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We study a quantum fermion field on a background nonextremal Kerr black hole. We discuss the

definition of the standard black hole quantum states (Boulware, Unruh, and Hartle-Hawking), focussing

particularly on the differences between fermionic and bosonic quantum field theory. Since all fermion

modes (both particle and antiparticle) have positive norm, there is much greater flexibility in how quantum

states are defined compared with the bosonic case. In particular, we are able to define a candidate

Boulware-like state, empty at both past and future null infinity, and a candidate Hartle-Hawking-like

equilibrium state, representing a thermal bath of fermions surrounding the black hole. Neither of these

states have analogues for bosons on a nonextremal Kerr black hole and both have physically attractive

regularity properties. We also define a number of other quantum states, numerically compute differences

in expectation values of the fermion current and stress-energy tensor between two states, and discuss their

physical properties.
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I. INTRODUCTION

In the absence of a definitive theory of quantum gravity,
it is appropriate to attack the problem from a variety of
directions. Quantum field theory in curved space-time
treats the space-time geometry as a fixed, classical back-
ground described by Einstein’s field equations of general
relativity. The behavior of quantum matter fields on this
background is then studied. This may be regarded as
a first approximation to a full theory of quantum gravity
(in which both the geometry and matter fields would be
quantized).

Central to the study of quantum fields on any particular
space-time background is the concept of a vacuum. For a
free quantum field, the field is typically decomposed into
an orthonormal basis of positive and negative frequency

field modes. The split into positive and negative frequency
modes is not unique, although if the background space-
time possesses a globally timelike Killing vector there is a
natural choice of positive frequency modes. For a fixed
splitting of the quantum field into positive and negative
frequency modes, the coefficients of the positive and
negative frequency modes are promoted to operators. The
coefficients of the positive frequency modes become par-
ticle annihilation operators and those of the negative
frequency modes become particle creation operators.
A vacuum state is defined as that state annihilated by the
particle annihilation operators. The nonuniqueness of the
splitting into positive and negative frequency modes there-
fore leads to a nonuniqueness of the definition of
‘‘vacuum.’’ For a general space-time, and for black hole
space-times, in particular, there may be several quantum
states of physical interest that arise as vacuum states from
different ways of splitting the quantum field into positive
and negative frequency modes. Even in Minkowski space,
the concept of a vacuum is observer dependent, as demon-
strated by the Unruh effect [1–3].
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We now describe the main quantum states specifically
on a Schwarzschild black hole background, since it is on
this background where the states were originally defined
and where their properties are better established [4].

(i) The Unruh state [3] models a spherically symmetric,
evaporating black hole formed by gravitational col-
lapse. The Unruh state is empty at past null infinity,
containing a quantum flux of thermal Hawking
radiation emitted away to future null infinity.
While the Unruh state is irregular at the unphysical
past horizon, it is regular at the physical future
horizon. This state is clearly not invariant under the
Schwarzschild symmetry of time reversal, as the
process of gravitational collapse itself is not time-
reversal invariant.

(ii) The Hartle-Hawking state [5] represents a black
hole in unstable thermal equilibrium with a bath
of quantum radiation at the Hawking temperature.
The Hartle-Hawking state is particularly important
in that it respects the symmetries of the underlying
Schwarzschild space-time and is regular every-
where on and outside the event horizon. It is
therefore the relevant state for black hole thermo-
dynamics (see, for example, Ref. [6]). Furthermore,
physically, it is the state that is seen as empty by a
freely falling observer near the event horizon [7]
and, practically, this state is the easiest one to re-
normalize (see, for example, Refs. [4,8,9]). We note
that the equivalent of this state in Schwarzschild-
AdS (anti—de Sitter) space-time is the one that is of
relevance for black hole thermodynamics [10] in
that case and so for considering black holes in the
context of the AdS/CFT (conformal field theory)
correspondence [6,11–13].

(iii) The Boulware state [14] models not a black hole
but a (static and spherically symmetric) cold star: it
is divergent on the horizon (both future and past)
and it is empty at radial infinity (both future and
past). This state respects the symmetries of the
Schwarzschild space-time, in particular, time-
reversal symmetry.

We note that, in Schwarzschild space-time, the properties
of the above states are the same independently of whether
the quantized field is bosonic or fermionic [3,5,14].

Our focus in this paper is the quantization of fermion
fields on a nonextremal Kerr black hole background. The
study of quantum fields propagating on a Kerr black hole
has a long history, the discovery of ‘‘quantum superra-
diance’’ (the Unruh-Starobinski�� effect [15,16]) predating
the famous Hawking radiation. However, apart from com-
putations of the fermion Hawking flux from a Kerr black
hole [17–20] or on-the-brane emission of fermions from a
higher-dimensional rotating black hole [21,22], most of the
work in the literature has focused on bosonic quantum
fields on Kerr. A key feature of classical bosonic fields

on Kerr is superradiance [23], whereby an incoming wave
can be reflected back to infinity with an amplitude greater
than what it was initially. In contrast, fermionic fields do
not exhibit classical superradiance [23] (we note, however,
that a classical fermion field might not have a clearly well-
defined physical meaning [24] and use the term ‘‘classical’’
to denote a field that is not quantized and satisfies a wave
equation). Quantum superradiance (the Unruh-Starobinski��
radiation) is nonetheless present for fermions as well as
bosons [15,16]. This lack of classical superradiance for
fermion fields is one motivation for our investigation of the
properties of quantum fermion fields on a Kerr black hole.
Quantum scalar fields have received particular attention.

Notable is the theorem of Kay andWald [25] (subsequently
strengthened by Kay [26]), proved for scalar fields, that
there does not exist a Hadamard state (that is, a state whose
short-distance singularity structure is of the Hadamard
form—see, for example, Refs. [25,27]) on Kerr space-
time that is regular everywhere and preserves the symme-
tries of the space-time. This means, in particular, that there
is no analogue of the Hartle-Hawking state in the
Schwarzschild space-time [5] for scalar fields on Kerr.
While there have been attempts in the literature to define
a state for bosons that mimics at least some of the proper-
ties of the Hartle-Hawking state [7,28], these states either
do not represent an equilibrium state or fail to be regular
almost everywhere [29,30]. In particular, the Frolov-
Thorne state [7], constructed using the � formalism, is
regular only on the axis of rotation of the black hole [29]
and is ill defined everywhere else even inside the speed-
of-light surface (defined in Sec. II A). A solution is to place
a mirror inside the speed-of-light surface, and then a
regular equilibrium thermal state respecting the symme-
tries of the space-time geometry inside the mirror can be
constructed [31].
For both scalar [29] and electromagnetic fields [30] in

Kerr space-time, a past-Boulware state can be constructed,
which is empty at past null infinity I� but not at future null
infinity Iþ (see Fig. 1), where it contains the quantum
superradiance. Numerical computations of differences of
expectation values in this state and the past-Unruh state
[29] (which is empty at I�, contains the Hawking radiation
at Iþ, and is the analogue for Kerr black holes of the
Unruh state [3] for Schwarzschild black holes) for electro-
magnetic fields can be found in Ref. [30]. The lack of an
analogue in Kerr of the Hartle-Hawking state in a
Schwarzschild state for bosonic fields is linked to a similar
lack of a true Boulware state that is empty at both I� and
Iþ [29,30].
With such a consistent picture developed for both scalars

and electromagnetic radiation, there may seem to be little
merit in a detailed study of the quantum field theory of
fermions on Kerr space-time, which is perhaps why none
has been attempted to date. However, we will show that
quantum fermion fields are rather different to quantum
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bosonic fields on Kerr black holes. In particular, the lack of
classical superradiance makes the development of canoni-
cal quantization rather simpler for fermions than for bo-
sons. However, the differences are not simply technical but
deeper as well. We are able to define analogues of the
Hartle-Hawking [5] and Boulware [14] vacua that are
closer approximations to the corresponding states on
Schwarzschild space-time than is possible for bosonic
fields on Kerr space-time. The new fermionic states that
we define have divergences that can nevertheless be under-
stood physically: the Hartle-Hawking state diverges on and
outside the speed-of-light surface (in the region where an
observer corotating with the event horizon must have a
velocity greater than or equal to the speed of light) and the
Boulware state diverges in the ergosphere (the region
where an observer cannot remain at rest with respect to
infinity—see Sec. II A).

The outline of this paper is as follows. In Sec. II we
review the salient features of the Kerr space-time and the
classical mode solutions of the Dirac equation on this
background. The canonical quantum theory of fermions
on Kerr space-time is developed in Sec. III, where we
focus, in particular, on defining quantum states, first the
uncontroversial past-Boulware and past-Unruh states, and
second we present candidate Boulware and Hartle-
Hawking states. The properties of these states are inves-
tigated in Sec. IV, where we compute the differences in
expectation values of the fermion number current and
stress-energy tensor in two different states. The lack of a
suitable renormalization procedure for fermions on Kerr
space-time (unlike that for Schwarzschild space-time
[9,32]) means that differences in expectation values
between two states are all that are currently tractable.
Our conclusions on the physical properties of the states
we have constructed are summarized in Sec. V. The im-
plications of our results are discussed in Sec. VI, including

their relevance to the Kerr-CFT correspondence [33]
(see also Refs. [34,35] for reviews).

II. SPIN-1=2 PARTICLES ON KERR SPACE-TIME

A. Kerr geometry

The Kerr metric in the usual Boyer-Lindquist coordi-
nates ðt; r; �; ’Þ has the form

ds2 ¼ ��

�
½dt� asin 2�d’�2 þ �

�
dr2 þ �d�2

þ sin 2�

�
½ðr2 þ a2Þd’� adt�2; (2.1)

where

� ¼ r2 � 2Mrþ a2; � ¼ r2 þ a2cos 2�; (2.2)

with M the mass of the black hole and J ¼ aM its angular
momentum. Here, and throughout this paper, we use units
in which c ¼ G ¼ ℏ ¼ kB ¼ 1. We employ the space-time
signature (�þþþ), which means that care has to be
taken, particularly with the Dirac matrices (B1) and spin
connection matrices (B8), because many papers in the
quantum field theory literature use the alternative signature
(þ���).
The outer event horizon of the Kerr black hole is at

r ¼ rH ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
(2.3)

and has Hawking temperature

TH ¼ r2H � a2

4�rHðr2H þ a2Þ : (2.4)

In this paper we consider only nonextremal Kerr black
holes, for which the outer event horizon has nonzero
Hawking temperature and 0< a<M. Part of the Carter-
Penrose diagram of the full nonextremal Kerr space-time is
shown in Fig. 1.
The Kerr metric (2.1) is stationary and axisymmetric,

possessing two Killing vectors:

� ¼ @

@t
; � ¼ @

@’
: (2.5)

The Killing vector � is timelike near infinity but becomes
null on the surface given by

r ¼ rS ¼ Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2cos 2�

p
; (2.6)

namely, the stationary limit surface. Inside the stationary
limit surface (the region between the stationary limit sur-
face and the event horizon being the ergosphere), the
vector � is spacelike, indicating that, inside the ergosphere,
observers cannot remain at rest relative to infinity. For a
nonextremal black hole, the alternative Killing vector

� ¼ �þ�H�; (2.7)

where

FIG. 1. Part of the Carter-Penrose diagram for the complete
Kerr geometry, showing the future event horizonHþ, past event
horizon H�, future null infinity Iþ, and past null infinity I�.
Region I corresponds to the space-time exterior to the event
horizon and is the region on which we study the quantum
fermion field. Region IV will be required in Sec. III for defining
some of our quantum states. A more complete Carter-Penrose
diagram for the Kerr geometry can be found in Ref. [67].
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�H ¼ a

r2H þ a2
(2.8)

is the angular velocity of the event horizon, is timelike
sufficiently close to the horizon, becoming null on the
event horizon (of which it is the generator). The Killing
vector � remains timelike outside the event horizon up to
the speed-of-light surface (which we denote SL), on which
it becomes null. Physically, SL is the surface outside which
an observer can no longer have the same angular velocity
as the event horizon.

The surface SL is distinct from the stationary limit
surface and its location is given by the solution of a cubic
equation for r in terms of �, which can be found in the
appendix of Ref. [31]. The smallest value of r on SL arises
in the equatorial plane � ¼ �

2 , while r ! 1 on SL as � !
0, � and the axis of rotation is approached. In Ref. [31], it

is shown that for a <M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ ffiffiffi

2
p � 1�

q
the speed-of-light

surface lies entirely outside the ergosphere; for

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ ffiffiffi

2
p � 1�

q
< a<M part of SL near the equatorial

plane lies inside the ergosphere. When a ¼ a0 ¼
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ ffiffiffi

2
p � 1�

q
, the stationary limit surface touches the

speed-of-light surface on the circle at r ¼ 2M, � ¼ �
2 .

For an extremal black hole a ¼ M, the speed-of-light
surface touches the event horizon in the equatorial plane.
The location of the stationary limit surface and speed-of-
light surface is shown in Fig. 2 for the cases a < a0, a ¼
a0, and a > a0 (see also Ref. [36] for a recent discussion of
the speed-of-light surface for Kerr).

B. Formalism for fermions in curved space

We consider massless fermions of spin-1=2 propagating
on the fixed Kerr geometry (2.1). We use Dirac four-spinors
and our formalism follows [15], modulo some changes of

sign due to our different convention for the space-time
signature. We restrict our attention to massless fermions
for simplicity. While the formalism developed in this
and the following subsection is standard [15,37–41], we
explicitly give all our definitions to make the paper
self-contained.
We begin with the Dirac equation for massless fermions

on the Kerr space-time:

��r�� ¼ 0; (2.9)

where � is a Dirac four-spinor. The Dirac matrices ��

satisfy the anticommutation relations

���	 þ �	�� ¼ 2g�	; (2.10)

where g�	 is the inverse metric. A suitable basis of ��

matrices for the Kerr metric (2.1) can be found in
Refs. [15,37] and is reproduced for convenience in
Appendix B. Except in Appendix A, throughout this paper
the operators r� are the spinor covariant derivatives de-

fined in terms of the spinor connection matrices �� as

follows [15]:

r�� ¼ @

@x�
�� ���: (2.11)

The spinor connection matrices �� are defined in terms of

covariant derivatives of the Dirac matrices ��:

@	�
� þ �

�
	
�
 � �	�

� þ ���	 ¼ 0; (2.12)

where ��
	
 are the usual Christoffel symbols. A suitable

choice of the spinor connection matrices �� for the Kerr

metric can be found in Appendix B.
Massless fermion solutions to the Dirac equation (2.9)

can be classified as ‘‘left handed’’ or ‘‘right handed’’ as
follows. We first define a chirality matrix �5 by

a 0.7M a 0.91018M a 0.999M

FIG. 2 (color online). The cross section of the stationary limit (shorter-dashed red curve) and speed-of-light (longer-dashed blue

curve) surfaces, for a < a0 ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ ffiffiffi

2
p � 1�

q
(left), a ¼ a0 (center), and a > a0 (right). In each case we have plotted cross sections on

a plane of fixed azimuthal angle ’. The axis of rotation of the black hole is a vertical line through the center of each diagram, and the
equatorial plane a horizontal line through the center of each diagram. The black circle denotes the region inside the event horizon.
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�5 ¼ i

4!
��	�
�

��	���
; (2.13)

where ��	�
 is the Levi-Civita antisymmetric symbol and

i ¼ ffiffiffiffiffiffiffi�1
p

. The form of �5 can be found in Appendix B.
Spinors are left handed if they satisfy the equation [38,39]

ð1� �5Þ� ¼ 0; (2.14)

and right handed if they satisfy

ð1þ �5Þ� ¼ 0: (2.15)

If � is a solution of the Dirac equation (2.9), then ~�2�� is
also a solution of the Dirac equation [38], where ~�2 is a
flat-space Dirac matrix given in Appendix B and the aster-
isk denotes complex conjugation. Furthermore, if � is
a left-handed spinor, then ~�2�� is right handed, and
vice versa.

The action giving rise to the field equation (2.9) is

S ¼ i

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½ ����r��� ðr�

��Þ����; (2.16)

where the conjugate spinor �� is given by �� ¼ �y�, with
�y the usual Hermitian conjugate of � considered as a
matrix. The matrix � satisfies the conditions

0 ¼ ��� þ ��y�; 0 ¼ �;� þ �y
��þ ���; (2.17)

and a suitable choice of� is simply� ¼ �~�0 where ~�0 is a
flat-space Dirac matrix defined in Appendix B. Note that
this definition of the matrix � involves a minus sign
relative to much of the literature, due to our metric
conventions. The covariant derivative of the conjugate

spinor �� is

r�
�� ¼ @� ��þ ����: (2.18)

From the action (2.16) the classical stress-energy tensor
is obtained [40,41]:

T�	 ¼ i

2
½ ���ð�r	Þ�� ðrð� ��Þ�	Þ��; (2.19)

where parentheses are used to denote symmetrization
of indices.

