulate.

A. Limits of applicability

As we said before, case (c) describes expansion
functions for which we cannot immediately apply our
method to find the asymptotes of the spacetime. The
Hubble parameters that fall into this scenario are those
that take the form �HðtÞ ¼ e�BthðtÞ, with B the constant
defined in the theorem, for which the conditions
(i) 8 � > 0, 8 ti 
 0, the integral

R1
ti
e��thðtÞdt

converges,
(ii) 8 ti 
 0, the integral

R1
ti
hðtÞdt diverges,

are both satisfied. These choices describe the ‘‘blind spot’’
of the method we presented. Although there is an infinite
number of functions which may be constructed with these
properties, the fine-tuning required by the exponential part
means that such functions do not constitute a significant
fraction of physically relevant cases, as we will see in an
example in the next section.

V. EXAMPLE: �CDM EXPANSION

Let us illustrate the method described by theorem IV.1
by applying it to an example, which will also help show
that most physically relevant expansion functions fall
within the purview of the method. We choose the Hubble
parameter used in �CDM models, where dark matter and
dark energy are the main components of the energy budget,
a good approximation to the Universe as we see it today,
and also for the description of large-scale structure forma-
tion. In this case, H can be described by [13,16]

HðtÞ ¼ H0 coth

�
3

2
H0t

�
: (16)

Keeping in mind that we want to analyze the asymptotes
of the spacetime, we may expand (16) at late times and
rewrite it as

HðtÞ ¼ H0 þ 2H0e
�3H0t þOðe�6H0tÞ;

which corresponds to�H ¼ 2H0e
�3H0t½1þOðe�3H0tÞ�. To

prove that in this case the image ofH� is bounded, we need
F�ðti; tÞ to converge as per case (a). On the other hand, if
Fþðti; tÞ diverges, then we will have proved that the image of
H� is unbounded by falling into case (b) of the theorem.
With this form for �H, the function F� is given by

F�ðti; tÞ
¼ 2H0

Z t

ti

½1þOðe�3H0uÞ�eðB�3H0þ�Þu�A
R

u

t1
�HðsÞds

du:

Since the last factor is bounded between the two positive
values
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e�2A
3 e

�3H0ti½1þOðe�3H0ti Þ� � e
�A

R
u

t1
�HðsÞds � 1;

the convergence of F� is determined only by the integral

Z t

ti

eðB�3H0þ�Þudu:

Therefore, F� will converge if there exists � > 0 such that
B� 3H0 þ � < 0. This is true if and only if

B� 3H0 < 0:

Following the same reasoning, we find that Fþ diverges if
and only if

B� 3H0 > 0:

Inserting the definition for B, we notice that the relevant
parameter for our discussion is given by

� � B

3H0

� 1 ¼ Rðr1Þ
3

�
R0ðr1Þ
H0

� 1

�
� 1: (17)

Therefore, if �< 0, then F� converges, and we have a
limiting first time. If �> 0, then Fþ diverges, and all
ingoing geodesics cross r�. If � ¼ 0, then Fþ converges
and F� diverges, satisfying both properties (i) and (ii) in
Sec. IVA, and therefore leaving us with no knowledge
about the ultimate fate of geodesics in the spacetime.

To calculate the values � may assume, we use the fact
that the constant B can be explicitly calculated in terms of
r1. For McVittie metrics which asymptote to the
Schwarzschild-de Sitter metric, the value of r1 is given
by [17]

r1 ¼ 2

H0

ffiffiffi
3

p cos

�
�

3
þ 1

3
arccos ð3 ffiffiffi

3
p

mH0Þ
�
: (18)

It is easy to show that, once we insert (18) in (17), all
dependence with respect to the free parametersm andH0 is
expressed in terms of the product � ¼ mH0; i.e., � is
constant along hyperbolas in the m�H0 plane.
Moreover, by noting that m> 0 and by making use of
(2b), we find that the region of the parameter space avail-
able corresponds to 0< �< 1

3
ffiffi
3

p . We plot the values taken

by � within this region in Fig. 5.
In other words, in the region of the parameter space

where �< 0, the causal diagram will be like the one in
Fig. 4, whereas where �> 0, the causal diagram will
resemble the one from Fig. 2. In this model, � has a root
for � ¼ 2� 10

3
ffiffi
3

p � 0:0755. Only at this curve does our

criterion fail to determine whether the image of H� is
bounded; therefore, in this case nothing can be said as to
the final fate of geodesics.

