
Causal structure of spacetime and geometric algebra for quantum gravity

I. Dukovski*

Aksius Research Institute, P.O. Box 600008, Newton, Massachusetts 02460-0001, USA
(Received 25 March 2011; revised manuscript received 22 October 2012; published 18 March 2013)

We construct a background independent model of spacetime from a minimal set of postulates of

causality. The topology and geometry of spacetime can be derived from the model, instead of being

postulated. We define a measure of causality and relate it to the noncommutative geometric algebra of

spacetime coordinates. The geometric algebra formalism leads to the definition of a Euclidean action. The

Euclidean action is positive definite and allows the path integral formulation of quantum gravity to be

treated as statistical physics of a causal stochastic Markov field.
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I. INTRODUCTION

Quantization of the gravitational field has proven to
be one of the most difficult problems in contemporary
physics. One of the reasons for this is that it is not a
straightforward task to relate the quantized gravitational
field to a local stochastic Markov field [1] and treat it with
the analytical and computational methods of statistical
physics. This situation is evident in the problem of confor-
mal divergence in the theory of Euclidean quantum gravity
(EQG) [2]. There, one starts with the path integral formu-
lation of the theory of quantum gravity, and transitions to a
corresponding Markov field theory by generalizing the
Wick rotated action for flat spacetime to a Euclidean action
for spacetime with curvature. The EQG action, however, is
not positive definite and cannot be used to relate the path
integral to a partition function of a Markov field. This is
seen in the presence of a negative kinetic term, after a
conformal transformation ~gab ¼ �2gab in the Euclidean
action:
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The problem of nonpositive definiteness of the
EQG action has been, in large part, resolved by the
causal dynamical triangulations (CDT) approach [3–7].
The numeric-experimental results of this methodology
show that, if the causal order in the Lorentzian manifold
is preserved and carried over to the Wick rotated Euclidean
manifold [8], the partition function and the corresponding
path integral are well defined and convergent. In the CDT
model this is done by introducing a time coordinate and
performing a Wick rotation on it. The Lorentzian manifold
background [9] in the CDTmodel is inherited in its entirety
from the spacetime model of general relativity. This is the
difference between the CDT model and another discrete
model, the causal sets model of spacetime [10,11].

The causal sets model manages to eliminate a large
portion of the mathematical background from the theory
by building the model and its mathematical structure start-
ing with the causal structure of spacetime [12]. In this
paper we will attempt to merge these two models of space-
time. We will attempt to derive the spacetime background
(including its topology, dimensionality, geometry, metric
etc.) from the causal structure among events in spacetime,
with the additional requirement that the causal relation
between any two events in the model can be expressed in
a quantitative way. It has already been shown that both
Lorentz invariance [13] and the metric of spacetime [14]
can be deduced from causality alone. Some of these results
have led to the formulation of the theory of causal sets [10].
The causal sets theory postulates the discreteness of space-
time, and constructs its model as a partially ordered set, a
poset, of causally related events. In contrast to the causal
sets theory, here we will assume neither a discrete nor
continuous nature of spacetime. The model presented
here can be understood either as an exact representation
of a discrete spacetime, or as a discrete subset, an approxi-
mation, of a continuum.
Posets and order lattices in mathematics are typically

used as abstractions, tools for understanding the rela-
tions among specific mathematical objects. A geometric
lattice, for example, is one that carries the information
about hierarchical relationships among concrete geometric
objects. The lattices themselves are very seldom given
geometric, topological, or even metric properties. Here
we will depart from this tradition and show that abstract
order lattices in fact can be understood as frameworks for
building the topology and geometry of spacetime. The
order lattice model in our case is not a mere abstract
representation of the causal relationships among the points
of the physical spacetime, but it is in fact a model, an
approximation of the physical spacetime.
In the following section we will construct the model

from a series of postulates. In Sec. III we will give a
quantitative meaning to the notion of causality in the
model. Section IV is a derivation of the topology and
geometry of spacetime from the causal structure of the*ilija.dukovski@aksius.org
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model. In Sec. V we will introduce the positive definite
action and we will conclude with Sec. VI.