For any two spinor solutions of the Dirac equation (2.9),
�1 and �2, we define a conserved current J� [15]:

J� ¼ ��1�
��2: (2.20)

An inner product between two solutions may be defined
with respect to a constant t hypersurface St using the
current component Jt, as follows:

ð�1;�2Þ ¼
Z
St

��1�
�n��2dS; (2.21)

where n� is the unit outwards-pointing normal to St.

C. Solutions of the Dirac equation on Kerr space-time

The Dirac equation (2.9) is known to be separable on
the Kerr geometry [38,42]. Mode solutions take the
form [15,19,38]

c 	 ¼ 1

F
ffiffiffiffiffiffiffiffiffi
8�2

p e�i!teim’
�	

L�	

 !
: (2.22)

Spinors with L ¼ þ1 are left handed while those with
L ¼ �1 are right handed. The function F in (2.22) is
given by [37]

F ¼ ½�ðr� iaL cos �Þ2sin 2��14; (2.23)

where we have corrected a sign error that appears in many
places in the literature. The two-spinor �	 is

�	 ¼ 1R	ðrÞ1S	ð�Þ
2R	ðrÞ2S	ð�Þ

 !
; (2.24)

where 	 ¼ f!; ‘;mg is the set of quantum numbers for
each spinor mode. Throughout this paper, the quantities!,
‘, m and therefore ~! ¼ !�m�H are real; the quantities
‘ and m are half-integers.
The radial and angular functions satisfy, respectively, the

equations [15,19,38]:

ffiffiffiffi
�

p �
d

dr
� iKL

�

�
1R	 ¼ �2R	;ffiffiffiffi

�
p �

d

dr
þ iKL

�

�
2R	 ¼ �1R	;

(2.25)

where � is a separation constant (with � ¼ ‘þ 1
2 for

‘ ¼ 1
2 ;

3
2 ; . . . when a ¼ 0),

K ¼ ðr2 þ a2Þ!� am; (2.26)

and�
d

d�
þ
�
a! sin�� m

sin �

��
1S	 ¼ �2S	;�

d

d�
�
�
a! sin�� m

sin �

��
2S	 ¼ ��1S	:

(2.27)

It should be noted that the angular functions 1=2S	 are real

but the radial functions 1=2R	 are complex. The radial

equations (2.25) depend explicitly on L. From (2.25), under
the mapping L ! �L the ordinary differential equations
satisfied by the radial functions 1R	 and 2R	 are inter-

changed. In our discussion below of particular mode solu-
tions of the radial equations, we will be imposing boundary
conditions on the radial functions that are valid for L ¼ þ1
only. The corresponding boundary conditions for L ¼ �1
can be found by swapping 1R	 and 2R	. This should be

kept in mind in later sections where physical quantities will
depend on 1R	 and 2R	.
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Using the notation �	 ¼ f�!; ‘;�mg, the following
symmetries of the radial and angular functions will be
useful for later calculations:

1R�	 ¼ 1R
�
	; 2R�	 ¼ 2R

�
	; (2.28)

and

1S�	 ¼ �2S	; 2S�	 ¼ �1S	: (2.29)

In (2.29) there is an ambiguity in an overall sign, which is
irrelevant for the computation of physical quantities and
can be chosen arbitrarily. The angular functions have an
additional symmetry under � ! �� �:

1S	ð�� �Þ ¼ �2S	ð�Þ; 2S	ð�� �Þ ¼ �1S	ð�Þ:
(2.30)

We normalize the angular functions so that

Z �

0
1S	ð�Þ2d� ¼

Z �

0
2S	ð�Þ2d� ¼ 1: (2.31)

If c 	 is a solution of the Dirac equation (2.9), then so
too is c�	. However, we note that, despite the relations
(2.28) and (2.29), c�	 is not equal to c �

	 because of the

complex functionF (2.23). If c 	 is a solution of the Dirac
equation with L ¼ þ1, then we can construct a corre-
sponding solution with L ¼ �1 by changing L in (2.22)
and (2.23) and in the radial equations (2.25).

It is straightforward to show that (2.21) defines a genuine
inner product. Therefore normalizable wave packets con-
structed from the modes (2.22) all have positive norm,
regardless of the values of any of the quantum numbers.
We are interested in constructing a set of orthonormal
modes of the form (2.22). A set of orthogonal modes c 	

is such that

ðc 	; c 	0 Þ / �		0 ; (2.32)

where 	0 ¼ f!0; ‘0; m0g and �		0 ¼ �ð!�!0Þ�‘;‘0�m;m0 .

In an abuse of terminology, we shall refer to such modes as
having ‘‘positive norm’’ if the constant of proportionality
in (2.32) is positive and ‘‘negative norm’’ if the constant of
proportionality is negative. All fermion modes (2.22) there-
fore have positive norm in this sense. This is in contrast to
the scalar case, where the sign of the Klein-Gordon norm
of scalar modes depends on the frequency! and azimuthal
quantum number m (see Appendix A 1). We shall say that
the fermion modes (2.22) are orthonormal if the constant of
proportionality in (2.32) is unity.

One basis of mode solutions to the radial equations
(2.25) can be formed from the usual ‘‘in’’ and ‘‘up’’ radial
functions (the expressions below are for the L ¼ þ1 case;
the expressions in the L ¼ �1 case are found by making
the transformation 1R	 $ 2R	):

ð1Rin
	; 2R

in
	Þ ¼

8<
: ð0; Bin

	e
�i ~!r� Þ r� ! �1

ðAin
	e

i!r� ; e�i!r� Þ r� ! 1 ; (2.33)

ð1Rup
	 ; 2R

up
	 Þ ¼

8<
: ðei ~!r� ; Aup

	 e�i ~!r� Þ r� ! �1
ðBup

	 ei!r� ; 0Þ r� ! 1 ; (2.34)

where ~! ¼ !�m�H and we have introduced the usual
tortoise coordinate r�, defined by

dr�
dr

¼ r2 þ a2

�
; (2.35)

so that r� ! �1 at the event horizon and r� ! 1 as
r ! 1.
We also introduce an alternative basis, namely, the

‘‘out’’ and ‘‘down’’ radial functions (as above, these ex-
pressions are for the L ¼ þ1 case, swapping 1R	 and 2R	

gives the expressions for the L ¼ �1 case):

ð1Rout
	 ; 2R

out
	 Þ ¼

8<
: ðBout

	 ei ~!r� ; 0Þ r� ! �1
ðei!r� ; Aout

	 e�i!r� Þ r� ! 1 ; (2.36)

ð1Rdown
	 ; 2R

down
	 Þ ¼

8<
: ðAdown

	 ei ~!r� ; e�i ~!r� Þ r� ! �1
ð0; Bdown

	 e�i!r� Þ r� ! 1 :

(2.37)

Unlike the scalar case [see (A1)], for fermions there are no
particular subtleties in defining the up or down modes. This
is because all the up and down modes have positive norm,
independent of the sign of ~!. This is our first indication
that quantum field theory of fermions on Kerr may be more
straightforward than that for bosonic fields.
For any two solutions ð1R	; 2R	Þ and ð1 ~R	; 2

~R	Þ of the
radial equations (2.25), the quantities

W1 ¼ 1
~R	2R	 � 2

~R	1R	; W2 ¼ 1
~R�
	1R	 � 2

~R�
	2R	

(2.38)

can be shown to be independent of r. These two quantities
can be used to derive a number of relationships between the
constants in the functions (2.33), (2.34), (2.36), and (2.37),
for example,

1� jAin=up
	 j2 ¼ jBin=up

	 j2; jAin
	j2 ¼ jAup

	 j2;
jBin

	j2 ¼ jBup
	 j2; (2.39)

with similar relations holding for out/down. From (2.39),
we see that jA	j2 � 1 for all modes, so that there is no
classical superradiance for fermions [23] [compare (A5)
for the scalar case]. To understand this lack of classical
superradiance for fermions, it is important to note that
classical fermion fields do not satisfy the weak energy
condition (the weak energy condition being that
T�	u

�u	 > 0where u� is the four-velocity of any physical
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observer) [23,43]. Superradiance for classical bosonic
fields can be deduced from the area theorem because these
fields do satisfy the weak energy condition [23,43]. The
fact that fermionic fields do not satisfy the weak energy
condition means that they do not necessarily have to ex-
hibit superradiance, because the area theorem no longer
holds. For the quantum field theory of bosonic fields on
Kerr black holes, the existence of superradiant modes
causes many technical and conceptual difficulties
[7,29–31]. While there is no classical superradiance for
fermions, it is still the case that the frequency of the modes
as seen by an observer near infinity is !, while for an
observer near the event horizon it is ~!, so subtleties remain.
Despite the lack of classical superradiance for fermions, we
shall still use the terminology superradiant modes for those
fermion modes for which ~!!< 0 (which is the condition
for superradiance for scalar field modes; see Sec. A 1).

The out (2.36) and down (2.37) radial functions can be
compactly written in terms of the in (2.33) and up (2.34)
radial functions as follows:

1;2R
out
	 ¼ Aout

	 1;2R
in
	 þ Bout

	 1;2R
up
	 ;

1;2R
down
	 ¼ Adown

	 1;2R
up
	 þ Bdown

	 1;2R
in
	;

(2.40)

and the in and up radial functions can similarly be written
in terms of the out and down radial functions. One impor-
tant point for our later work is that the relations (2.40) only
involve R	 and not R�

	. This is in contrast to the situation

for scalar fields; see Appendix A.
By inserting the appropriate radial functions into the

two-spinor �	 (2.24) we can construct basis spinor modes
c in

	, c
up
	 , c out

	 , and c down
	 (see Sec. III). The in modes c in

	

correspond to unit flux incoming from past null infinity I�,
part of which is scattered back to future null infinity Iþ
and part passes down the future event horizon Hþ (see
Fig. 1). The up modes c up

	 correspond to unit flux outgoing

from the past event horizonH�, part of which is scattered
down the future event horizonHþ and the rest travels out
to Iþ. The out and down modes are the time reverse of the
in and up modes: the out modes c out

	 correspond to unit

flux outgoing at future null infinity Iþ, part of which has
come from past null infinity I� and part from the past
event horizon H�. Similarly, the down modes c down

	

correspond to unit flux going down the future event horizon
Hþ, part of which has come from the past event horizon
H� and the rest from I�.

We remark that our out and down modes are not the
same as those considered, for example, in Ref. [44]. In
Ref. [44], out and down modes are constructed from in and
up modes by writing them in terms of Kruskal coordinates,
taking their complex conjugates, and reversing the signs of
the Kruskal coordinates. This procedure yields mode
functions that are nonvanishing only on the left-hand dia-
mond of the Kruskal diagram (denoted region IV in Fig. 1).
However, the out and down modes that we have

constructed (2.36) and (2.37) are nonvanishing on the
right-hand diamond of the Kruskal diagram (denoted
region I in Fig. 1).

III. QUANTUMFIELD THEORYOF FERMIONSON
KERR SPACE-TIME

Before we study in detail the definition of quantum
states for fermions on Kerr black holes, we review the
essential features of fermion quantum field theory in
curved space, particularly stressing how this differs from
the quantum field theory of bosonic fields.
The first step is to select a basis of solutions of the Dirac

equation (2.9) that are orthonormal with respect to the
inner product defined in (2.21) and expand the classical
fermion field in terms of this basis. Before promoting the
coefficients in this expansion to operators, it is necessary to
divide the mode solutions of the field equation into two
sets: the expansion coefficients of one set will correspond
to particle annihilation operators, and the expansion coef-
ficients of the other set will correspond to particle creation
operators. We will denote the modes in the first set as cþ

	

and the ones in the second set as c�
	 . This division of the

modes is not completely arbitrary; it must be the case that
the particle annihilation and creation operators satisfy the
usual commutation relations. One usually chooses the
modes cþ

	 as being positive frequency modes with respect

to a chosen timelike coordinate � (that is, when they are
Fourier decomposed with respect to � they only contain
positive frequency components) and the modes c�

	 as

being negative frequency modes with respect to the coor-
dinate �. If the space-time has a globally timelike Killing
vector @=@�, then the choice of positive frequency using
the coordinate � is the most natural and corresponds to
positive frequency modes also having positive energy.
Before proceeding with the discussion of the quantiza-

tion of a fermion field, consider for the moment the

quantization of a scalar field 
̂ (see Appendix A for Kerr
space-time and [45] for rotating Minkowski space-time).

The quantum scalar field 
̂ and its conjugate momentum

�̂
 satisfy the equal-time canonical commutation relations

½
̂ð�; xÞ; �̂
ð�; x0Þ� ¼ i�3ðx; x0Þ;
½
̂ð�; xÞ; 
̂ð�; x0Þ� ¼ 0 ¼ ½�̂
ð�; xÞ; �̂
ð�; x0Þ�;

(3.1)

where � is an appropriate time coordinate and �3ðx; x0Þ is
the invariant three-dimensional Dirac functional on the
hypersurface � ¼ constant. The commutator of two opera-

tors Â and B̂ is defined as usual by ½Â; B̂� ¼ Â B̂�B̂ Â . The
scalar field is expanded in terms of a basis of positive
frequency modes �þ

	 and negative frequency modes ��
	 :


̂ ¼ X
	

�þ
	 â	 þ��

	 â
y
	: (3.2)

If the positive and negative frequency scalar modes are
such that
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ð�þ
	 ; �

þ
	0 ÞKG ¼ �		0 ; ð��

	 ; �
�
	0 ÞKG ¼ ��		0 ;

ð�þ
	 ; �

�
	0 ÞKG ¼ 0; (3.3)

where ð�;�ÞKG is the usual Klein-Gordon scalar product,

then it follows from (3.1) that the operators â	 and ây	
satisfy the usual commutation relations

½â	; ây	0 � ¼ �		0 ; ½â	; â	0 � ¼ 0 ¼ ½ây	; ây	0 �: (3.4)

The consequence of the commutation relations (3.4) is that
the operators â	 are interpreted as particle annihilation

operators, and the operators ây	 are interpreted as particle

creation operators. To derive (3.4), we make use of (3.3),
which means that, in the terminology of Sec. II C, the
positive frequency modes �þ

	 have positive norm, and

the negative frequency modes ��
	 have negative norm. If

it were the other way round, the sign on the right-hand side
of the first commutation relation (3.4) would change, lead-
ing to an interpretation of â	 as a particle creation operator

and ây	 as a particle annihilation operator. For quantum

scalar fields, the sign of the norm of the mode in general
depends on the frequency, which therefore restricts the
possible choices of positive and negative frequency modes
as, respectively, coefficients of the annihilation and crea-
tion operators [45].

Now we return to the case of a fermion field �. As
described above, we start with an orthonormal basis of
modes of the form (2.22) and make an appropriate choice
for the positive frequency modes cþ

	 and negative fre-

quency modes c�
	 (see the rest of this section for the

physically relevant choices). Note that the spinor modes
c�

	 have the form (2.22) and are not the complex conju-

gates of the spinor modes cþ
	 because of the complex

function F (2.23). We expand our classical fermion field
� in terms of these basis spinors:

� ¼ X
	

cþ
	a	 þ c�

	b
y
	; (3.5)

where the sum is over the appropriate values of the quan-
tum numbers	. We note that, at this stage, the coefficients

by	 are not operators. The superscript y is, at the moment,

purely a notational device that is useful later and should not
be taken to mean the adjoint before the coefficients are
promoted to operators. After quantization, when the coef-
ficients have been promoted to operators, the y notation
will mean the adjoint.

Quantization proceeds by promoting the field �̂ and

expansion coefficients â	 and b̂	 to operators. In this

case, the quantum fermion field �̂ and its conjugate

momentum �̂� satisfy the equal-time anticommutation
relations

f�̂ð�; xÞ; �̂�ð�; x0Þg ¼ i�3ðx; x0Þ;
f�̂ð�; xÞ; �̂ð�; x0Þg ¼ 0 ¼ f�̂�ð�; xÞ; �̂�ð�; x0Þg;

(3.6)

where the anticommutator of two operators Â and B̂ is

defined as usual by fÂ; B̂g ¼ Â B̂þB̂ Â . As for the scalar
case discussed above, the anticommutator relations satis-

fied by the â	 and b̂	 operators are derived from (3.6)
using the fact that the fermion modes are orthogonal and
all have positive norm:

ðcþ
	 ; c

þ
	0 Þ ¼ �		0 ; ðc�

	 ; c
�
	0 Þ ¼ �		0 ;

ðcþ
	 ; c

�
	0 Þ ¼ 0; (3.7)

where ð�;�Þ is the inner product (2.21). Using (3.6) and
(3.7), we find that the anticommutation relations for the

operators â	 and b̂	 take the form

fâ	; ây	0 g ¼ �		0 ¼ fb̂	; b̂y	0 g;
fâ	; â	0 g ¼ fây	; ây	0 g ¼ 0 ¼ fb̂	; b̂	0 g ¼ fb̂y	; b̂y	0 g:

(3.8)

We interpret the operator â	 as an annihilation operator for

fermions, the operator ây	 as a creation operator for fermi-

ons, and b̂	, b̂
y
	 as annihilation and creation operators for

antifermions, respectively. We note that the annihilation
operator for a fermion is not the same as the creation
operator for an antifermion.
All the fermion modes defined in Sec. II C have positive

norm, independent of the frequency of the mode (the same
is true for fermions in rotating Minkowski space-time
[39,46]). In other words, for fermion fields, both positive
and negative frequency modes have positive norm. This
means that, unlike the scalar case, positivity of the norm
does not restrict the choice of positive and negative fre-
quency modes as coefficients of the annihilation and cre-
ation operators. Therefore we have rather more freedom in
the fermion case to choose the modes cþ

	 according to

physical criteria, for example requiring the energy of a
mode as seen by a particular observer in a particular region
of the space-time to be positive.
With a particular choice of positive and negative fre-

quency modes, the vacuum state j0i is then defined as that
state that is empty of both fermions and antifermions:

â	j0i ¼ 0 ¼ b̂	j0i: (3.9)

It is clear from the above construction that, as with scalar
fields, the definition of the vacuum j0i depends crucially on
the choice of the modes that are the coefficients of the
operators â	. What is different about the fermion field,
however, is that there is much more freedom in making this
choice, which will be of fundamental importance for the
rest of this section.