A. Consistency of various models

Aswehinted inSec. III,works that studied the asymptotics
of the McVittie spacetime present two apparently incompat-
ible results. Thanks to the analysis presented in this work, we

can precisely define these two classes of models, knowing
that their very existence and behavior are connected to the
form of the expansion functionHðtÞ. We can, in fact, say that
there only exist two possibilities for the first-time projector of
the inner horizon: �ðH�Þ can be either bounded or un-
bounded. The former case was first studied in Ref. [13],
where the �CDM model discussed above was considered
with a value of � ¼ 958041

6�106
� 0:159. In this case, the correct

conclusion about the asymptotic behavior of themetric is that
a white hole appears together with a black hole.
The other case, with an unbounded image for �ðH�Þ,

has appeared before in the literature, and an example of it
can be seen in Ref. [12], where, from the sketch of the
causal structure the authors present, one can conclude that
the choice of expansion function used satisfies case (b) of
theorem IV.1 [or that it falls into case (c), but still gives an
unbounded�ðH�Þ]. In reality, the authors of Ref. [12] do
not explicitly state their choice for the expansion function,
except in a couple of simplifying examples where they
assume a power-law expansion that givesHðtÞ / 1=tþH0

(with H0 taken to be a positive constant to compare to the
results presented here). In any case, the analysis they
present, which leads to the conclusion that the McVittie
spacetime asymptotically tends to a black hole, applies
only to the cases in question when �ðH�Þ is unbounded.
Therefore, provided that the adequate expansion function
has been considered in the respective analysis, there is no
friction between the discussion presented in Ref. [13],
which claims that a white hole must be present together
with a black hole in the asymptotics of McVittie spacetime,
and other works where only the black hole is present.

VI. CONCLUSIONS

In this paper we developed a working method to deter-
mine the causal structure of McVittie metrics using the

FIG. 5 (color online). Convergence criterion applied to �CDM
(16). Values of � ¼ mH0 situated to the left of the root correspond
to inner horizons which are always reached in finite time. Values
situated to the right correspond to metrics with horizons that are
only reachable by geodesics which start before a critical first time.

HOW THE EXPANSION OF THE UNIVERSE DETERMINES . . . PHYSICAL REVIEW D 87, 064030 (2013)

064030-7



information contained in the Hubble parameter. One of two
outcomes is possible: either geodesics leaving the singu-
larity at all late times cross the inner horizon, correspond-
ing to a case in which �ðH�Þ is unbounded, or there
exists a time for which any geodesic leaving the singularity
after this upper bound never reaches the inner horizon,
corresponding to a bounded �ðH�Þ. The causal structure
that results from the first case is shown in Figs. 2 and 3,
where the inner horizon at time infinity identifies with a
black hole event horizon. The second case results in a
causal structure as in Fig. 4, where a bifurcating surface
appears, splitting the boundary into a black hole in its
future and a white hole in its past.

We showed that we can reduce the problem to the
analysis of whether ingoing geodesics cross a fixed thresh-
old given by the position of the inner horizon at future
infinity. By using the linearized form of the geodesic
equation, we constructed majorant and minorant functions
which can be treated analytically, and whose behavior near
the threshold, due to the fact that they shepherd the geo-
desic between them into the same region, can be used to
trace the solution of the full geodesic equation. The method
is inconclusive only if the majorant crosses the threshold
and the minorant does not, a situation which does not fix
the behavior of the geodesic in between.

We applied this formalism, which is stated formally in
theorem IV.1, to analyze the causal structure of the
McVittie metric when the expansion factor is given by a
�CDMmodel. The simplicity of this example allowed us to
cover the full spectrum of accessible values for the two
independent parameters left in the metric, namely, the black
hole mass m and the constant H0, the asymptotic value of

the Hubble parameter at time infinity. We found that both
causal structures are possible, depending on the values of
these parameters, and that the method we developed only
fails at the curve given by � ¼ 0 in the allowed portion of
the two-dimensional parameter space for m and H0.
The aim of this work is not to discuss the meaning of the

asymptotics of McVittie spacetime, especially since this
has been done by various other authors (see, for instance,
Refs. [12,13,15]). Here, the focus has been on finding a
way to resolve the confusion present in the literature,
namely, the appearance of apparently incompatible asymp-
totic behaviors of the McVittie spacetime, and to be able to
distinguish these completely different physical setups that
are generated from the same metric via different choices
for the Hubble parameter. To clarify this important point,
we used examples borrowed from the literature, in particu-
lar, identifying the two possible scenarios with the two
cases studied in Refs. [12,13] as shown in Figs. 2 and 4,
even though the results discussed here are fully general.
With theorem IV.1 we proved that the form of the expan-
sion function is the sole factor responsible for the structure
of the boundaries in McVittie spacetime.
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