II. POSTULATES OF THE MODEL

The central entity in our model of spacetime is the
notion of event. The concept of event is well defined in
general relativity. There, one postulates the existence of a
continuum (i.e., a set of the same cardinality as the cardi-
nality of the set of real numbers) of points, each one
carrying a value of a physical field, and an event is one
such point. Here, we will construct our model of spacetime
as a set of events as well. The difference between the set of
events in general relativity and in our model is in its
postulated mathematical properties. Besides its cardinality
(i.e., being a continuum), the spacetime continuum of
events in general relativity carries a range of assumed
mathematical properties. Most importantly, the spacetime
continuum in general relativity is assumed to be a topo-
logical manifold. These assumptions constitute the mathe-
matical background of the theory and are not necessarily
required by the results of physical experiments.

One of the aims of this work is to minimize the mathe-
matical background in the theory. We will not make any
assumption about the topology and geometry of spacetime.
Instead, we will attempt to derive these properties from a
minimal set of assumptions, or postulates. These assump-
tions, if possible, will be made on the level of the mathe-
matical set theory. The higher-level topological and
geometrical properties of the model will be derived from
the set-theoretic postulates rather than being postulated
themselves. With this we hope to accomplish two major
goals. First, we will eliminate as much of the assumed
background as possible. This goal is, we believe, in the
very heart of general relativity, and it is at least desirable, if
not necessary, for a quantum theory of gravitation to elimi-
nate as much of the background as theoretically possible.
Second, we will attempt to provide a way of bookkeeping
for the mathematical assumptions in our theory. Our model
is certainly not completely background free. However, as
we will address further on in the text, there are indications
that, minimal as it is, the set of postulates could be further
reduced in a future theory. With this goal in mind, we will
build our model constructively, starting from the minimal
notion of a set of events and then building up, while keeping
track of all the assumptions built into the model.

The axiomatic structure of our model is very close to
the one of the causal sets theory [10–12]. However, we
will attempt to formulate the model in the language of
the mathematical theory of sets, specifically partially
ordered sets and lattices. We will do this in order to utilize
the existing powerful mathematical formalism of the
mathematical theory of partially ordered sets.

Although seldom treated in the physics literature, the
consistency of the claim of the existence of a set of events
is not a trivial matter from a mathematical point of view.

Before we relate any of the mathematical properties of our
model to the physical properties of spacetime, we have to
assume a set-theoretic system of axioms, within which the
concept of a set of events is defined. The spacetime set of
events in our theory will therefore obey the standard axi-
oms of set theory. We will assume the validity of the
Zermelo-Fraenkel axioms, although other set-theoretic ap-
proaches, such as the von Neumann-Robinson-Bernays-
Gödel approach, may be taken as starting points as well.
The consideration of the set-theoretic system of axioms

here may seem unnecessary. The issues of consistency
of a definition of a set of physical points are typically
considered purely mathematical, if not philosophical,
and are very rarely discussed in the physics literature.
These set-theoretic assumptions are silently present in
any physical theory and perhaps from a physicist’s point
of view practically trivial. It is important, however, to
emphasize the consequences of the assumed validity of
one particular set-theoretic axiom, the axiom of choice. It
is typically included among, but independent from, the rest
of the Zermelo-Fraenkel axioms or Neumann–Robinson–
Bernays–Gödel axioms. The axiom of choice states that
given a collection of sets, one can choose a single element
from each and every set in the collection. The first impres-
sion about the axiom of choice may be that it is trivial too,
and therefore irrelevant. That, however, is not true and in
fact it will play an important role in our order model of
spacetime. Its importance is partially due to the fact that
the very possibility to well order a set is in fact equivalent
to the possibility of choosing an element in it. What is
meant by well ordering here is that one can order the
elements of a set in a way that each of its subsets has a
minimal element. The possibility of choosing such mini-
mal elements after the appropriate well ordering gives an
indication why the axiom of choice is equivalent to the
possibility of well ordering a set. The assumption of the
validity of the axiom of choice is equivalent to the assump-
tion that any set can be well ordered, i.e., a minimal
element can be defined in the set, and each of its subsets.