A. Past and future quantum states

Although the surfaceH� [ I� is null and therefore not
strictly a Cauchy surface, we expect that classical field
values on this surface will determine the full classical
solution of the Dirac equation (2.9) on the right-hand
quadrant of the Kruskal diagram for Kerr (denoted by
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region I in Fig. 1), in other words for the space-time
exterior to the event horizon. We begin by reviewing the
construction of quantum states defined in terms of proper-
ties on this surface, since this is uncontroversial and can be
performed for bosonic as well as fermionic fields. All the
states we consider in this section are not invariant under
simultaneous t� ’ reversal.

1. Past-Boulware state jB�i
On I�, it is natural to define positive frequency with

respect to the Boyer-Lindquist time coordinate t, since this
is the proper time for an observer at rest far from the black
hole. A suitable set of modes having positive frequency
with respect to t on I� is

c in
	 ¼ 1

F
ffiffiffiffiffiffiffiffiffi
8�2

p e�i!teim’
�in
	

L�in
	

 !
; (3.10)

where !> 0,

�in
	 ¼ 1R

in
	ðrÞ1S	ð�Þ

2R
in
	ðrÞ2S	ð�Þ

 !
; (3.11)

and the in radial functions are given by (2.33) for L ¼ þ1
and by (2.33) with 1R	 $ 2R	 for L ¼ �1.

The past-Boulware state jB�i [14,29] is defined by

expanding the quantum fermion field �̂ in terms of the
above in modes (3.10) plus a set of up modes with positive
frequency with respect to t on the past event horizon H�.
From the form of the radial functions (2.34) near the past
event horizon, the relevant frequency near the event hori-
zon is not ! but ~! ¼ !�m�H instead. This is because
the up modes should be written in the form

c up
	 ¼ 1

F
ffiffiffiffiffiffiffiffiffi
8�2

p e�i ~!teim~’
�up
	

L�up
	

 !
; (3.12)

where ~’ ¼ ’��Ht is the azimuthal coordinate that
corotates with the event horizon, and

�up
	 ¼ 1R

up
	 ðrÞ1S	ð�Þ

2R
up
	 ðrÞ2S	ð�Þ

 !
; (3.13)

the up radial functions being given by (2.34) for L ¼ þ1
and by (2.34) with 1R	 $ 2R	 for L ¼ �1. For the modes

in (3.12), we have

@

@t

�������� ~’
c up

	 ¼ �i ~!c up
	 ; (3.14)

so that the natural choice of positive frequency for the up
modes near H� is ~!> 0, reflecting the fact that an
observer near the event horizon cannot remain at rest
relative to infinity.

The modes (3.10) and (3.12) form an orthonormal basis
and therefore, splitting the field into modes cþ

	 and c�
	

and following the procedure outlined at the start of this
section, we expand the quantum fermion field as

�̂ ¼ X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d!½c in

	â
in
	 þ c in

�	b̂
iny
	 �

þ
Z 1

0
d ~!½c up

	 âup	 þ c up
�	b̂

upy
	 �

�
; (3.15)

where we remind the reader that �	 ¼ f�!; ‘;�mg.
The expansion coefficients have become operators satisfy-
ing the usual anticommutation relations

fâin=up	 ; âin=upy
	0 g ¼ �		0 ¼ fb̂in=up	 ; b̂in=upy

	0 g;
fâin=up	 ; âin=up

	0 g ¼ 0 ¼ fâin=upy	 ; âin=upy
	0 g;

fb̂in=up	 ; b̂
in=up
	0 g ¼ 0 ¼ fb̂in=upy	 ; b̂

in=upy
	0 g:

(3.16)

The past-Boulware vacuum jB�i is then defined as that

state annihilated by the â and b̂ operators:

âin	jB�i ¼ b̂in	jB�i ¼ 0; ! > 0;

âup	 jB�i ¼ b̂up	 jB�i ¼ 0; ~!> 0:
(3.17)

This definition of the past-Boulware state is the same as for
the bosonic case (modulo the subtleties in defining the up
modes for bosons) and is the state considered in Ref. [15].
It corresponds to an absence of particles either coming in
from I� or emanating from the past event horizon H�.
However, this state is not a vacuum state as seen at Iþ;
it contains an outgoing flux of particles in the up
modes where ! ~!< 0, which is the Unruh-Starobinski��
radiation [15,16]. This quantum superradiance occurs even
though fermions do not display classical superradiance
[see remarks below (2.39)].

2. Past-Unruh state jU�i
Next we turn to the definition of the past-Unruh state

jU�i [3,29]. The in modes (3.10) are again chosen to have
positive frequency with respect to Boyer-Lindquist time
near I�. However, we now require the up modes (3.12) to
have positive frequency with respect to the Kruskal
retarded time (that is, the affine parameter along the null
generators of the past horizon [47]) near the past event
horizon H�. Using the Lemma in Appendix H of
Ref. [44], it can be shown that a suitable set of positive
frequency modes is given by the following, for all values
of ~! [21]:�
2 cosh

�
~!

2TH

���1
2

�
exp

�
~!

4TH

�
c up

	 þ exp

�
� ~!

4TH

�
~c down�
	

�
;

(3.18)

where TH is the Hawking temperature of the black hole

(2.4). There is a subtlety in the definition of the ~c down
	

modes: these are obtained by taking the complex conjugate
of the up modes and changing the sign of the Kruskal
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coordinates. The ~c down
	 modes are therefore not the same

as our down modes c down
	 formed from the radial functions

(2.37): the latter are nonvanishing on the right-hand quad-
rant of the Kruskal diagram for Kerr (region I in Fig. 1),
while the former are vanishing on the right-hand quadrant
of the Kruskal diagram and so do not need to be considered
in detail. Similarly, a suitable set of modes having negative
frequency with respect to Kruskal time near H� is found
to be, again for all values of ~!,�
2 cosh

�
~!

2TH

���1
2

�
exp

�
� ~!

4TH

�
c up

	 þ exp

�
~!

4TH

�
~c down�
	

�
:

(3.19)

Further details of this construction can be found in
Refs. [3,44]. We therefore expand the quantum fermion
field in terms of these positive and negative frequency
modes as follows, where we work on the right-hand quad-
rant of the Kruskal diagram only:

�̂¼X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d!½c in

	ĉ
in
	 þ c in

�	d̂
iny
	 �

þ
Z 1

�1
d ~!

�
2cosh

�
~!

2TH

���1
2

� c up
	

�
exp

�
~!

4TH

�
ĉ
up
	 þ exp

�
� ~!

4TH

�
d̂
upy
	

��
: (3.20)

The past-Unruh state jU�i is then defined as that state

which is annihilated by the ĉ and d̂ operators:

ĉin	jU�i ¼ d̂in	jU�i ¼ 0; ! > 0;

ĉup	 jU�i ¼ d̂up	 jU�i ¼ 0; all ~!:
(3.21)

As with the past-Boulware state jB�i, the derivation above
mirrors that for bosonic fields (see, for example,
Appendix B of Ref. [7]), except that for fermions there
are no difficulties in defining the up modes. The past-
Unruh state jU�i corresponds to an absence of particles
incoming from I�, but, as we shall see in Sec. IV, the up
modes from H� are thermally populated.

The past-Boulware and past-Unruh states defined in
Secs. III A 1 and III A 2 are uncontroversial and well
defined for quantum fields of all spins. Various
expectation values in these states have been computed
for both fermionic and bosonic fields; see
Refs. [15,17,18,21,22,29,30,48,49].

3. CCH state jCCH�i
There is one further past quantum state that can be defined.

For the past-Unruh state above, there is an absence of in mode
particles but the up modes are thermalized with a thermal
factor containing their natural mode energy ~!. One can
define a further state, the Candelas-Chrzanowski-Howard

(CCH) state [28], which we denote jCCH�i (see
Appendix A 2). In the jCCH�i state the in modes are
thermalized as well as the up modes, using the natural
mode energy ! in the thermal factor for the in modes.
In common with the other past quantum states considered
in this section, the CCH-state jCCH�i is not invariant
under simultaneous t� ’ reversal. For bosonic fields,
expectation values in this state have been found to have
good regularity properties [30].

4. Future quantum states

Following Ref. [29], we could use out and down modes,
defined from the radial functions (2.36) and (2.37) and
considered in more detail in the next section, to define a
future-Boulware state jBþi that would correspond to an
absence of particles from Iþ andHþ. We do not consider
this further in this article; instead, in Sec. III B we will
define a state that is empty at both I� and Iþ.
It would also be possible to define a future-Unruh state

jUþi [29] by considering out modes with positive fre-
quency with respect to time t at Iþ and down modes
with positive frequency with respect to Kruskal time near
Hþ. This state would have no outgoing particles at Iþ but
the down modes would be thermally populated.
In analogy with the future-Boulware and future-Unruh

states above, we could also define a state jCCHþi by
thermalizing the out and down modes with their natural
energies appearing in the thermal factors. We do not con-
sider such future states further in this paper.
We now turn to the more subtle task of defining

Boulware jBi [14] and Hartle-Hawking jHi [5] states for
fermions on Kerr space-time. By a Boulware state, we
mean a state that is empty at both I� and Iþ. By a
Hartle-Hawking state, we mean a state that represents a
thermal bath of radiation at the Hawking temperature of the
black hole. It would be anticipated [25] that such a Hartle-
Hawking state, if it exists, would respect the symmetries of
the space-time and be regular on both H� and Hþ. The
existence of one of these two states is intimately linked
with the existence of the other.

B. A candidate Boulware state

For scalars and electromagnetic radiation, it is shown,
respectively, in Refs. [29,30] that a Boulware state,
empty at both I� and Iþ, cannot be defined (see also
Appendix A 2). Instead one has to consider the past-
Boulware jB�i (see Sec. III A 1) and future-Boulware
jBþi (see Sec. III A 4) states constructed in the previous
subsection.
However, we now show that for fermions the situation is

different. We have already defined a set of in modes (3.10)
that have positive frequency with respect to Boyer-
Lindquist time t at I�. Similarly, a set of out modes,
having positive frequency with respect to t at Iþ, can be
defined as follows:
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c out
	 ¼ 1

F
ffiffiffiffiffiffiffiffiffi
8�2

p e�i!teim’
�out
	

L�out
	

 !
; (3.22)

where !> 0,

�out
	 ¼ 1R

out
	 ðrÞ1S	ð�Þ

2R
out
	 ðrÞ2S	ð�Þ

 !
; (3.23)

and the out radial functions are given by (2.36) for L ¼ þ1
and by (2.36) with 1R	 $ 2R	 for L ¼ �1. Expanding
the classical fermion field in terms of the in and out
modes gives

� ¼ X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d!½c in

	~e
in
	 þ c in

�	
~finy	 �

þ
Z 1

0
d!½c out

	 ~eout	 þ c out
�	

~fouty	 �
�
: (3.24)

As discussed at the start of Sec. III, before quantization
it is important to expand the classical field in terms of an
orthonormal basis of field modes, so that the particle
creation and annihilation operators satisfy the usual anti-
commutation relations. The in and out modes are not
orthogonal to each other, and therefore we cannot consider
quantizing the fermion field using the expansion (3.24). We
need to first write the classical fermion field as an expan-
sion over an orthonormal basis of field modes. A suitable
orthonormal basis consists of the in and up modes.

We therefore write the out modes in terms of the
orthogonal in and up modes, using the relations (2.40)

c out
	 ¼ Aout

	 c in
	 þ Bout

	 c up
	 ;

c down
	 ¼ Adown

	 c up
	 þ Bdown

	 c in
	;

(3.25)

noting that this transformation only involves c in=up
	 and not

their complex conjugates [in contrast with the scalar case
in the superradiant regime, Eq. (A8)] and is valid for all
signs of ! and ~!. We define the modes c down

	 similarly to

c up
	 in Eq. (3.12) but using the radial functions 1;2R

down
	

[given by (2.37) for L ¼ þ1 and by (2.37) with

1R	 $ 2R	 for L ¼ �1] instead of 1;2R
up
	 . The relations

(3.25) enable us to rewrite the expansion (3.24) in terms of
in and up modes:

� ¼ X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d!½c in

	e
in
	 þ c in

�	f
iny
	 �

þ
Z 1

0
d!½c up

	 e
up
	 þ c up

�	f
upy
	 �

�
; (3.26)

where the new classical expansion coefficients ein=up	 ,

f
in=upy
	 are given in terms of the old ones ~ein=out	 , ~fin=outy	

as follows:

ein	 ¼ ~ein	 þ ~eout	 Aout
	 ; e

up
	 ¼ ~eout	 Bout

	 ;

finy	 ¼ ~finy	 þ ~fouty	 Aout
	 ; f

upy
	 ¼ ~fouty	 Bout

	 :
(3.27)

We emphasize that, so far in this subsection, we have been
working with a classical fermion field.
Having expanded the classical fermion field using an

orthonormal basis of field modes, we can now proceed

with quantizing the field. The quantum fermion field �̂
takes the form

�̂ ¼ X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d!½c in

	ê
in
	 þ c in

�	f̂
iny
	 �

þ
Z 1

0
d!½c up

	 êup	 þ c up
�	f̂

upy
	 �

�
: (3.28)

Again, the expansion coefficients ê, f̂ have become opera-
tors satisfying the usual anticommutation relations. We
then define our candidate Boulware vacuum jBi as that

state annihilated by the ê and f̂ operators:

êin	jBi ¼ f̂in	jBi ¼ ê
up
	 jBi ¼ f̂

up
	 jBi ¼ 0; !> 0: (3.29)

Of course, the fact that we have defined a candidate
Boulware state does not mean that this state is regular or
Hadamard (anywhere), or, indeed, physically relevant.
However, it is worth stressing that, in the fermion case,
we have been able to progress rather further with the
definition of a candidate Boulware state than is possible
with bosonic fields. Note that at this stage we are not
making any claims whatsoever as to the regularity of the
state jBi; instead we are simply commenting that our
definition seems reasonable. In Sec. IVC we will compute
some differences in expectation values for observables
between two states, including the state jBi, which will
provide concrete evidence for the existence of this state
and its regularity, at least on part of the space-time exterior
to the event horizon.

C. A candidate Hartle-Hawking state

The Kay-Wald theorem [25] proves that in essentially
any globally hyperbolic and analytic space-time with a
bifurcate Killing horizon there can exist at most one
Hadamard state that is regular everywhere and respects
the symmetries of the space-time. The theorem further
proves that, if such a state exists, then it must be a thermal
state. Importantly, Kay and Wald show that such a state
does not exist for scalar fields on Kerr space-time.
Therefore there cannot exist a Hartle-Hawking state that
is regular everywhere outside the event horizon and on
both H� and Hþ. While the Kay-Wald result is proved
formally only for scalar fields, one could anticipate that it
is valid for fields of higher spin, including fermions.
Of course, the Kay-Wald result is a nonexistence theorem,
and it may be possible, for example, to have a state that
respects the symmetries of the space-time but is not regular
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everywhere. For scalars, Frolov and Thorne [7] have used
the � formalism to construct the so-called FT state (see
Appendix A 2), which respects the symmetries of the
space-time but unfortunately is well defined only on the
axis of rotation [29]. In this section wewill construct a state
that possesses the symmetries of the space-time, before
undertaking some numerical computations in Sec. IVC to
investigate its regularity properties. We emphasize that we
do not need to use an analogue of the � formalism for
defining this state for fermions.