A. Postulate of partially ordered set

Let us start by postulating the general existence and
causality of the model [10]:
P1: Physical spacetime is modeled by a partially

ordered set of spacetime events.
Spacetime, therefore, is modeled by the partially ordered

set (poset) ðP;�Þ, where P is the set of events and� is the
relation of causality, defined as a partial order that is
reflexive

8 a 2 P; a � a;

antisymmetric

if a � b and b � a; then a ¼ b;

and transitive [15]
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if a � b and b � c; then a � c:

We will also write a > b, if a � b and a � b.
Not all pairs of elements in P are causally related and

comparable, and we will call P linear or one-dimensional
in the special case when all pairs indeed are comparable.
An arbitrary poset can be constructed as an intersection of
a number of linear posets; the poset’s dimension is defined
as the smallest such number.

The poset’s dimension as defined above is not a
geometrical concept. No geometry, not even topology,
has been defined on the set P. The poset’s dimensionality
however mirrors closely the analogous geometric concept.
An element of the poset ðP;�Þ can be given a
‘‘coordinate’’ by its position in the linear orders whose
intersection gives the partial ordering � in P.

An intuitive insight in the correspondence of the two
concepts of dimensionality, the geometric and the ordinal
(i.e., relating to the partial order), can be gained by looking
at the graphical representation of a poset, the Hasse dia-
gram. The elements (events) of the set P are represented in
a Hasse diagram by dots. If two elements a and b are
related by the partial order, e.g., b � a, and there are no
other elements between them, i.e.,

if b > a and b > c � a; then c ¼ a;

then we say that b covers a and write b � a [16].
This covering relation in a Hasse diagram is graphically
represented by a line between two (covering) neighboring
elements, with b being higher up on the page than a.

Figure 1 illustrates the Hasse diagram of a two-
dimensional poset. The partial order is given by the set
of ordered pairs ða; bÞ if and only if b � a. The partial
order in the poset in Fig. 1 is specified by the pairs

ðR;�Þ ¼ fð1; 2Þ; ð1; 3Þg:
It can be obtained from the intersection of the linear posets

ðL1;�1Þ ¼ fð1; 2Þ; ð1; 3Þ; ð2; 3Þg
and

ðL2;�2Þ ¼ fð1; 2Þ; ð1; 3Þ; ð3; 2Þg:

This is the minimal number of linear orders whose inter-
section gives the poset R. By the definition of poset’s
dimension above, the poset R is two dimensional. The
analogy to the geometric concept of dimension can be
seen in the fact that the Hasse diagram of the poset R can
be drawn flat on a sheet of paper, without any intersecting
covering lines.
That is not the case with the three-dimensional poset Q

in Fig. 2. This poset is given by

ðQ;�Þ ¼ fð1; 4Þ; ð1; 5Þ; ð2; 4Þ; ð2; 6Þ; ð3; 5Þ; ð3; 6Þg:

It can be obtained from the intersection of the three linear
posets

ðM1;�1Þ ¼ fð1; 2Þ; ð1; 4Þ; ð1; 3Þ; ð1; 5Þ; ð1; 6Þ; ð2; 4Þ; ð2; 3Þ; ð2; 5Þ; ð2; 6Þ; ð4; 3Þ; ð4; 5Þ; ð4; 6Þ; ð3; 5Þ; ð3; 6Þ; ð5; 6Þg;

ðM2;�2Þ ¼ fð2; 3Þ; ð2; 6Þ; ð2; 1Þ; ð2; 4Þ; ð2; 5Þ; ð3; 6Þ; ð3; 1Þ; ð3; 4Þ; ð3; 5Þ; ð6; 1Þ; ð6; 4Þ; ð6; 5Þ; ð1; 4Þ; ð1; 5Þ; ð4; 5Þg;
and

ðM3;�3Þ ¼ fð3; 1Þ; ð3; 5Þ; ð3; 2Þ; ð3; 4Þ; ð3; 6Þ; ð1; 5Þ; ð1; 2Þ; ð1; 4Þ; ð1; 6Þ; ð5; 2Þ; ð5; 4Þ; ð5; 6Þ; ð2; 4Þ; ð2; 6Þ; ð4; 6Þg:

The choice of the linear posets M1, M2 and M3 is not

unique. One could construct a different collection of linear

posets with the same property. However, this is the minimal

number of linear posets whose intersection gives the poset

Q. Hence its dimensionality.

B. Postulate of measure of causality

In the second postulate we require that causality be
quantifiable within the model. The causal order in a
Lorentzian manifold is given by its metric and the corre-
sponding light cones, and is fully determined by two

2 3

1

FIG. 1. Two-dimensional poset.

4

1 2 3

5 6

FIG. 2. Three-dimensional poset.
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quantities, typically the square path length and the time
coordinate. The existence of a quantitative measure of
‘‘distance’’ and order between two events a and b in an
arbitrary poset, without defined geometry and metric, how-
ever, is not trivial. The length (cardinality) of a maximal
linear chain between two events, for example, is not well
defined in a poset where two events can be connected by
infinite, as well as finite, chains. Another reason for the
failure of the chain length alone as a measure of causality,
even in finite posets, is the fact that nonrelated events,
a k b, are not connected by causal chains. In principle
one can assign zero value in that case; however that would
make it impossible for the measure to distinguish between
the cases a ¼ b and a k b. In order to model spacetime
quantitatively, we must be able to define a real and at least
double-valued order preserving function on P.

With the second postulate we will put a constraint on the
set of posets as possible candidates for our model of space-
time, to the ones whose order structure allows the defini-
tion of an order preserving measure of causal distance.

P2: The partial order in P allows the definition of an

order preserving function d̂ð�; �Þ: P� P ! R2 as a mea-
sure of causality.

The function d̂ is order preserving in the sense that a
partial order �d in R2, the set of ordered real pairs, exists

such that d̂ða; aÞ ¼ ð0; 0Þ, and if a � b then d̂ða; bÞ �d

ð0; 0Þ and ð0; 0Þ �d d̂ðb; aÞ.
The metric of general relativity carries the information if

two points are casually related. It is not, however, order
preserving. The value of the relativistic distance between
two causally related spacetime points a and b is the same
regardless of whether a � b or b � a. In order to fully
quantify the information of the causal ordering in the
spacetime of general relativity, we need to specify a time-
like coordinate. This is, in fact, one of the major reasons
why in some treatments of spacetime quantization, the
time coordinate is singled out and treated separately from
the spacelike coordinates. Specifically, in the methodology
of causal dynamical triangulations [3], causality plays the
crucial role for the regularization of the otherwise non-
positive definite path integral over spacetime geometries.
In the absence of an order preserving function of distance,
the time coordinate is singled out and serves to preserve the
causal order in the dynamically triangulated model.

The singled out, Wick rotated time coordinate is part of
the background in the causal dynamical triangulation mod-
els of spacetime. One of our main goals in this paper is to
eliminate as much of the spacetime background as possible
and treat time and space coordinates on the same footing.
We will attempt to define the measure of causality without
using a separate time coordinate. In much of the rest of this
paper we will attempt to define a background independent,
order preserving analogue of the spacetime metric. It is not
clear, however, if such a function exists at all. In this
section we postulate its existence. This postulate puts a

constraint on the properties of our spacetime model. The
mathematical structure of the spacetime poset must be such
that it will allow the definition of an order preserving
function on it. In this sense, the physics of the model, the
possibility of an experimental measurement of the causal
relations among events, is what dictates its mathematical
structure. The possibility of measuring causality is the
model’s building principle, since we will construct it by
eliminating all the possible posets that do not allow a
definition of an order preserving distance.
As mentioned in the introduction, we will show that the

constraint imposed by the requirement of the existence of
causal distance constrains the set of possible posets to the
ones that share the topological and geometrical properties
of spacetime of general relativity. In other words, the
causality itself, armed with the requirement that it is a
physically measurable quantity, leads to the emergence
of the topology and geometry of spacetime. This reduces
significantly the background assumptions in the model of
spacetime. In general relativity, one starts with a model
with presumed manifold topology and presumed geometry
given by the postulated spacetime metric. Here we presume
only the causality of events and the possibility of measure-
ment of causes and effects. The topology and geometry of
spacetime are emerging from its causality. Before we show
that, however, we will have to construct a poset model of
spacetime with an order preserving function of causal
distance, one that will serve the roles of the metric and
the time coordinate put together in general relativity.
The main reason that the standard spacetime metric of

general relativity is not order preserving is that it is a
quadratic form. Taking the square of the timelike coordi-
nate annihilates the information about the causal order
between events. It is natural then to try to define the causal
distance as a linear form, a square root of the quadratic
metric. This is indeed possible; however it requires change
in the algebra of its values. Instead of expressing the values
of the causal distance in ordinary (commutative) real
numbers, taking the square root of the metric leads
naturally to the emergence of geometric algebras (also
known as Clifford algebra). This is similar to Dirac’s
procedure of taking the square root of the Lorentzian,
which leads to the emergence of the geometric algebra in
the Dirac’s equation.
Here we will take a different route towards the formu-