1. Hartle-Hawking state jHi
To define a state that has the potential to be regular on

both H� and Hþ, we seek modes that have positive
frequency with respect to Kruskal time near both H�
and Hþ. In Sec. III A we have already constructed posi-
tive and negative frequency modes with respect to Kruskal
time near H� [see (3.18) and (3.19), respectively]. By a
similar method, a suitable set of modes having positive
frequency with respect to Kruskal time near Hþ is found
to be, for all ~!,�
2 cosh

�
~!

2TH

���1
2

�
exp

�
~!

4TH

�
c down

	 þ exp

�
� ~!

4TH

�
~c up�
	

�
;

(3.30)

and a suitable set of modes having negative frequency with
respect to Kruskal time near Hþ is found to be, for all ~!,�
2 cosh

�
~!

2TH

���1
2

�
exp

�
� ~!

4TH

�
c down

	 þ exp

�
~!

4TH

�
~c up�
	

�
:

(3.31)

In (3.30) and (3.31), as in (3.18) and (3.19), the ~c up
	 modes

are defined by taking the complex conjugate of the down
modes and changing the sign of the Kruskal coordinates.

The ~c up
	 modes are therefore not the same as our up modes

c up
	 and vanish on the right-hand quadrant of the Kruskal

diagram (region I in Fig. 1). As in Sec. III A 2, we do not
need to consider them further.

We therefore expand our classical fermion field on the
right-hand quadrant of the Kruskal diagram in terms of the
modes (3.18), (3.19), (3.30), and (3.31) to obtain

� ¼ X1
‘¼1

2

X‘
m¼�‘

Z 1

�1
d ~!

�
2 cosh

�
~!

2TH

���1
2

�
�
c up

	

�
exp

�
~!

4TH

�
~g
up
	 þ exp

�
� ~!

4TH

�
~h
upy
	

�

þ c down
	

�
exp

�
~!

4TH

�
~gdown	 þ exp

�
� ~!

4TH

�
~hdowny	

��
:

(3.32)

The up and down modes are not orthogonal and so do not
form a good quantization basis. As in Sec. III B, we use the

relations (2.40) to write the down modes in terms of in
and up modes (we could equally well write the up modes
in terms of out and down), obtaining, for the classical
fermion field,

� ¼ X1
‘¼1

2

X‘
m¼�‘

Z 1

�1
d ~!

�
2 cosh

�
~!

2TH

���1
2

�
�
c up

	

�
exp

�
~!

4TH

�
gup	 þ exp

�
� ~!

4TH

�
hupy	

�

þ c in
	

�
exp

�
~!

4TH

�
gin	 þ exp

�
� ~!

4TH

�
hiny	

��
; (3.33)

where the classical expansion coefficients are related by

g
up
	 ¼ ~g

up
	 þ ~gdown	 Adown

	 ; gin	 ¼ ~gdown	 Bdown
	 ;

h
upy
	 ¼ ~h

upy
	 þ ~hdowny	 Adown

	 ; hiny	 ¼ ~hdowny	 Bdown
	 :

(3.34)

Since the in and up modes form an orthonormal basis,
we can now quantize the fermion field and promote the
expansion coefficients g and h to operators. We then define
our candidate Hartle-Hawking state jHi as that state which
is annihilated by the ĝ and ĥ operators:

ĝin	jHi ¼ ĥin	jHi ¼ ĝ
up
	 jHi ¼ ĥ

up
	 jHi ¼ 0; 8 ~!: (3.35)

As with our candidate Boulware state in Sec. III B,
we cannot at this stage make any claims as to the regularity
or properties of our candidate Hartle-Hawking state.
However, we are encouraged by the fact that we have
been able to proceed this far for fermions (the correspond-
ing construction for bosons fails due to the superradiant
modes and the need to use positive norm modes).
Further evidence that our candidate Hartle-Hawking

state jHi may be regular on at least part of the space-
time exterior to the event horizon is provided by consider-
ing the simpler situation of a rigidly rotating thermal bath
in flat space, as, at least close to the event horizon, it is
expected that a Hartle-Hawking-like state on Kerr space-
time should represent a thermal bath of radiation rotating
rigidly with the angular velocity of the event horizon �H.
For a rigidly rotating thermal bath of scalar particles in flat
space [50], the quantum state is ill defined everywhere. The
situation for fermions in flat space is rather different [46]. It
is possible to define a state in flat space that is regular
inside the speed-of-light surface SL but diverges on SL

(and, presumably, outside SL as well). These results
indicate to us that our Hartle-Hawking state on Kerr should
be defined and regular, at least sufficiently close to the
event horizon.
One final comment is in order in this section, namely,

can we construct an analogue of the Frolov-Thorne state
[7] for fermions? We will see in Sec. IV that expectation
values of operators in the Frolov-Thorne state for fermions
can easily be defined and turn out to be identical to
those for our candidate Hartle-Hawking state jHi.
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Wewill therefore conclude that our new state jHi is indeed
the fermionic analogue of the Frolov-Thorne state.

2. An alternative vacuum state j ~Bi
For further comparison with both the scalar and fermion

field results for a rigidly rotating thermal bath in flat space-
time [46,50], it is helpful to have, for Kerr space-time, an
analogue of a vacuum state which is defined within the
speed-of-light surface (our candidate Boulware state for
Kerr space-time, constructed in Sec. III B, is not helpful in
this regard because it is defined with respect to infinity, and
we suspect that it may not be regular all the way down to
the event horizon). To do this, we expand the fermion field
in terms of up and down modes with ~!> 0:

� ¼ X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d ~!½c up

	 ~x
up
	 þ c up

�	~y
upy
	 �

þ
Z 1

0
d ~!½c down

	 ~xdown	 þ c down
�	 ~ydowny	 �

�
: (3.36)

As with the candidate Hartle-Hawking state jHi (see
Sec. III C 1), we write the down modes in terms of the in
and up modes, and then, promoting the resulting expansion
coefficients to operators, we find

�̂ ¼ X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d ~!½c up

	 x̂up	 þ c up
�	ŷ

upy
	 �

þ
Z 1

0
d ~!½c in

	x̂
in
	 þ c in

�	ŷ
iny
	 �

�
: (3.37)

We then define yet another vacuum j ~Bi as that state anni-
hilated by the x̂ and ŷ operators:

x̂in	j ~Bi ¼ ŷin	j ~Bi ¼ x̂
up
	 j ~Bi ¼ ŷ

up
	 j ~Bi ¼ 0: (3.38)

Once again, at this stage we make no claims as to the
regularity of the state j ~Bi, merely that the definition above
seems reasonable. In particular, we should emphasize that
the state j ~Bi is not a candidate for a state on Kerr analogous
to any of the standard Schwarzschild black hole states
(Boulware, Unruh, or Hartle-Hawking). We have intro-
duced this state solely to aid the interpretation of the state
jHi in Sec. V. We expect that the state j ~Biwill approximate
a rigidly rotating vacuum state with the same angular speed
as the event horizon, analogous to the fermionic rotating
vacuum in flat space [46].

IV. EXPECTATION VALUES OF OBSERVABLES

We now turn to the computation of the expectation
values of various observables in the quantum states defined
in Sec. III, in particular, to investigate the properties of our
candidate Boulware and Hartle-Hawking states. We are
interested in expectation values of the number current

operator Ĵ� and stress-energy tensor operator T̂�	 in

each of the states defined in Sec. III, namely,

past-Boulware jB�i (Sec. III A 1), past-Unruh jU�i
(Sec. III A 2), the CCH-state jCCH�i (Sec. III A 3), our
candidate Boulware jBi (Sec. III B), our candidate Hartle-
Hawking jHi (Sec. III C 1), and the state j ~Bi (Sec. III C 2).
Unfortunately, renormalization of all these quantities on
Kerr space-time remains an intractable problem, and there-
fore our analysis is limited to finding the differences in
expectation values between two of the above states.

A. Observables

The simplest nontrivial fermion operator to study is the
number current J�, given as a quantum operator by

Ĵ� ¼ 1

2
½ �̂�; ���̂�: (4.1)

In (4.1), the commutator is understood to act only on the

operators in �̂ and not on the spinor mode functions, which

keep the order �c��c so that expectation values of Ĵ� do
not have any spinor indices. Physically, expectation values

of the operator Ĵi, i ¼ 1, 2, 3 count the flux of particles
(that is, flux of fermions minus flux of antifermions) in a

particular direction and the expectation value of Ĵt counts
the particle number density (again of fermions minus that
of antifermions). Note that these quantities will not be zero
in general because the black hole emits fermions preferen-
tially in the southern hemisphere and antifermions in the
northern hemisphere [18–20,51,52].

The expectation values of Ĵ� (4.1) in each of our states
of interest can be written in terms of the classical number
current (2.20) acting on individual modes as follows:

hB�jĴ�jB�i ¼ 1

2

X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d!j

in;�
	 þ

Z 1

0
d ~!j

up;�
	

�
;

(4.2)

hU�jĴ�jU�i ¼ 1

2

X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d!j

in;�
	

þ
Z 1

0
d ~! tanh

�
~!

2TH

�
j
up;�
	

�
; (4.3)

hCCH�jĴ�jCCH�i ¼ 1

2

X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d! tanh

�
!

2TH

�
j
in;�
	

þ
Z 1

0
d ~! tanh

�
~!

2TH

�
j
up;�
	

�
; (4.4)

hBjĴ�jBi ¼ 1

2

X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d!½jin;�	 þ jup;�	 �

�
; (4.5)
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hHjĴ�jHi ¼ 1

2

X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d ~! tanh

�
~!

2TH

�
½jin;�	 þ j

up;�
	 �

�
;

(4.6)

h ~BjĴ�j ~Bi ¼ 1

2

X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d ~!½jin;�	 þ j

up;�
	 �

�
; (4.7)

where

j
in=up;�
	 ¼ �c in=up

�	 ��c in=up
�	 � �c in=up

	 ��c in=up
	 : (4.8)

We can also write down the expectation values of Ĵ� for the
analogue of the FT state jFTi [7],

hFTjĴ�jFTi ¼ 1

2

X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d! tanh

�
~!

2TH

�
j
in;�
	

þ
Z 1

0
d ~! tanh

�
~!

2TH

�
j
up;�
	

�
; (4.9)

noting that this differs from (4.4) in the thermal factor for
the in modes. At first sight, it looks like (4.9) differs from
the expectation value for our candidate Hartle-Hawking
state jHi (4.6) in the integral over the in modes. However, it
can be shown that the expectation values of the fermion
current (and stress-energy tensor) for the FT state jFTi and
our candidate Hartle-Hawking state jHi are in fact equiva-
lent, so that, for all practical purposes, the fermion FT state
is the same as our state jHi.

Writing out the spinor mode functions explicitly in
terms of the radial and angular functions using (3.10) and
(3.12), the classical mode contributions to the components
of the current J

�
	 ¼ �c 	�

�c 	 are (where we omit the in/

up mode labels as these formulas apply equally well to all
modes)

Jt	 ¼ � 1

4�2�� sin �
fiaL

ffiffiffiffi
�

p
sin�½1R�

	2R	

� 1R	2R
�
	�1S	2S	 � ðr2 þ a2Þ½j1R	j21S2	

þ j2R	j22S2	�g; (4.10)

Jr	 ¼ L

4�2� sin �
½j1R	j21S2	 � j2R	j22S2	�; (4.11)

J�	 ¼ L

4�2
ffiffiffiffi
�

p
�sin�

½1R�
	2R	 þ 1R	2R

�
	�1S	2S	; (4.12)

J’	 ¼ � 1

4�2��sin 2�
fiL

ffiffiffiffi
�

p
½1R�

	2R	 � 1R	2R
�
	�1S	2S	

� a sin �½j1R	j21S2	 þ j2R	j22S2	�g: (4.13)

From the above expressions, using the symmetries (2.28)
and (2.29), we find

jt	 ¼ � ðr2 þ a2Þ
4�2�� sin �

½j1R	j2 � j2R	j2�½1S2	 � 2S
2
	�;

(4.14)

jr	 ¼ � L

4�2� sin �
½j1R	j2 þ j2R	j2�½1S2	 � 2S

2
	�;
(4.15)

j�	 ¼ � L

�2
ffiffiffiffi
�

p
�sin �

<ð1R	2R
�
	Þ1S	2S	; (4.16)

j’	¼� a

4�2��sin�
½j1R	j2�j2R	j2�½1S2	� 2S

2
	�; (4.17)

where again we have omitted the superscript in/up because
the above expressions apply equally well to in and up
modes. The expressions (4.10), (4.11), (4.12), (4.13),
(4.14), (4.15), (4.16), and (4.17) depend explicitly on L.
In view of our comments in Sec. II C regarding how to
obtain the expressions for L ¼ �1, we note that if one uses
the boundary conditions as written out in Eqs. (2.33) and
(2.34), then Eqs. (4.14), (4.15), (4.16), and (4.17) are
already valid directly for L ¼ þ1. On the other hand, for
L ¼ �1, if one chooses to continue using the boundary
conditions Eqs. (2.33) and (2.34), then Eqs. (4.14), (4.15),
(4.16), and (4.17) are valid by setting L ¼ �1 and also
swapping 1R	 $ 2R	 in these latter equations.

In the absence of a framework in which to perform
computations of renormalized expectation values on Kerr
space-time, in this article we study differences in expecta-
tion values in two different states. The particular differ-
ences on which we focus are

hĴ�iU��B� ¼ hU�jĴ�jU�i� hB�jĴ�jB�i

¼�X1
‘¼1

2

X‘
m¼�‘

Z 1

0
d ~!½1þ e

~!
TH ��1jup;�	 ; (4.18)

hĴ�iCCH��B� ¼ hCCH�jĴ�jCCH�i � hB�jĴ�jB�i

¼ �X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d!½1þ e

!
TH ��1jin;�	

þ
Z 1

0
d ~!½1þ e

~!
TH ��1jup;�	

�
; (4.19)

hĴ�iB�B� ¼ hBjĴ�jBi � hB�jĴ�jB�i

¼ 1

2

X1
‘¼1

2

X‘
m¼�‘

Z m�H

0
d!jup;�	 ; (4.20)
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hĴ�iH�B� ¼ hHjĴ�jHi � hB�jĴ�jB�i

¼ �X1
‘¼1

2

X‘
m¼�‘

�Z 1

0
d!½1þ e

~!
TH ��1jin;�	

þ
Z 1

0
d ~!½1þ e

~!
TH ��1jup;�	

�
; (4.21)

hĴ�iH�B ¼ hHjĴ�jHi � hBjĴ�jBi

¼ �X1
‘¼1

2

X‘
m¼�‘

Z 1

0
d ~!½1þ e

~!
TH ��1½jin;�	 þ j

up;�
	 �

�X1
‘¼1

2

X‘
m¼�‘

Z m�H

0
d!½jin;�	 þ j

up;�
	 �; (4.22)

hĴ�iH� ~B ¼ hHjĴ�jHi � h ~BjĴ�j ~Bi

¼ �X1
‘¼1

2

X‘
m¼�‘

Z 1

0
d ~!½1þ e

~!
TH ��1½jin;�	 þ jup;�	 �;

(4.23)

in terms of which all other differences in expectation
values can be computed. In (4.18), (4.19), (4.20), (4.21),
(4.22), and (4.23), we have introduced the notation

hÔiA�B ¼ hAjÔjAi � hBjÔjBi for the difference in

expectation values of the operator Ô in the states jAi
and jBi, and we shall use this notation for the remainder
of the paper.

The main observable of interest is the expectation value

of the stress-energy tensor operator T̂�	. As a quantum

operator, T̂�	 is given by

T̂�	 ¼ i

8
f½ �̂�; ��r	�̂� þ ½ �̂�; �	r��̂�

� ½r�
�̂�; �	�̂� � ½r	

�̂�; ���̂�g; (4.24)

where, as with the number current operator, the commuta-

tors are understood to act on the operators in �̂ and not
on the spinor mode functions, which retain the order
�c��c . The expectation values of T̂�	 in our states of

interest take the form (4.2), (4.3), (4.4), (4.5), (4.6), and

(4.7) but with the mode contributions to the current j
in=up;�
	

replaced by the quantities 	t
in=up
�	 , where

	t
in=up
�	 ¼ �	T

in=up
�	 � 	T

in=up
�	 ; (4.25)

and 	T
in=up
�	 is the classical mode contribution to the stress-

energy tensor [that is, (2.19) with � replaced by c 	]

	T
in=up
�	 ¼ i

4
½ �c in=up

	 ��r	c
in=up
	 þ �c in=up

	 �	r�c
in=up
	

� ðr�
�c in=up
	 Þ�	c

in=up
	 � ðr	

�c in=up
	 Þ��c

in=up
	 �:
(4.26)

The expressions for 	T
in=up
�	 and 	t

in=up
�	 are extremely

lengthy, so we relegate them to Appendix C. As with the
number current we are interested in differences in expec-

tation values of T̂�	 between two states; the key ones are in

(4.18), (4.19), (4.20), (4.21), (4.22), and (4.23), and all other
differences can be computed from those.

B. Numerical method

Here we address the challenge of computing the differ-
ences in expectation values of quantum states numerically,
by evaluating their mode sum representations (4.18), (4.19),
(4.20), (4.21), (4.22), and (4.23). Computing a typical ex-
ample hXi is not a trivial task, for a number of reasons.
First, hXi is a function of radial and angular coordinates
r, �, and so must be evaluated on a representative grid of
points. Second, for each grid point, hXi is computed from a
double sum and an integral over frequency,

hXiðr; �Þ ¼ X1
‘¼1

2

X‘
m¼�‘

Z !max

!min

X‘mð!; r; �Þd!: (4.27)

Third, the integrand X‘mð!; r; �Þ is computed from radial

and angular functions, 1;2R
in=up
	 ðrÞ and 1;2S	ð�Þ, which are

obtained from the numerical solutions of ordinary differ-
ential equations (2.25) and (2.27), with appropriate bound-
ary conditions (2.33) and (2.34). Finally, hXi is not
necessarily finite and well defined in some subregions
of the ðr; �Þ plane, for example, at the horizon, inside
the stationary limit surface, or outside the speed-of-
light surface.
We first outline our method for finding the summands

X‘mð!; r; �Þ (that is, computing the radial and angular
mode functions) before turning to the computations of
the mode sums and related convergence issues.

1. Mode functions

To compute the angular eigenvalues � [see (2.27)] and
eigenfunctions 1;2S	ð�Þ we applied the spectral decompo-

sition method described in Ref. [53], in which 1;2S	ð�Þ is
expressed as a series of spherical spin-half harmonics. This
approach leads to a three-term recurrence relation for the
coefficients of the series, and the convergent solution may
be found via the method of continued fractions (see, for
example, Ref. [54]). We checked our results by implement-
ing an alternative three-term relation given in Ref. [55].
Typical angular functions are shown in Fig. 3(a), for ‘ ¼ 5

2 ,

m ¼ 1
2 , and a range of values of a!. The plot shows that
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the symmetries (2.29) and (2.30) are satisfied by our nu-
merical angular functions.

The in and up radial functions 1;2R
in=up
	 ðrÞ are found from

numerical solutions of (2.25) and (2.27) subject to bound-
ary conditions (2.33) and (2.34). To compute these modes
we made use of generalized series expansions, in r� rh at
the horizon (for the in modes) and in powers of 1=r at
spatial infinity (for the up modes), as initial data for a
Runge-Kutta integrator. The method closely follows the
steps described in Ref. [21]. Typical radial functions for the
in and up modes are shown in Figs. 3(b) and 3(c).

2. Mode sums

If hXi is not finite, then we would expect its mode sum
representation to be divergent. To see how the divergence
may arise, let us consider the ingredients in (4.27). The
mode functions R	ðrÞ and S	ð�Þ are finite for rh < r <1.
In cases where the frequency integral is taken over a semi-
infinite domain (that is, when!max ! 1), the integrand in
the frequency integral is suppressed at large! by a thermal
factor ðexp ð!0=THÞ þ 1Þ�1 (where !0 2 f!; ~!g), which
acts as a high-frequency cutoff (see Fig. 4). Hence, for a
given ‘,m (and rh < r <1), the integral over frequency is
finite. Furthermore, for a given ‘, the sum over m is finite.
This leaves the infinite sum over ‘ as the only possible
source of divergence.
To perform the integral over frequency in (4.27) (for

each r, �, ‘, m) we first sampled the integrand over a
uniform grid of points across the domain of integration,
after replacing the infinite upper limit with a finite cutoff
(if necessary), typically ! ¼ max ð0; m�HÞ þ 10TH þ
0:2M�1. Then we interpolated the data with a cubic spline,
resampled, and applied Simpson’s rule to find the integral.
The finite sum over m was straightforward to perform,
whereas the infinite sum over ‘ required more considera-
tion. We examined the contribution of the individual ‘
modes X‘, and the truncated sum, with ‘max set to be a
large value (typically ‘max 	 20). The magnitude of these
quantities gave an indication of convergence, as can be
seen in Fig. 4.
In Fig. 4 we plot a typical integrand�

1þ exp

�
~!

TH

���1
tðinÞ�� ; (4.28)

[where the expression for t�� in terms of the radial and
angular functions is given in (C22)] as a function of
frequency !, for in modes with 1

2 � ‘ � 21
2 , m 
 ‘� 1,

in the special case a ¼ a0 � 0:910M. It can be seen in
Fig. 4 that modes with m ¼ ‘ make the dominant contri-
bution to the mode sum. For each fixed ‘, m, the integrand
as a function of! is strongly peaked at a particular value of
! and the rapid convergence of the integral over ! can be
seen. The location of the peak moves to higher values of !
as ‘ increases. In Fig. 4(a), the magnitude of the peaks
is decreasing very rapidly as ‘ increases past ‘ ¼ 3

2 ,
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(c) Radial functions : ‘‘up’’-modes
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FIG. 3 (color online). Examples of typical angular and radial
mode functions. Plot (a) shows the spin-half spheroidal
harmonics 1S	 and 2S	 for ‘ ¼ 5

2 , m ¼ 1
2 for a range of

spheroidal couplings a! ¼ �2;�1:5; . . . ; 1:5; 2. The symme-
tries (2.29) and (2.30) are apparent. Plot (b) shows the
radial functions 1R	 and 2R	 for the in modes, defined by

boundary conditions (2.33), for ‘ ¼ m ¼ 3=2, M! ¼ 0:4,
and two cases: a=M ¼ 0 (dashed lines) and a=M ¼ 0:5
(dotted lines). Plot (c) shows the radial functions for the up
modes, defined by boundary conditions (2.34), with the same
parameters.
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indicating that the sum over ‘ is convergent in this case.
In Fig. 4(b) it is less clear whether the sum over ‘ is
convergent or not, although the magnitude of the peaks
of the integrand is decreasing at larger !. In Fig. 4(c) the
peaks are still steadily increasing and the sum over ‘ does
not appear to converge.
A key part of our analysis is to determine whether

or not the expectation values hXi are finite, so we
conclude from Fig. 4 that a more sophisticated analysis
of the mode sum convergence is required. If the terms in
the sum are absolutely convergent, in the sense that
lim ‘!1jX‘=X‘�1j< 1, where

X‘ �
X‘

m¼�‘

Z !max

!min

X‘mð!; r; �Þd!; (4.29)

then the sum is clearly finite and well defined. Conversely,
if the sum is not absolutely convergent then hXi may be ill
defined (at the very least, poorly represented by a sum over
modes). Hence we may apply a simple ratio test to give an
indicator of convergence, by examining

�‘ � jX‘=X‘�1j; (4.30)

as a function of r, �. In Sec. IVC1 we plot �‘ (for a large
but finite value of ‘	 20) as a function of r, � to distin-
guish between divergent regions (where �‘ > 1) and con-
vergent regions (where �‘ < 1).

3. Validating our numerical results

We validated our implementation with a few simple
consistency checks. First, to test the radial functions, we
numerically computed the Hawking flux using Eqs. (9–10)
in Ref. [17], and we verified that it matched the values
given in Table I of Ref. [17]. Next, we considered an
expression for the energy flux as a function of angle, given
by Eq. (2.12b) in Ref. [18],

d3E

dðcos�Þd’dt ¼ lim
r!1r

2hU�jT̂r
t jU�i: (4.31)

A subtlety here is that it is difficult to compute the flux for
the Unruh state jU�i directly [due to the lack of a large-!
cutoff in the modal expressions (4.3)] but rather easier to
compute the flux for the state difference U� � B, which
may be found from the mode sums (4.18) and (4.20). The
Boulware state jBi is expected to be empty at infinity, and
hence (asymptotically) the fluxes should be equivalent.
Computing

2�
Z �

0
hT̂r

t iU��B�sin �d�; (4.32)

we confirmed that it equals the correct energy flux as
r ! 1, given in Table I of Ref. [17]. We also checked
that the flux Eq. (4.32) is constant in r, as it should be from
the conservation equations [29]. We carried out a similar
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FIG. 4 (color online). Frequency integrals and mode-sum

convergence. These plots show a typical integrand, ½1þ
exp ð ~!=THÞ��1tðinÞ�� [where t�� is defined in Eq. (C22)], as a

function of frequency !, for the in modes with 1
2 � ‘ � 21

2 ,

m 
 ‘� 1, in the special case a ¼ a0 � 0:910M. The integrand
is evaluated on the equatorial plane (� ¼ �=2) at r ¼ (a) 1:6M,
(b) 1:8M, and (c) 2:0M. The mode sum in cases (a) and (b)
appears to be convergent, whereas the sum in the case (c) does
not seem to converge. We note that the speed-of-light surface
intersects the equatorial plane at r ¼ 2M in this case, so plot (c)
indicates that this particular mode sum will diverge outside the
speed-of-light surface. The physical implications of this result
are discussed in Sec. IVC.
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check for the r�-component of the stress-energy tensor
and the corresponding angular momentum flux.

C. Numerical results

We now present a selection of our numerical results,
obtained using the methodology outlined in the previous
subsection. First we examine where the quantum states
defined in Sec. III are regular, before turning to other
physical properties of these states.

1. Regularity of quantum states

The first key question we wish to address is whether the
quantum states defined in Sec. III are regular outside the
event horizon of a Kerr black hole. We begin, in Fig. 5, by
plotting the ratio �‘ (4.30) of successive terms in the ‘ sum
for the differences in expectation values of the stress-

energy tensor component T̂�� given in (4.18), (4.19),

(4.20), (4.21), (4.22), and (4.23). The component T̂�� was
chosen for this analysis because if the stress-energy tensor
is regular in a freely falling frame crossing the event
horizon (or stationary limit surface, or speed-of-light sur-
face), then it must be the case that this component of the
stress-energy tensor is regular [29].

Figure 5 shows the ratio �‘ (4.30), plotted for ‘	 20, as
a function of r, �, with x ¼ r sin � and z ¼ r cos�. In
Fig. 5, the axis of rotation of the black hole is a vertical
line through the center of each diagram, and the equatorial
plane a horizontal line through the center of each diagram.
The green dotted line is the speed-of-light surface; the
purple dotted line the stationary limit surface (throughout

this section we use the value a ¼ a0 ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ ffiffiffi

2
p � 1�

q
for

which these two surfaces touch in the equatorial plane).
The black circle denotes the region inside the event hori-
zon. Divergent regions (where �‘ > 1) are blue (darker)
and convergent regions (where �‘ < 1) are yellow
(lighter).

We consider first the uncontroversial past-Boulware
jB�i and past-Unruh jU�i states, defined in Secs. III A 1
and III A 2, respectively. From Fig. 5(a), it can be seen that

the expectation value hT̂��iU��B�
is regular everywhere

outside the event horizon, including inside the ergosphere
and outside the speed-of-light surface. This is in agreement
with numerical results for this expectation value for spin-1
fields [30]. As will be discussed in more detail in Sec. V,
we expect that both the jU�i and jB�i states will be
regular everywhere outside the event horizon, and so, to
examine the regularity of other states, it will be useful
to consider the expectation values of those states relative
to either jU�i or jB�i.

Next we turn to the state jCCH�i defined in Sec. III A 3
[28]. In Fig. 5(b), we can see (again in agreement with
similar calculations for spin-1 fields [30]) that the expec-

tation value hT̂��iCCH��B�
is regular everywhere outside

the event horizon, including inside the ergosphere and
outside the speed-of-light surface.
The next state to be considered is our candidate

Boulware state jBi, defined in Sec. III B. Figure 5(c) shows
that the expectation value hT̂��iB�B�

is regular everywhere
outside the stationary limit surface but diverges inside the
ergosphere.
Finally, we consider our candidate Hartle-Hawking state

jHi, defined in Sec. III C. First, in Fig. 5(d) we see that the
expectation value hT̂��iH�B�

is regular everywhere outside
the event horizon and inside the speed-of-light surface
(including the ergosphere) but diverges on and outside
the speed-of-light surface. Figure 5(e) shows that the

expectation value hT̂��iH�B diverges inside the ergosphere
and outside the speed-of-light surface but is regular be-
tween the stationary limit surface and speed-of-light sur-
face. From Fig. 5(f), we see that the expectation value

hT̂��iH� ~B also diverges outside the speed-of-light surface
but is regular inside it, including inside the ergosphere.
To further elucidate the behavior of the states jHi and

j ~Bi, in Fig. 6 we plot the ratio �‘ (4.30) for the expectation
values

hT̂��iH�U� ¼ hHjT̂��jHi � hU�jT̂��jU�i; (4.33)

hT̂��i ~B�B� ¼ h ~BjT̂��j ~Bi � hB�jT̂��jB�i: (4.34)

Comparison of Figs. 6(a) and 5(d) leads us to conclude that
the state jHi is regular between the event horizon and the
speed-of-light surface but divergent on and outside the
speed-of-light surface. The divergence inside the ergo-
sphere in Fig. 5(e) is coming from the divergence of
the state jBi inside the ergosphere, which can be seen in
Fig. 5(c). From Fig. 6(b) we conclude that the state j ~Bi, like
the state jHi, is regular between the event horizon and the
speed-of-light surface but diverges on and outside the
speed-of-light surface.
Thus far we have restricted attention to the expectation

value of the component T̂�� of the stress-energy tensor.
While a divergence in this component is sufficient to
render the whole stress-energy tensor divergent [29], the

regularity of hT̂��i does not guarantee the regularity of all
components of the expectation value of the stress-energy
tensor, particularly at the event horizon. We therefore

consider the expectation values hĴ�iCCH��B�
(see Fig. 7)

and hT̂�	iCCH��B�
(see Fig. 8) for all components of the

fermion current and stress-energy tensor [Fig. 5(b) implies

that the component hT̂��iCCH��B�
is regular everywhere

outside the event horizon]. The expectation values

hT̂�	iCCH��B�
have also been studied in detail for quantum

electromagnetic fields [30].
From Fig. 7, the components of the expectation values of

the fermion current Ĵ� are all regular outside the event
horizon (the regions shown in Figs. 7 and 8 include the
ergosphere and part of the region outside the speed-of-light
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FIG. 5 (color online). Ratio test to examine the divergence/regularity of expectation values of quantum states, for the stress-energy
tensor component hT̂��i. The differences in expectation values for the six states defined in Eqs. (4.18), (4.19), (4.20), (4.21), (4.22), and
(4.23) are considered. In particular, these are (a) hT̂��iU��B�

, (b) hT̂��iCCH��B�
, (c) hT̂��iB�B�

, (d) hT̂��iH�B�
, (e) hT̂��iH�B, and

(f) hT̂��iH� ~B. In each case, the ratio �‘ (4.30) is plotted for ‘	 20 as a function of r, �, where z ¼ r cos� and x ¼ r sin�. The axis of
rotation of the black hole is a vertical line through the center of each diagram, and the equatorial plane a horizontal line through the
center of each diagram. The green dotted line is the speed-of-light surface; the purple dotted line the stationary limit surface (we use

the value a ¼ a0 ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ ffiffiffi

2
p � 1�

q
for which these two surfaces touch in the equatorial plane). The black circle is the region inside the

event horizon. Divergent regions (where �‘ > 1) are blue (darker) and convergent regions (where �‘ < 1) are yellow (lighter).
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surface) and diverge on the horizon. Furthermore, all

components apart from hĴ�iCCH��B�
flip sign under the

mapping � ! �� � (which corresponds to z ! �z). This
is due to the preferential emission of neutrinos in the
southern hemisphere and antineutrinos in the northern
hemisphere [18–20,51,52].

From Fig. 8, all ten components of the stress tensor
expectation values are regular everywhere outside the
event horizon but diverge on the event horizon, with the
exception of the (t�) and (�’) components, which appear
to be regular on the horizon. These two components are
much smaller than the others but are not identically zero.
In Ref. [29] it is shown that for scalar fields the (t�)
and (�’) components of the renormalized stress-energy
tensor vanish due to the properties of the scalar mode
functions; however, this is not the case for gauge bosons
[30] nor fermions, as seen here. From Fig. 8, it can be seen
that all the components of the stress-energy tensor are
symmetric under the mapping � ! �� � (which corre-
sponds to z ! �z) apart from the (t�), (r�), and (�’)
components, which flip sign under this mapping (as would
be expected).

Bringing together our results in this subsection, we
conclude that the states jB�i, jU�i, and jCCH�i are
regular everywhere outside the event horizon. In analogy
with the situation for Schwarzschild black holes, we expect
that the past-Boulware state jB�i is divergent on both the
future and past event horizons and that the past-Unruh state
is regular on the future horizon Hþ but diverges on the
past horizon H�. Accordingly, we conjecture that the
state jCCH�i is regular on both the future and past event
horizons. Of course, a full computation of the renormalized
stress-energy tensor in this state would be necessary in
order to verify our conjecture. Assuming these properties
of the jB�i state, we deduce that the states jHi and j ~Bi

diverge on and outside the speed-of-light surface but are
regular between the event horizon and the speed-of-light
surface. Finally, we have evidence that the state jBi
diverges in the ergosphere but is regular everywhere out-
side the stationary limit surface. We expect that, where the
states discussed above are divergent, it is because the states
fail to be Hadamard on that particular surface. However,
our conclusions are based on numerical computations only
and we do not claim to have any rigorous results on the
singularity structure of the Green’s functions defining the
various states.