lation of the causal distance. We will not start from the
spacetime model of general relativity and then take the
square root of its metric. Instead, we will first show that a
class of posets exists, such that it allows the definition of a
multivalued order preserving causal distance function. The
geometric algebra in fact will emerge from the construc-
tion of the distance function.
To show this, we will use the powerful mathematical

formalism of a specific class of posets, the order lattices.
There are indications that the two above postulates are the
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minimal requirements for the spacetime background.
However, the task of constructing the class of posets that
allows the definition of a causal distance can be made
significantly easier if we include four more assumptions
about the mathematical structure of the poset. These are the
existence of a supremum, local finiteness, the property of
semidistributivity and uniform poset dimensionality. We
will see that although all four postulates may seem trivial at
first, they simplify the mathematical structure of the poset
and make the task of model construction easier.

We will leave the task of understanding the structure of a
model emerging from the constraints imposed only by the
postulates P1 and P2 for a future study.

C. Postulate of supremum (infimum)

The upper bound of a subset S of the poset P is defined
as a poset element a 2 P, such that for all s 2 S, a � s.
Similarly, the lower bound is b 2 P, such that for all
s 2 S, s � b. The supremum (infimum) of a poset’s subset
is defined as the subset’s least upper (greatest lower)
bound. A supremum (infimum) of a subset does not nec-
essarily exist. An element a 2 P is a supremum of a subset
S if and only if [16]

ð8 b 2 PÞ½ðð8 s 2 SÞb � sÞ () b � a�;
and similarly it is an infimum if and only if

ð8 b 2 PÞ½ðð8 s 2 SÞs � bÞ () a � b�:
If it exists, the supremum (infimum) of a subset is unique.
In the terminology of the order theory literature, the
supremum and infimum are called ‘‘join’’ and ‘‘meet’’
and denoted as a _ b and a ^ b respectively.

A very special class of posets, order lattices, is defined
by insisting that in a lattice, any two elements have a
supremum and infimum [16]. Let L be an order lattice; then

ð8 a; b 2 LÞða _ b 2 L anda ^ b 2 LÞ:
The term lattice here is used strictly for a poset with an
existing supremum and infimum, rather than a crystallo-
graphic lattice, and the two should not be confused.
A sublattice of a given lattice is defined as a subset that
is a lattice too.

We will postulate the existence of a supremum and an
infimum in our poset model P:

P3: Every pair of events in P has a supremum and an
infimum.

Postulating the existence of a supremum and infimum in
a model of spacetime may seem trivial at first. The exis-
tence of a supremum (least upper bound) in a past oriented
light cone in general relativity follows naturally from its
existence in the set of real numbers. The existence of the
supremum in the set of real numbers, however, is not trivial
at all, and must be postulated independently. In fact, it is
the postulate of supremum that distinguishes the set of real
numbers from the set of rational numbers. In the set of

rational numbers, the subset of rationals smaller than
ffiffiffi
2

p
,

for example, is bound from above; however, the least

bound is
ffiffiffi
2

p
which is not a rational number. One important

consequence of the postulate of supremum for the set of
real numbers is reflected in the difference in the possibility
of defining open and closed intervals in the sets of rationals
and reals. Consequently, the topology of the rationals is
significantly different than the one of the reals.
The spacetime manifold of general relativity naturally

inherits this essential role of the supremum from the set
of real numbers. Taking a single point out of the space-
time manifold, for example, changes its topology. The
presence of such a singularity in the spacetime manifold,
on the other hand, is equivalent to the statement that its past
oriented light cone does not have a supremum. Therefore,
one should be very careful when considering singularities
in the light of supremum and infimum existence. Imposing
the requirement that any two points have a supremum and
infimum may restrict the possibility of the existence of
singularities in the model.
Imposing the postulate of supremum and infimum on