2. Rate of rotation of the thermal distributions

One of our key motivations for studying quantum fer-
mion fields on Kerr space-time was to construct the ana-
logue of a Hartle-Hawking state, namely, a thermal state.
We have two candidates for this analogue state: our new
state jHi (see Sec. III C) and the state jCCH�i (see
Sec. III A 3). These two states have some attractive regu-
larity properties, as discussed in the previous subsection.
Given that the Kerr black hole is rotating, we now
investigate the rate of rotation of the thermal distributions
represented by the states jHi and jCCH�i.
To do this, we follow the method of Ref. [30]. Consider

an observer moving on a world line with constant r and �
but with angular velocity

� ¼ d’

dt
: (4.35)

We can associate a tetrad ðeðtÞ; eðrÞ; eð�Þ; eð’ÞÞ with this

observer. The vectors eðrÞ and eð�Þ are parallel to @=@r
and @=@�, respectively, and the other two tetrad vectors
are [30]
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FIG. 6 (color online). Ratio test to examine the divergence/regularity of expectation values of quantum states, for the stress-energy
tensor component hT̂��i. The differences in expectation values for the states defined in Eqs. (4.33) and (4.34) are considered. In
particular, these are (a) hT̂��iH�U�

, (b) hT̂��i ~B�B�
. The structure of the plots follows that in Fig. 5, and the same parameters are used.
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eðtÞ ¼ 1

N

�
@

@t
þ�

@

@’

�
;

eð’Þ ¼ 1

N
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2t’ � gttg’’

q �
�ðgt’ þ�g’’Þ @@t

þ ðgtt þ�gt’Þ @

@’

�
; (4.36)

where

N ¼ jgtt þ 2�gt’ þ�2g’’j12: (4.37)

As well as the specific cases of a static observer (� ¼ 0)
and a rigidly rotating observer with � ¼ �H (2.8), we are
also interested in two nonconstant values of �. First, if
� ¼ �ZAMO, where

�ZAMO ¼ � gt’
g’’

; (4.38)

then the angular momentum of the stationary observer
along the rotation axis of the black hole is zero. In common
with previous terminology [7], we call such observers zero

angular momentum observers (ZAMOs). For comparison
with previous studies of the rate of rotation of a thermal
distribution of spin-1 particles on Kerr space-time [30], we
also consider a stationary observer with angular velocity

�Carter ¼ a

r2 þ a2
; (4.39)

whose orthonormal tetrad (4.36) is the Carter tetrad [56].
Following Ref. [30], we study the angular velocity of an

observer such that hT̂ðtÞð’Þi ¼ 0, where we are considering
the expectation value of the stress-energy tensor operator in
the state of interest. Such an observer is, in the terminology
of Ref. [30], a zero energy flux observer (ZEFO), who sees
no angular flux of energy in that state. The angular velocity
of a zero energy flux observer is denoted �ZEFO.
The angular velocity �ZEFO can be computed from the
expectation values of the components of the stress-energy
tensor in that particular state, as follows. The condition

hT̂ðtÞð’Þi ¼ 0 means that �ZEFO satisfies the following

quadratic equation:

A�2
ZEFO þ B�ZEFO þ C ¼ 0; (4.40)
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FIG. 7 (color online). The expectation values hĴ�iCCH��B�
for components of the fermion current, multiplied by � (2.2). The

expectation values have been computed using (4.14), (4.15), (4.16), and (4.17) with L ¼ þ1 (for L ¼ �1 the components have the
same magnitude but the opposite sign). The expectation values are plotted on the vertical axis as functions of ðr; �Þ, with x ¼ r sin �
and z ¼ r cos�. In the horizontal plane, positive values are shaded in red, while blue denotes negative values. We use the value
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for the rotation parameter of the Kerr black hole.
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FIG. 8 (color online). The expectation values hT̂�	iCCH��B�
for components of the stress-energy tensor [multiplied by various

powers of � (2.2); note that we do not claim that the power of � used necessarily corresponds to the rate of divergence of the
components near the horizon], using the expressions (C15)–(C22) with L ¼ þ1 (for L ¼ �1, all components have the same values).
The parameters used and format of the plots are the same as in Fig. 7.
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where [30]

A ¼ g’’hT̂t’i � gt’hT̂’’i; B ¼ g’’hT̂tti � gtthT̂’’i;
C ¼ gt’hT̂tti � gtthT̂t’i: (4.41)

In order to minimize numerical errors near the event
horizon, the solution of this quadratic equation is written
as [30]

�ZEFO ¼ � 2C

B� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p ; (4.42)

where the sign before the square root is chosen so that
�ZEFO is regular and positive.

In Fig. 9 we plot �ZEFO for the expectation values

hT̂�	iCCH��B�
(left-hand plot) and hT̂�	iH� ~B (right-hand

plot), together with�H (2.8) (the angular speed of a rigidly
rotating observer), �ZAMO (4.38), and �Carter (4.39). From

the left-hand plot of Fig. 9 we see that hT̂�	iCCH��B�
is

rigidly rotating close to the event horizon, but that the rate
of rotation decreases as we move away from the horizon.
Away from the horizon, the rate of rotation is slightly
larger than both �ZAMO and �Carter. These results are in
qualitative agreement with those found in Ref. [30] for the
electromagnetic case. It is the reduction in rotation rate as
we move away from the event horizon that enables the

expectation value hT̂�	iCCH��B�
to remain regular every-

where outside the event horizon.

The results for hT̂�	iH� ~B are strikingly different. From

Sec. IVC1, this expectationvalue is regular outside the event
horizon and inside the speed-of-light surface. From Fig. 9

we see that, close to the event horizon, this expectation value
is also rigidly rotating with the same angular speed as the
event horizon. As we move away from the event horizon,
rather surprisingly the rate of rotation of this expectation
value increases above that of the event horizon, although it
does not deviate away from�H by a large amount. The rate
of rotation remains greater than�H until we reach the speed-
of-light surface, where, from Sec. IVC1, the expectation
value diverges. A stress-energy tensor that is isotropic and
rotating rigidly with the same angular velocity as the event
horizon is known to be divergent on the speed-of-light sur-

face [57], so the divergence of hT̂�	iH� ~B on the speed-of-

light surface is not surprising given that it seems to rotate a
little quicker than�H.

V. PHYSICAL PROPERTIES OF THE STATES

In this section we bring together our results and discuss
the physical properties of the various quantum states we
have defined.
jB�i This state is defined in Sec. III A 1 as an absence of

particles in the in modes at past null infinity I� and an
absence of particles in the up modes at the past event
horizon H�. At future null infinity Iþ there is an out-
wards flux of particles in the superradiant regime ~!!< 0,
corresponding to the Unruh-Starobinski�� radiation [15,16].
The state is regular everywhere except on both the future
and past horizons, where it diverges. It is not invariant
under simultaneous t� ’ reversal symmetry.
jU�i To define this state (see Sec. III A 2), there are no

particles in the in modes at I� but the up modes are
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FIG. 9 (color online). The rate of rotation �ZEFO of the zero energy flux observer (ZEFO) (4.42) for the expectation values
hT̂�	iCCH��B�

(left) and hT̂�	iH� ~B (right). In both plots, we also show the angular velocity of the horizon �H (2.8) (denoted ‘‘rigid

rotation’’), and on the left-hand plot we also show �ZAMO (4.38) and �Carter (4.39). All quantities are plotted as functions of the
coordinates ðr; �Þ. The expectation value in the right-hand plot diverges on the speed-of-light surface, which can be seen in

the numerical noise in the red (non-flat) surface. As in previous figures, we use the value a ¼ a0 ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½ ffiffiffi

2
p � 1�

q
for the rotation

parameter of the Kerr black hole.
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thermalized with respect to the frequency ~! (correspond-
ing to taking positive frequency modes with respect to an
affine parameter along H�). This state is regular every-
where outside the event horizon. We expect that it will be
regular on the future event horizon Hþ but divergent on
the past event horizon H�. Physically, this state corre-
sponds to a star collapsing to form a black hole (for which
space-time the past horizon H� is unphysical so the
divergence of the state there is not important). At future
null infinity Iþ this state contains an outgoing flux of
Hawking radiation. Like the past-Boulware state jB�i,
the past-Unruh state jU�i is not invariant under simulta-
neous t� ’ reversal symmetry.

jCCH�i This state is defined in Sec. III A 3 by adding a
thermal flux of in particles, thermalized with respect to the
frequency !, to the past-Unruh state jU�i [28]. Like the
other two past states, jB�i and jU�i, it is not invariant
under simultaneous t� ’ reversal symmetry. Because of
this lack of time-reversal symmetry, the state jCCH�i
cannot represent a black hole in a thermal equilibrium state;
however, it has a number of attractive properties, first noted
in the bosonic case [29,30]. In particular, like jB�i and
jU�i, we have numerical evidence that jCCH�i is also
regular everywhere outside the event horizons. We expect
that it will be regular on at least the future event horizon
Hþ as well. Close to the event horizon, the expectation

value hT̂�	iCCH��B�
rotates with the same angular speed as

the event horizon, but its angular speed then decreases as
the distance from the event horizon increases.

jBi This state is defined in Sec. III B by an absence of in
particles at past null infinity I� and an absence of out
particles at future null infinity Iþ, which translates into an
absence of both in and up particles far from the black hole.
This state is therefore as empty as possible at infinity and
does not contain the outgoing Unruh-Starobinski�� radiation
that is present in the past-Boulware state jB�i. However,
the state jBi diverges inside the ergosphere. It is regular
everywhere outside the stationary limit surface. Unlike the
past-Boulware state jB�i, the state jBi is invariant under
simultaneous t� ’ reversal symmetry. This is the natural
vacuum state as seen by a static observer very far from the
black hole.

jHi This state is defined in Sec. III C 1 by taking modes
to have positive frequency with respect to affine parame-
ters on the past and future horizonsH�. This corresponds
to thermalizing both the in and up modes with respect to
the frequency ~!. It is regular outside the event horizon up
to the speed-of-light surface, where it diverges. We would
anticipate that this state is also regular on both the future
and past horizons H�. This state has some similar fea-
tures to a rigidly rotating thermal distribution of fermions
in flat space [46], which is also regular up to the speed-of-
light surface. The state jHi is also invariant under simul-
taneous t� ’ reversal. We conclude that our state jHimay
represent a Kerr black hole in equilibrium with a thermal

heat bath rigidly rotating with the same angular velocity as
the event horizon.
j ~Bi This state, defined in Sec. III C 2, corresponds to an

absence of up and down particles at the future and past
event horizons H�. Like jHi, it diverges on and outside
the speed-of-light surface but is regular inside the speed-
of-light surface and outside the event horizon. We expect
that it also diverges on the future and past event horizons
H�. Like both jBi and jHi, it is invariant under simulta-
neous t� ’ reversal. Physically, this state represents a
rotating vacuum, that is, it is the vacuum state as seen by
an observer rigidly rotating with the same angular velocity
as the event horizon. This interpretation of the states jHi
and j ~Bi is borne out by the calculation of �ZEFO in
Sec. IVC 2, where it is seen that the expectation value

hT̂�	iH�B corresponds to a state that is rotating with almost

the same angular speed as the event horizon.

VI. DISCUSSION

In this section we summarize the key results of this paper
and discuss the wider implications of our work.

A. Summary of our results

In this paper we have studied in detail the quantum field
theory of massless spin-1=2 particles propagating on a
Kerr black hole. We began by reviewing the formalism
for massless fermions on the Kerr geometry and describing
the classical in and up field modes. The lack of super-
radiance for fermionic fields, shown in Sec. II C, is our first
indication of a difference between the behavior of bosonic
and fermionic fields on rotating black hole space-times.
In Sec. III we tackle the subtle issue of quantizing the

fermion field and constructing suitable quantum states,
before numerically computing expectation values of the
fermion current and stress-energy tensor for these states in
Sec. IV. In the absence of a methodology for calculating
renormalized expectation values on Kerr black holes, we
have had to restrict our attention to differences in expec-
tation values in two quantum states.
We began with the uncontroversial past-Boulware jB�i

and past-Unruh jU�i states that have been successfully
constructed for bosonic fields. We also considered the state
jCCH�i [28] that is constructed by adding a thermal
distribution of in particles to the jU�i state. All three
past states above can be defined for bosonic and fermionic
fields, and all three are regular outside the event horizon.
For bosonic fields, a Boulware state empty at both future

and past null infinity cannot be defined [29,30] (see also
Appendix A 2). However, for fermionic fields we have been
able to define such a state, jBi. Unlike the past-Boulware
state jB�i, the state jBi is not regular everywhere outside
the event horizon but diverges inside the ergosphere.
One of our original motivations for this study was the

nonexistence of a true Hartle-Hawking-like state for
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bosonic fields on Kerr space-time [25]. As well as the
jCCH�i state discussed above, in the literature the state
jFTi has been postulated to be an analogue of the Hartle-
Hawking state for rotating black holes. For scalar fields,
the state jFTi is regular only on the axis of rotation of the
black hole [29]. In this paper we have defined a state jHi
that is the fermionic analogue of the state jFTi. The state
jHi is rather better behaved than the bosonic jFTi state,
being regular between the horizon and the speed-of-light
surface and divergent on and outside the speed-of-light
surface. This state is the closest we have to a Hartle-
Hawking state for fermions on Kerr. Whereas Frolov and
Thorne [7] had to use an � formalism to define their state,
for fermions we are able to define the state directly by an
appropriate definition of positive frequency.

Finally, we have also defined a modified Boulware-like
state, j ~Bi, which is empty as seen by a rigidly rotating
observer close to the event horizon.

The regularity properties of all the states considered in
this paper are summarized in Table I, and the physical
properties of the various states are discussed in Sec. V.

B. The behavior of bosonic and fermionic fields
on Kerr space-time

A central theme in our work has been the differences
between the quantum field theory of bosonic fields and the
quantumfield theory of fermionic fields onKerr space-time,
particularly in relation to the construction of Boulware and
Hartle-Hawking states. At a classical level, the fundamental
difference between bosonic and fermionic fields is that
bosonic fields exhibit the phenomenon of superradiance
for modes with frequency ~!!< 0 (superradiance means
that an incident wave in this frequency range is reflected
back to infinity with greater amplitude than it had initially).
Superradiance is a consequence of the weak-energy condi-
tion for bosonic fields. Classical fermionic fields do not
obey the weak-energy condition and do not exhibit super-
radiance, meaning that fermionic waves incident on a rotat-
ing black hole are always reflected back to infinity with an
amplitude no greater than the incident amplitude. At first
sight it is not clear what the consequences of this classical

phenomenon are for quantum field theory, particularly
when its quantum analogue (the Unruh-Starobinski�� effect
[15], corresponding to spontaneous emission in those
modeswith ~!!< 0) occurs for both bosonic and fermionic
fields.
The proof of the Kay-Wald theorem [25] on the non-

existence of a Hartle-Hawking state for scalar fields on
Kerr space-time uses an energy condition that arises from
superradiance. This may indicate that classical superra-
diance plays a deeper role in the quantum field theory of
scalars on Kerr space-time, but there is no indication that it
is a necessary condition for the nonexistence of the Hartle-
Hawking state. Indeed, in this paper, for fermions we have
not been able to construct a state satisfying all the con-
ditions of the Kay-Wald theorem (regularity everywhere on
and outside the event horizon and respecting all the sym-
metries of the space-time), although fermions do not have
classical superradiance. Of course, this does not mean that
such a state does not exist, but the natural definitions do not
yield such a state, and we suspect that an analogue of the
Kay-Wald theorem does hold for fermion fields (although
proving such a statement would not be straightforward).
At a technical level, the existence of superradiant modes

appears to make the quantization of bosonic fields more
complicated (see, for example, Refs. [7,29,30,58]). The
key reason for these technical difficulties is the need, for
bosonic fields, for modes designated to represent particles
to have positive norm, while those for antiparticles must
have negative norm, so that the usual commutation rela-
tions hold. For bosonic fields, this greatly restricts the
possible choices of positive frequency used to define quan-
tum states. In particular, in the terminology of Sec. II C, the
in modes for bosonic fields have positive norm if !> 0,
while the up modes have positive norm if ~!> 0. This
causes problems in defining quantum states (see related
discussion in Appendix A 2). For example, in Sec. III B, we
construct a candidate Boulware vacuum jBi for fermions,
which is empty of both in and up mode particles with
frequency !> 0. Such a construction is not immediately
possible for bosons due to the need to have ~!> 0 for the
up modes. This problem can be circumvented to some
extent for bosonic fields by the use of, for example, the
� formalism of Ref. [7], but, as discussed earlier, the
resulting states have some unattractive features.
The key difference between bosonic and fermionic fields,

as far as the definition of quantum states is concerned, is that
all fermionic modes have positive norm (due to the fact that
fermionic fields satisfy anticommutation rather than com-
mutation relations). We are therefore free to split the quan-
tum field into positive and negative frequency modes
without worrying about the norm of those modes. This
provides much greater freedom in the choice of quantum
states, as seen in Sec. III. Of course, it does not guarantee
that any of those states are physically reasonable nor the
regularity of those states, but the fact that there is so much

TABLE I. Regularity properties of quantum states for fermions

on a nonextremal Kerr black hole. A ! indicates that the state is
well defined in this region, whereas a � indicates that it is
divergent. The notation SoL means speed-of-light surface.