our model has global topological consequences too. In a
certain class of posets called ‘‘crowns,’’ resembling crys-
tallographic lattices with periodic boundary conditions, the
lowest upper bound may not be unique, as illustrated in
Fig. 3. This analogy of crowns to lattices with periodic
boundary conditions points to the fact that we will not be
able to treat periodic boundary conditions in our lattice
model. Instead, we will have to restrict the applicability of
our model to spacetime with asymptotically flat boundary
conditions.
The constraints imposed by postulate P3 are therefore

very restrictive regarding the topology of the model, and
constitute a part of the background in the model. The
reason for restricting the model to a lattice is that it
allows us to use the powerful mathematical apparatus of
mathematical lattice theory. We will show that the mani-
fold topology of spacetime emerges from the model
without postulating it as a part of the background. For
this we will need some results from the theory of order
lattices.
This, on the other hand, does not mean that we cannot

use the model in the case of periodic or more general

FIG. 3. Poset without supremum or infimum.
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nonflat boundary conditions. With the next postulate we
will assume that all intervals in the model are finite. We
could, in principle, reformulate postulate P3 to be valid
only to finite poset intervals that are not crowns. We will
avoid these complications for the time being and restrict
the model of spacetime to an order lattice. The price that
we have to pay is that we have to consider asymptotically
flat boundary conditions and exclude the presence of sin-
gularities from our model.

D. Postulate of local finiteness

Next we will consider the assignment of measure
to subsets in our model of spacetime. In other words,
we need to define the concepts of distance, area and
volume. In general relativity the manifold topology of
spacetime relates its measures of distance and volume to
the ones defined on the set of real numbers and its tuples.
The measure of an interval ½a; b� of reals is simply given by
� ¼ b� a. Although perhaps trivial, this definition car-
ries a range of assumptions about the set of real numbers.
One of the crucial assumptions is that the supremum of an
interval is also its maximum. This is not trivial and is
certainly not true in the set of rational numbers, for
example.

Similarly, we would like to define a measure of volume
for a poset interval

½a; b� ¼ f8 c 2 Pjc � a andb � cg:
Let us, however, consider the measure of linear distance
first. One possible way of assigning a measure of distance
in a poset is to consider its linear subposets, chains, and
come up with a mapping from the set of all linear chains to
the set of real numbers. This is straightforward in the case
of finite chains. The measure of a distance between the end
points of a chain can be defined as the total number of
points in it. The definition of measure, in that case, is given
by simple counting.

The definition of a distance between the end points of an
infinite chain, however, is not a simple task. Let us, for
example, observe an infinite linear chain L, with a and b
being its end points. Let us assume that we have assigned a
measure of distance �ðLÞ to the chain. Now let us try to
construct a chain between a (its minimal point) and a point
c at half the length,�ðLÞ=2, of the chain L. In other words,
we will try to cut the chain L in half and take the half that
contains a. In the case of a chain (interval) of real numbers
this procedure is trivial. The result is the interval
½a; aþ�ðLÞ=2�. In our case, however, we do not have a
well defined procedure for finding the midpoint between a
and b. One would be tempted to establish a 1-to-1 relation
among the points in the chain starting with the point a and
going upwards, and the chain ending with b and going
downwards. The midpoint would be the last of the chosen
points. In the case of an infinite chain, however, one would
never be able to find the last point. In fact one can establish

a 1-to-1 correspondence between the chain ½a; c� and a
proper subchain of the chain ½c; b�, by taking, for example,
every other point in it. Clearly, this obtained measure of
the two resulting chains would be ill defined, and we would
not be able to compare the lengths of the chains ½a; c�
and ½c; b�. Similarly, we could put in 1-to-1 correspon-
dence the entire chain L and any of its infinite proper
subchains. The possibility of putting in 1-to-1 correspon-
dence a set with its proper subset, in fact, can be taken as a
definition of infinity.
One possible way out of this situation is to postulate the

existence of a midpoint between a and b. After all, the
interval ½a; c�, where c is a point between a and b, is clearly
bound from above, and it is natural to assume that a lowest
upper bound exists in a linear chain. The existence of a
supremum and its inclusion in the real numbers interval
½a; c� as its maximal is in fact postulated; otherwise it
would be impossible to define the above measure � on
the set of reals. In our model, we have already postulated
the existence of a supremum; therefore the set of upper
bounds in a linear chain ½a; c� must have a least element,
the supremum. This however does not guarantee the ex-
istence of c, i.e., the maximum element in the interval.
One way to solve the above problems is to postulate the