At horizon Inside ergoregion Outside SoL

jB�i � ! !
jU�i ! (on Hþ only) ! !
jCCH�i ! (on Hþ only?) ! !
jBi � � !
jHi ! ! �
j ~Bi � ! �
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more freedom in defining states for fermions compared with
bosons means that one is more optimistic about being able to
find states that have attractive physical properties.

C. Broader issues

This paper has been concerned with the quantization of
massless fermion fields on a nonextremal Kerr black hole.
In this section we conclude our discussions with some
initial thoughts on the application of our results to the
alternative situations of a massive fermion field and/or an
extremal Kerr black hole.

1. Massive fields

In one sense the inclusion of fermion field mass would
represent a technical complication in our analysis [in par-
ticular, the upper and lower two-spinors in our four-spinor
(2.22) would no longer be proportional], but it could also
change the underlying physics. Because of superradiant
scattering, massive scalar fields have unstable bound states
with energy 0<!<m�H, which produces the ‘‘black
hole bomb’’ effect (see, for example, Refs. [59–61]). Since
classical fermion fields do not exhibit superradiance, a
black hole bomb effect is not anticipated for fermions.
Instead, it has been suggested [62] that massive fermion
modes in the superradiant regime (0<!<m�H) con-
dense and form a so-called ‘‘Fermi sea’’ surrounding the
black hole. Although fermions are subject to the quantum
analogue of classical superradiance, namely, the Unruh-
Starobinski�� [15,16] spontaneous emission of particles in
the superradiant regime, the Pauli exclusion principle
means that there can be at most one fermion in each state,
preventing the exponential build-up in the black hole bomb
scenario. It should be emphasized that the black hole bomb
is a classical effect, while the proposed Kerr-Fermi sea
would be primarily quantum in origin. It would be inter-
esting to investigate in detail the quantum field theory of a
massive fermion field on a Kerr black hole and elucidate
the effect of the Kerr-Fermi sea on the quantum states we
have defined in this paper.

2. Extremal Kerr black holes

Quantum fields on an extremal Kerr black hole are of
central importance for the Kerr-CFT correspondence [33]
(see also Refs. [34,35] for reviews). The Kerr-CFT corre-
spondence is concerned with the near-horizon geometry of
an extremal Kerr black hole. The extreme Kerr geometry
has metric (2.1), with a ¼ M so that there is a single
(degenerate) horizon at r ¼ M with zero Hawking tem-
perature and horizon angular velocity

�H ¼ 1

2M
: (6.1)

The near-horizon geometry is obtained as a scaling limit
of the metric (2.1) by defining new coordinates as
follows [63]:

t ! �t ¼ t

�
; r ! �r ¼ Mþ �r;

’ ! �’ ¼ ’þ t

2M�
; (6.2)

and then taking the (well-defined) limit � ! 0. The result-
ing metric is no longer asymptotically flat but resembles
AdS2 � S2. A particularly important feature of the near-
horizon geometry for the Kerr-CFT correspondence is that
it has an enhanced symmetry compared with the Kerr
metric, namely, a third Killing vector of the form

�0 ¼ �r@r � �t@�t; (6.3)

giving an SLð2;RÞ � Uð1Þ isometry group, which is ex-
ploited in the CFT part of the correspondence.
For the CFT correspondence to make sense, and, in

particular, for the counting of the microscopic CFT states
to yield the classical entropy of the extremal Kerr black
hole, it is necessary for the CFT dual to have a nonzero
temperature. This implies that there is a nonzero tempera-
ture for the state of a quantum field on the near-horizon
geometry, which in turn requires a suitable definition of a
thermal state on the full extremal Kerr geometry. Even
though the Hawking temperature of the extremal Kerr
black hole is zero, such a temperature is defined [33]
through first considering a near-extremal Kerr black hole.
Assuming for the moment that such a state can be

constructed, suppose that a thermal state is defined for a
near-extremal Kerr black hole with temperature TH. In this
state quantum field modes are thermally populated with the
Boltzmann factor [33]

exp

�
!�m�H

TH

�
: (6.4)

The question is then how to take the near-horizon extremal
limit. In order to see how this could be done, we need to
consider the field modes in more detail.
For a massless up field mode [see (3.12) or (A1)], taking

the near-horizon limit (6.2) corresponds to considering
only modes with ! ¼ m�H ¼ m=2M on the full extremal
Kerr geometry [63]. These modes are rather special, lying
on the boundary between the superradiant and nonsuperra-
diant regimes for bosonic fields (recall that fermionic fields
do not exhibit classical superradiance). Such modes are
contained within the region close to the event horizon and
are decoupled from the asymptotic region of the full ex-
tremal Kerr geometry [63]. This is consistent with reflect-
ing boundary conditions at the AdS-like boundary of the
near-horizon geometry.
The extremal limit of the Boltzmann factor (6.4) can

now be taken as follows. Setting ! ¼ m=2M and defining
the temperature T’ by [35]

T’ ¼ lim
TH!0

TH

ð1=2MÞ ��H

; (6.5)
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in the extremal limit the Boltzmann factor (6.4) becomes

exp

�
m

T’

�
: (6.6)

The CFT interpretation of this temperature (and, indeed,
the taking of the extremal limit) do not concern us here.
Rather, we comment on the sense in which a thermal state
can be defined for a near-extremal Kerr black hole
(which is central to the definition of the extremal tempera-
ture above).

As recognized in the Kerr-CFT literature [33,35], the
fact that the Kerr metric does not possess a globally time-
like Killing vector makes defining thermal states rather
difficult. Nonetheless, the nonextremal Boltzmann factor
(6.4) is justified in the Kerr-CFT literature as a Frolov-
Thorne temperature [33,35] coming from the Frolov-
Thorne state jFTi. As discussed elsewhere in detail
(see Ref. [29] and Appendix A below), for bosonic fields
the Frolov-Thorne state is regular only on the axis of
symmetry and therefore is ill defined even on regions
very close to the horizon. We have seen in this paper that
the analogue of the Frolov-Thorne state for fermionic fields
is regular outside the event horizon and inside the speed-of-
light surface, so it may be possible to justify the CFT
temperature using a quantum state of thermal fermions
close to the event horizon of a nonextremal black hole.
However, we will not explore this possibility further
in this paper.

A related question is whether it is possible to define
sensible quantum states directly on the extremal Kerr black
hole geometry (either the full geometry or the near-horizon
geometry). Given that the extremal Kerr black hole does
not possess a globally timelike Killing vector (neither the
near-horizon limit [35] nor the full space-time [36]), one
might anticipate that many of the challenges of defining
quantum states on nonextremal Kerr black holes would
remain. At first sight, it would seem that the fact that the
Hawking temperature of an extremal Kerr black hole is
zero might simplify matters. However, for extremal Kerr,
the speed-of-light surface crosses the horizon at a latitude

� ¼ arcsin ð ffiffiffi
3

p � 1Þ [35,36]. It is therefore difficult to
envisage how even a rotating vacuum state (the analogue
of our j ~Bi state) might be defined in the extremal case.
We leave this interesting question open for future
investigation.
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APPENDIX A: QUANTUM FIELD THEORY OF
SCALAR FIELDS ON KERR SPACE-TIME

In this appendix, for ease of reference, we briefly outline
some of the key features of scalar quantum field theory on
Kerr space-time. The notation follows Ref. [29], where
further details may be found.

1. Scalar modes

An orthonormal basis of mode solutions of the Klein-
Gordon equation is defined, for !> 0, as follows [29,58]:

uin	¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8�2!ðr2þa2Þp e�i!teim’S	ð�ÞRin
	ðrÞ; ~!>�m�H;

u
up
	 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8�2 ~!ðr2þa2Þp e�i!teim’S	ð�ÞRup
	 ðrÞ; ~!>0;

u
up
�	¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2ð� ~!Þðr2þa2Þp ei!te�im’S	ð�ÞRup

�	ðrÞ;

0> ~!>�m�H; (A1)

where 	 ¼ f!; ‘;mg, �	 ¼ f�!; ‘;�mg, the functions
S	 are the usual scalar spheroidal harmonics, and the radial

functions Rin=up
	 ðrÞ have the asymptotic behaviors

Rup
	 ðrÞ ¼

8<
: ei ~!r� þ 0A

up
	 e�i ~!r� r� ! �1

0B
up
	 ei!r� r� ! 1 ;

Rin
	ðrÞ ¼

8<
: 0B

in
	e

�i ~!r� r� ! �1
e�i!r� þ 0A

in
	e

i!r� r� ! 1 :

(A2)

We remark that care has to be taken in the definition of the
up modes in (A1) because of the need to consider only
modes with positive norm. The norm of the up modes is
proportional to ~!, meaning that we have to consider sepa-
rately those modes with ~!> 0 and ~!< 0. This is one of
the subtleties that plagues scalar quantum field theory on
Kerr space-time.
The reason for considering only positive norm modes is

the following [45]. We wish to expand the quantum scalar
field as a sum over modes [compare (A9)] and then pro-
mote the expansion coefficients a	 to operators:
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̂ ¼ X
	

u	â	 þ u�	â
y
	: (A3)

In order that the operators â	 satisfy the usual commuta-
tion relations

½â	; ây	0 � ¼ �		0 ; ½â	; â	0 � ¼ 0 ¼ ½ây	; ây	0 �; (A4)

it must be the case that the modes u	 have positive norm
and the modes u�	 have negative norm. This restricts the

way in which candidate vacuum states can be defined (see,
for example, Ref. [45] for the simpler case of rotating
Minkowski space).

The following relations between the coefficients
in (A2) hold

1�j0Ain
	j2 ¼

~!

!
j0Bin

	j2; 1�j0Aup
	 j2 ¼!

~!
j0Bup

	 j2;
!0B

in�
	 0A

up
	 ¼� ~!0B

up
	 0A

in�
	 ; !0B

in
	 ¼ ~!0B

up
	 :

(A5)

The first two of these relations show that for ! ~!< 0, both
j0Ain

	j2 and j0Aup
	 j2 are greater than unity, indicating

superradiance.
An alternative orthonormal set of basis modes can be

defined for !> 0 [29]:

uout	 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2!ðr2 þ a2Þp e�i!teim’S	ð�ÞRin�

	 ðrÞ;

~!>�m�H;

udown	 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2 ~!ðr2 þ a2Þp e�i!teim’S	ð�ÞRup�

	 ðrÞ; ~!> 0;

udown�	 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�2ð� ~!Þðr2 þ a2Þp ei!te�im’S	ð�ÞRup�

�	ðrÞ;

0> ~!>�m�H: (A6)

Both the uout	 and udown	 modes can be written in terms

of the uin	 and u
up
	 modes. For nonsuperradiant modes

(!> 0, ~!> 0), the results are

uout	 ¼ 0A
in�
	 uin	 þ

ffiffiffiffi
~!

!

s
0B

in�
	 uup	 ;

udown	 ¼
ffiffiffiffi
!

~!

r
0B

in�
	 uin	 þ 0A

up�
	 uup	 ;

(A7)

and it should be noticed that the right-hand sides of these

equations involve uin=up	 and not their complex conjugates.

However, for superradiant modes ! ~!< 0, the situation is
different:

uout	 ¼ 0A
in�
	 uin	 �

ffiffiffiffiffiffiffiffiffi
�!

~!

r
0B

up
�	u

up�
�	;

udown�	 ¼ �
ffiffiffiffiffiffiffiffiffi
� ~!

!

s
0B

in
	u

in�
	 þ 0A

up�
�	u

up
�	:

(A8)

The important point about the relations (A8) is that they
involve the complex conjugates of the in and up modes.

This means that one obtains nontrivial Bogoliubov coef-
ficients for superradiant modes when changing from a basis
of in and up modes to a basis of out and down modes. The
result of this is that the vacuum defined using the in and up
modes as a basis (the past-Boulware state jB�i defined
below) is not the same as the vacuum defined using the out
and down modes as a basis as far as the superradiant modes
are concerned. This is precisely the phenomenon of Unruh-
Starobinski�� radiation.

2. Defining quantum states

The past-Boulware state jB�i is defined by first expand-
ing the scalar field in terms of the uin	 and uup	 basis (A1)

and promoting the expansion coefficients a
in=up
	 to opera-

tors satisfying the usual commutation relations:


̂ ¼ X1
‘¼0

X‘
m¼�‘

�Z 1

0
d!½uin	âin	 þ uin�	â

iny
	 �

þ
Z 1

0
d ~!½uup	 âup	 þ uup�	â

upy
	 �

�
: (A9)

Then the past-Boulware state is defined as the state annihi-

lated by the operators âin=up	 .

The definition of the past-Unruh state jU�i could, in
principle, follow that in Sec. III A, but the superradiant
modes, coupled with the need to use only positive norm
modes [so that the up modes (A1) are only defined for
~!> 0] complicates matters. We do not present a full
derivation here, as it can be found in Appendix B of
Ref. [7]. The simplest way to illustrate the nature of the
resulting state is to give the expression for the two-point
function [7,29]:

GU�ðx; x0Þ ¼ hU�j
̂ðxÞ
̂ðx0ÞjU�i

¼ X1
‘¼0

X‘
m¼�‘

�Z 1

0
d ~! coth

�
~!

2TH

�
u
up
	 ðxÞuup�	 ðx0Þ

þ
Z 1

0
d!uin	ðxÞuin�	 ðx0Þ

�
; (A10)

from which it is clear that the up modes are thermally
populated.
Now suppose that we wish to attempt to define a

Boulware state empty at both I� and Iþ. Such a state
would need to be constructed from the in and out modes
[see (A1) and (A6), respectively], and it would be the
boson equivalent of the fermion state jBi defined via
Eq. (3.24). Such a state was suggested some time ago
[64], although its properties have not been investigated.
The in and out modes are not orthogonal, and so we would
need to write the out modes in terms of the in and up
modes, using the relations (A7) and (A8). The resulting
coefficients of the creation ‘‘up’’ operators then turn out to
have positive norm in the superradiant regime (see
Eq. (6.3.3) in Ref. [65]), and so they should in fact be
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annihilation operators. We could therefore make use of the
� formalism introduced by Frolov and Thorne [7].
However, the FT state [see Eq. (A12) below] constructed
in Ref. [7] using the � formalism is actually ill defined
everywhere (except on the axis of symmetry). It is there-
fore likely that the Boulware-like state that we have just
suggested for bosons, even if formally empty at I� and
Iþ, is similarly ill defined in most of the space-time; we
leave such a question for future investigation.

For scalar fields, the theorems of Kay and Wald [25]
prove that there does not exist a Hadamard state on Kerr
space-time that respects the symmetries of the space-time
and is regular everywhere. In the absence of a true Hartle-
Hawking state as a consequence of this result, there have
been a number of attempts in the literature to define a
Hartle-Hawking-like state.

The first such attempt is due to Candelas et al.[28],
where the in and up modes are each thermalized with
respect to their natural energy, so that the two-point func-
tion for a scalar field in this state is given by

GCCH�ðx; x0Þ ¼ hCCH�j
̂ðxÞ
̂ðx0ÞjCCH�i

¼ X1
‘¼0

X‘
m¼�‘

�Z 1

0
d! coth

�
!

2TH

�
uin	ðxÞuin�	 ðx0Þ

þ
Z 1

0
d ~! coth

�
~!

2TH

�
uup	 ðxÞuup�	 ðx0Þ

�
:

(A11)

It is argued (at least for scalar fields) in Ref. [29] that the
CCH state jCCH�i is workable but does not represent an
equilibrium state. In particular, it is not invariant under the
symmetry transformation ðt; ’Þ ! ð�t;�’Þ of the under-
lying Kerr space-time. Detailed calculations of the differ-
ences in expectation values of the stress-energy tensor for
electromagnetic fields in the CCH state and past-Boulware
state are presented in Ref. [30]. It is found that, close to the
horizon, such differences correspond to minus a thermal
distribution rigidly rotating with the event horizon, but that
this rigid rotation does not seem to hold further away from
the event horizon. No divergences in the CCH state were
found. We conclude that while the CCH state has some
interesting properties and appears to be well behaved, it
does not represent a black hole in equilibrium with a
thermal bath of radiation at the Hawking temperature.

A second candidate Hartle-Hawking state was proposed
by Frolov and Thorne [7] and differs from the CCH state in
the choice of thermal factor for the in modes:

GFTðx; x0Þ ¼ hFTj
̂ðxÞ
̂ðx0ÞjFTi

¼ X1
‘¼0

X‘
m¼�‘

�Z 1

0
d! coth

�
~!

2TH

�
uin	ðxÞuin�	 ðx0Þ

þ
Z 1

0
d ~!coth

�
~!

2TH

�
u
up
	 ðxÞuup�	 ðx0Þ

�
: (A12)

The FT state jFTi has the advantage over the CCH state
of being, at least formally, invariant under simultaneous
t� ’ reversal. However, it is argued in Ref. [29] that the
FT state is fundamentally flawed and is regular only on the
axis of rotation. Note that for scalars, one cannot replace
the integral over ! in (A12) with an integral over ~!
because the in modes are defined for !> 0, not ~!> 0.
Therefore we cannot, for scalars, define a direct analogue
of the state jHi defined in Sec. III C for fermions.

APPENDIX B: DIRAC AND SPINOR
CONNECTION MATRICES

In this appendix we list the Dirac and spinor connection
matrices for the Kerr geometry using our space-time
conventions.

1. Dirac matrices

A suitable basis of �� matrices for the Kerr metric (2.1)
can be found in Ref. [15]

�t ¼ r2 þ a2ffiffiffiffiffiffiffiffi
��

p ~�0 þ a sin �ffiffiffiffi
�

p ~�2; �r ¼
�
�

�

�1
2
~�3;

�� ¼ 1ffiffiffiffi
�

p ~�1; �� ¼ affiffiffiffiffiffiffiffi
��

p ~�0 þ 1ffiffiffiffi
�

p
sin �

~�2;
(B1)

where the flat-space ~�a matrices are given by

~�0 ¼ iI2 0

0 �iI2

 !
; ~�j ¼ 0 i
j

�i
j 0

 !
; (B2)

with I2 the 2� 2 identity matrix and 
i the usual 2� 2
Pauli matrices


1 ¼
0 1

1 0

 !
; 
2 ¼

0 �i

i 0

 !
; 
3 ¼

1 0

0 �1

 !
:

(B3)

As anticipated, the flat-space ~�a matrices (B2) satisfy

f~�a; ~�bg ¼ 2�ab: (B4)

We also define a chirality matrix �5 by

�5 ¼ i

4!
��	�
�

��	���
 ¼ i~�0 ~�1 ~�2 ~�3 ¼ 0 I2

I2 0

 !
: (B5)

2. Spinor connection matrices

The spinor affine connection matrices �� are most easily

computed by using a vierbein e�a such that

�� ¼ e
�
a ~�a; (B6)

where ~�a are the flat-space Dirac matrices (B2). In terms of
vierbein components, the spinor connection matrices are
given by [39,40,66]

�	 ¼ � 1

4
g
�e



a e

�
b;	 ~�

a ~�b: (B7)
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Using this formula we find that the spin connection
matrices can be compactly written as follows [37]:

�t ¼ M

2�2
ðr2 � a2cos 2�Þ~�0 ~�3 � aMr cos �

�2
~�1 ~�2;

�r ¼ �ar sin�

2�
ffiffiffiffi
�

p ~�0 ~�2 � a2 cos � sin �

2�
ffiffiffiffi
�

p ~�1 ~�3;

�� ¼ a
ffiffiffiffi
�

p
cos�

2�
~�0 ~�2 � r

ffiffiffiffi
�

p
2�

~�1 ~�3;

�� ¼ �a
ffiffiffiffi
�

p
2�

cos� sin�~�0 ~�1 � aB
2�2

sin 2�~�0 ~�3

þA cos �

2�2
~�1 ~�2 � r

ffiffiffiffi
�

p
sin �

2�
~�2 ~�3;

(B8)

where

A ¼ ��þ 2Mrðr2 þ a2Þ;
B ¼ a2rcos 2�� a2Mcos 2�þ r3 þMr2:

(B9)

These �	 matrices also satisfy the additional condition
Tr�	 ¼ 0 [15].

APPENDIX C: STRESS-ENERGY
TENSORY COMPONENTS

The classical stress-energy tensor (2.19) for a fermion
mode c 	 (here we omit the superscripts in/up because the
formulas apply equally well to all modes) is

	T�	 ¼ i

4
½ �c 	��r	c 	 þ �c 	�	r�c 	 � ðr�

�c 	Þ�	c 	

� ðr	
�c 	Þ��c 	�: (C1)

In analogy with the quantity j�	 (4.8) defined for the number

current, we define the following quantity 	t�	, which is

required for the computation of expectation values:

	t�	 ¼ �	T�	 � 	T�	: (C2)

The expressions for the components of 	T�	 and 	t�	 are

rather lengthy and given below, where, for conciseness, we
omit the subscript 	 and also all in/up mode labels. The

notation < denotes the real part and = denotes the imagi-
nary part of complex functions. We have explicitly verified
that these stress-energy tensor components satisfy the
conservation equations r�T�	 ¼ 0. The conservation

equations for a classical stress-energy tensor on a Kerr
space-time can be found in Ref. [29], although we note
that there is an error in one of their equations. The 	 ¼ t,
�, and ’ conservation equations in Ref. [29] are correct, but
the 	 ¼ r equation should read

@rð�Tr
rÞ þ 1

� sin�
@�ð�sin�T�

rÞ � rT�
�

���1ðra2sin 2���ÞTr
r

¼ 1

�
½��Ttt þ 2a�sin 2�Tt’

þ sin 2�ð��a2sin 2�þ r�2ÞT’’�; (C3)

where

� ¼ Mðr2 � a2cos 2�Þ: (C4)

The expressions (C5)–(C24) given below depend explicitly
on L. The differential equations (2.25) satisfied by the radial
functions also depend on L. The boundary conditions on the
radial functions for the in (2.33) and up (2.34) modes are
stated for L ¼ þ1 only. For L ¼ þ1, therefore, the radial
functions satisfying the appropriate boundary conditions can
be substituted into the stress-energy tensor components
(C5)–(C24). For L ¼ �1, the simplest way to obtain the
corresponding expression for the stress-energy tensor com-
ponents is to substitute L ¼ �1 into (C5)–(C24) and make
the swap 1R	 $ 2R	, since the differential equations (2.25)

satisfied by the functions 1R	 and 2R	 swap over under the

map L ! �L. The radial functions for L ¼ þ1, satisfying
the original L ¼ þ1 boundary conditions (2.33) and (2.34),
can then be used in the computation of the stress-energy
tensor components. Indeed, it is straightforward to see that
the quantities (C15)–(C24) below used in Sec. IV in the
computation of expectation values of the stress-energy ten-
sor are invariant under the map L ! �L.
First, we give the expressions for 	T�	:

Ttt ¼ 1

4�2
ffiffiffiffi
�

p
�3 sin �

n ffiffiffiffi
�

p
�2!½j1Rj21S2 þ j2Rj22S2� � 2aL�2! sin �=ð1R2R

�Þ1S2S�Mar
ffiffiffiffi
�

p
cos�½j1Rj21S2

� j2Rj22S2� �Maðr2 � a2cos 2�Þ sin �<ð1R2R
�Þ1S2S

o
; (C5)

Ttr ¼ 1

16�2
ffiffiffiffi
�

p
�2 sin �

�
�2

ffiffiffiffi
�

p
�=½1R�

1R
0
1S

2 þ 2R
�
2R

0
2S

2� þ 2a�L sin �<½1R�
2R

0 � 1R
0
2R

��1S2S

� 2!L�2ffiffiffiffi
�

p ½j1Rj21S2 � j2Rj22S2� þ
La cos�ffiffiffiffi

�
p ½r2 þ a2ð1þ sin 2�Þ�½j1Rj21S2 þ j2Rj22S2�

� 4a2 sin� cos�=ð1R2R
�Þ1S2S

�
; (C6)
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Tt� ¼ 1

16�2
ffiffiffiffi
�

p
�2 sin �

n
�4L!�2<ð1R2R

�Þ1S2Sþ 2a�L sin �<ð1R2R
�Þ½1S2S0 � 2S1S

0�

� 2½�rþMða2cos 2�� r2Þ þ a2rsin 2��=ð1R2R
�Þ1S2Sþ 2Lra

ffiffiffiffi
�

p
sin�ðj1Rj21S2 þ j2Rj22S2Þ

o
; (C7)

Tt’ ¼ 1

16�2
ffiffiffiffi
�

p
�3 sin �

n
�2

ffiffiffiffi
�

p
�2ða!sin 2�þmÞ½j1Rj21S2 þ j2Rj22S2� þ 4L�2½ðr2 þ a2Þ!þ am� sin �=ð1R2R

�Þ1S2S

þ
ffiffiffiffi
�

p
cos �½�2 þ 4Mra2sin 2��½j1Rj21S2 � j2Rj22S2�

� 2 sin �½ðr�MÞ�2 � 2Mðr2 þ a2Þðr2 � a2cos 2�Þ�<ð1R2R
�Þ1S2S

o
; (C8)

Trr ¼ 1

4�2�
3
2� sin �

�
ar sin �<ð1R2R

�Þ1S2Sþ
ffiffiffiffi
�

p
L�½=ð1R�

1R
0Þ1S2 �=ð2R�

2R
0Þ2S2�

� 1

2
a

ffiffiffiffi
�

p
cos�½j1Rj21S2 � j2Rj22S2�

�
; (C9)

Tr� ¼ 1

16�2
ffiffiffiffi
�

p
�sin �

�
2�L½=ð1R0

2R
�Þ þ =ð1R�

2R
0Þ�1S2S� 4a cos �<ð1R2R

�Þ1S2S� 2arffiffiffiffi
�

p sin�½j1Rj21S2 � j2Rj22S2�
�
;

(C10)

Tr’ ¼ 1

16�2
ffiffiffiffi
�

p
�2 sin �

�
2a

ffiffiffiffi
�

p
�sin 2�=ð1R�

1R
0
1S

2 þ 2R
�
2R

0
2S

2Þ þ 2mL�2ffiffiffiffi
�

p ½j1Rj21S2 � j2Rj22S2�

� 2Lðr2 þ a2Þ�sin �<ð1R�
2R

0 � 1R
0
2R

�Þ1S2S� Lffiffiffiffi
�

p ½a2�sin 2�þ ðr2 þ a2Þ2

þ 2Mra2sin 2�� cos�½j1Rj21S2 þ j2Rj22S2� þ 4aðr2 þ a2Þ sin � cos �=ð1R2R
�Þ1S2S

�
; (C11)

T�� ¼ 1

8�2
ffiffiffiffi
�

p
�sin �

n
2�L½=ð1R2R

�Þ1S02Sþ=ð1R�
2RÞ1S2S0� � 2ra sin �<ð1R2R

�Þ1S2S

þ a
ffiffiffiffi
�

p
cos �½j1Rj21S2 � j2Rj22S2�

o
; (C12)

T�’ ¼ 1

16�2
ffiffiffiffi
�

p
�2

�
4mL�2

sin �
<ð1R2R

�Þ1S2S� 2�Lðr2 þ a2Þ<ð1R2R
�Þ½1S2S0 � 2S1S

0�

� 2½�ðr2 þ a2Þra sin �þ ½rð�� �Þ þMðr2 � a2cos 2�Þ�a sin ��=ð1R2R
�Þ1S2S

� 2L
ffiffiffiffi
�

p
a2rsin 2�½j1Rj21S2 þ j2Rj22S2�

�
; (C13)

T’’ ¼ 1

4�2
ffiffiffiffi
�

p
�3

fam
ffiffiffiffi
�

p
�2 sin �½j1Rj21S2 þ j2Rj22S2� � 2mL�2ðr2 þ a2Þ=ð1R2R

�Þ1S2S

�
ffiffiffiffi
�

p
Mra3sin 3� cos�½j1Rj21S2 � j2Rj22S2� �Masin 2�½ðr2 � a2Þ�þ 2r2ðr2 þ a2Þ�<ð1R2R

�Þ1S2Sg: (C14)

Second, we give the expressions for 	t�	, derived from those for 	T�	 using the symmetries (2.28) and (2.29)

ttt ¼ � 1

4�2
ffiffiffiffi
�

p
�3 sin �

n ffiffiffiffi
�

p
�2!½j1Rj2 þ j2Rj2�½1S2 þ 2S

2� � 4aL�2! sin �=ð1R2R
�Þ1S2S

�Mar
ffiffiffiffi
�

p
cos�½j1Rj2 þ j2Rj2�½1S2 � 2S

2� � 2Maðr2 � a2cos 2�Þ sin �<ð1R2R
�Þ1S2S

o
; (C15)
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ttr ¼ � 1

16�2
ffiffiffiffi
�

p
�2 sin �

�
�2

ffiffiffiffi
�

p
�½=ð1R�

1R
0Þ þ =ð2R�

2R
0Þ�½1S2 þ 2S

2� þ 4a�L sin �½<ð1R�
2R

0Þ

� <ð1R0
2R

�Þ�1S2S� 2�2Lffiffiffiffi
�

p !½j1Rj2 � j2Rj2�½1S2 þ 2S
2�

þ La cos�ffiffiffiffi
�

p ½r2 þ a2ð1þ sin 2�Þ�½j1Rj2 � j2Rj2�½1S2 � 2S
2�
�
; (C16)

tt� ¼ � Lra

8�2�2
½j1Rj2 � j2Rj2�½1S2 � 2S

2�; (C17)

tt’ ¼ � 1

16�2
ffiffiffiffi
�

p
�3 sin �

n
�2

ffiffiffiffi
�

p
�2ða!sin 2�þmÞ½j1Rj2 þ j2Rj2�½1S2 þ 2S

2�

þ 8L�2½ðr2 þ a2Þ!þ am� sin�=ð1R2R
�Þ1S2Sþ

ffiffiffiffi
�

p
cos�½�2 þ 4Mra2sin 2��½j1Rj2

þ j2Rj2�½1S2 � 2S
2� � 4 sin �½ðr�MÞ�2 � 2Mðr2 þ a2Þðr2 � a2cos 2�Þ�<ð1R2R

�Þ1S2S
o
; (C18)

trr ¼ � 1

4�2�
3
2� sin �

�
2ar sin �<ð1R2R

�Þ1S2Sþ
ffiffiffiffi
�

p
�L½=ð1R�

1R
0Þ � =ð2R�

2R
0Þ�½1S2 þ 2S

2�

� 1

2
a

ffiffiffiffi
�

p
cos �½j1Rj2 þ j2Rj2�½1S2 � 2S

2�
�
; (C19)

tr� ¼ � 1

8�2
ffiffiffiffi
�

p
�sin �

�
�4a cos �<ð1R2R

�Þ1S2Sþ ar sin �ffiffiffiffi
�

p ½j1Rj2 þ j2Rj2�½2S2 � 1S
2�
�
; (C20)

tr’ ¼ � 1

16�2
ffiffiffiffi
�

p
�2 sin �

�
2a

ffiffiffiffi
�

p
�sin 2�½=ð1R�

1R
0Þ þ =ð2R�

2R
0Þ�½1S2 þ 2S

2�

þ 2�2ffiffiffiffi
�

p mL½j1Rj2 � j2Rj2�½1S2 þ 2S
2� � 4Lðr2 þ a2Þ�sin �½<ð1R�

2R
0Þ � <ð1R0

2R
�Þ�1S2S

þ Lffiffiffiffi
�

p ½a2�sin 2�þ ðr2 þ a2Þ2 þ 2Mra2sin 2�� cos�½j1Rj2 � j2Rj2�½2S2 � 1S
2�
�
; (C21)

t�� ¼ � 1

8�2
ffiffiffiffi
�

p
�sin �

n
2�L½=ð1R2R

�Þ � =ð1R�
2RÞ�½1S02S� 1S2S

0� � 4ra sin �<ð1R2R
�Þ1S2S

þ a
ffiffiffiffi
�

p
cos�½j1Rj2 þ j2Rj2�½1S2 � 2S

2�
o
; (C22)

t�’ ¼ �La2rsin 2�

8�2�2
½j1Rj2 � j2Rj2�½2S2 � 1S

2�; (C23)

t’’ ¼ � 1

4�2
ffiffiffiffi
�

p
�3

fa
ffiffiffiffi
�

p
�2m sin �½j1Rj2 þ j2Rj2�½1S2 þ 2S

2� � 4�2mLðr2 þ a2Þ=ð1R2R
�Þ1S2S

�
ffiffiffiffi
�

p
Mra3sin 3� cos�½j1Rj2 þ j2Rj2�½1S2 � 2S

2� � 2Masin 2�½ðr2 � a2Þ�þ 2r2ðr2 þ a2Þ�<ð1R2R
�Þ1S2Sg:

(C24)

These quantities are used in the numerical computations in Sec. IVC.
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