existence of a maximal element in all bound intervals. This
would be equivalent to postulating the existence of a well
ordering in the poset. This means that we can postulate the
existence of a partial order, one in which the element c is
the maximum. The well ordering principle states that every
set can be well ordered. This statement is not intuitively
trivial, certainly not for the set of real numbers, and it is
taken as an axiom. We have mentioned already that the
well ordering principle, in turn, is equivalent to the axiom
of choice. We have therefore assumed the existence of
maximal elements in bound posets, indirectly, by assuming
the validity of the axiom of choice. Our problems with
defining a measure on the interval, however, do not stop
here. Although postulating the axiom of choice guarantees
the existence of midpoints in any interval in the poset P, it
does not say anything about the possibility of defining a
measure given the points a, b and a point between them.
Quite to the contrary, given the axiom of choice, in certain
circumstances, one can create nonmeasurable sets as sub-
sets of the interval ½a; b�. Namely, it has been shown that in
the continuum, in the set of real numbers, one can formu-
late a noncountable family of subsets of a continuous
interval, choose an element from each, and put them to-
gether in a set. The newly formed set sometimes is iden-
tical (more precisely, it is congruent) to the original set.
This is certainly not consistent with our intuition about sets
and measures and it is often considered a paradox emerg-
ing from the axiom of choice.
The most striking of these paradoxes is the Banach-

Tarski paradox [17]. Banach and Tarski have shown that
one can take a solid three-dimensional ball, cut it into
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congruent pieces, then put the pieces together and form
two separate balls, each congruent to the original ball. This
striking paradox is sometimes illustrated as taking an
orange, slicing it into pieces, and putting the pieces to-
gether into two new oranges, each identical to the original
orange. It is important to emphasize here that the slices
never resemble solid orange pieces. The process of slicing
and reconstructing the ball resembles a play with needles
rather than slicing.

The typical, and strongly nonmathematical, answer to
the objection that real-life oranges cannot be multiplied, is
the fact that they are not continuous or infinite objects. An
orange is namely made of a discrete, and more importantly,
finite set of atoms. The axiom of choice is never the cause
of a paradox in finite sets. This explanation certainly has
little value when considering the spacetime of general
relativity. We will however use a similar way to escape
from the problems related to the measure of spacetime.

The problems we are facing here regarding the definition
of a measure in our model are related, although not di-
rectly, to similar problems that have led the proponents of
the causal sets theory to assume that the physical spacetime
is discrete. The starting point of the causal sets theory is the
fact that the topology, geometry and even the differential
structure of spacetime can be derived from its causal
structure. The metric however is given only up to a con-
formal factor, which is a reflection of some of the problems
we are facing here. The causal structure determines the
angles, but not the measure of distance and volume in
spacetime. Causal sets theory concludes that spacetime
must be discrete [10], since in a discrete set the problem
of measure can be solved trivially by reducing it to count-
ing the elements of subsets. This however does not solve
the problem in the case of a discrete but infinite bound
chain, as we argued above.

We will avoid the above problems related to the defini-
tion of a measure in our model by postulating the finiteness
of intervals in P:

P4: Every interval ½a; b� in P is finite.
This postulate defines the model as locally finite [15].

We do not, however, assume that the total number of events
in the model is finite too. In fact, our model could be
understood as one extending to infinity in both the space-
like and timelike directions. Only local intervals, between
two concrete events a and b, consist of a finite number of
events. Also, postulate P4 implies that our model is dis-
crete. We do not, however, postulate the discreteness of the
physical spacetime. The model can equally well be under-
stood as an approximation of a continuous spacetime.

E. Postulate of semidistributivity

One consequence of postulate P4 is the existence of a
covering relation b � a among the events. Intuitively, the
covers of an element are its ‘‘closest’’ neighbors from
above. Covers can be present only in discrete posets and

they have no analogs in the continuum with the standard
partial order of greater or equal � .
The existence of covers in a discrete poset has profound

consequence for the questions related to the definition of a
measure, questions that we addressed in the previous sec-
tion. The covering relation provides a minimal and univer-
sal (constant) unit of causal distance. The length of a linear
chain can be defined as the number of events in the chain.
Similarly, two- and three-dimensional intervals can be
assigned surface and volume, respectively, as the total
number of events in them. The intuitive picture here is
that spacetime is divided into elementary ‘‘chunks,’’ with
each event being in the center of such a chunk. One can
easily think of an analogy to a crystalline lattice of atoms.
This picture however is somewhat misleading from the
constructive approach we have adopted here. At this point,
our model of spacetime is simply a collection of abstract
elements with a relation of partial order in it, and several
constraints imposed on the partial order by postulates P2
through P4. On the other hand, the possibility of defining
volume as the number of atoms in the lattice has at its core
the assumption that the model has a topology analogous to
that of a crystalline lattice.
Figures 4 and 5 illustrate this point. Only a small portion

of the lattices is shown in the figures, and they are assumed
to spread to infinity in a uniform way. By uniformity here
we mean that each interval of 25 elements in the lattice is
identical to the one shown in Figs. 4 and 5 respectively.
Both lattices are two dimensional. The difference between
the two however is that the two-dimensional interval in
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FIG. 4. Uniformly two-dimensional lattice.
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Fig. 4 has uniform dimensionality, meaning that all inter-
vals, other than the covering pairs, are two dimensional
too. It is intuitively clear that this interval can be under-
stood as a discrete approximation of a continuous plane
polyhedron. The area of the polyhedron can be naturally
expressed as a multiple of an elementary building block
with a given unit of area.

That is not the case with the lattice in Fig. 5. Here the
interval [7,9] is not two dimensional. Also, although
we can assign a measure of area to the interval [13,18],
that cannot be done consistently for the interval [7,18],
for example. Furthermore, assigning area to the two-
dimensional interval [1,13], for example, is meaningless.

If understood as discrete approximations of continuous
geometric figures in the plane, the lattices in Figs. 4 and 5
have very different topologies. The one in Fig. 4 can be
understood as a discrete approximation of a manifold, i.e.,
a well defined surface, while the one in Fig. 5 cannot.

The question that arises from the above considerations is
whether the manifold topology is essential for the possi-
bility of consistent definition of a measure on a discrete set
of events. Does one need a background surface, on which
the events are presumed to lie, when constructing a poset as
a model of spacetime? This would be a procedure similar
to the one adopted by the causal sets methodology of
‘‘sprinkling’’ [10]. There, one assumes the existence of a
constraint, a background surface, upon which one sprinkles
the discrete set of events. Then a network of causal rela-
tions is formed according to the ordering among the coor-
dinates of the events on the original surface. We will show

in the next section that the answer to the above question is
negative. We do not need to assume the existence of a
background that is topologically and geometrically as
complex as a manifold. Instead we will attempt in the
next section to derive these properties from the set of
postulates of order.
With the above considerations in mind, it follows that we

need to have two additional postulates that will rule out the
existence of the lattices of the type shown in Fig. 5. First,
we will forbid the existence of intervals with events that are
covered by a single event and cover a single event, i.e., the
interval [7,9] in Fig. 5. Another way of saying this is that
the fifth postulate forbids creating an intermediate event
between two covering ones:

a � b � c and 96 d � a; c d � b or b � d:

We will postulate the absence of such cases:
P5: A linearly ordered subset of P, in which only the

meet and the join cover, or are covered by, events in the rest
of P, is equivalent to (can be reduced to) a covering pair.
Postulate P5 imposes a very strict constraint on the

poset, by forbidding, among others, the Hasse diagrams:
M3, shown in Fig. 6, L3 in Fig. 7 and the diagrams L4 and
L@
4 in Fig. 8. These lattices play an important role in lattice

theory, since their absence as sublattices indicates that the
lattice has the special property of being semidistributive.
Namely, it has been shown that it is sufficient and neces-
sary for a lattice not to contain the lattice S@7 , shown in
Fig. 9, or any of the lattices M3, L3, L4 and L@

4 , to satisfy
the condition [19]

M3 N5

FIG. 6. Lattices M3 and N5.

L3

FIG. 7. The nonsemidistributive lattice L3.
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FIG. 5. Two-dimensional lattice with one-dimensional intervals.
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a ^ b ¼ a ^ c ) a ^ b ¼ a ^ ðb _ cÞ:

A lattice that satisfies the above condition is called
‘‘meet-semidistributive’’ [20]. On the other hand, if it
does not contain as a sublattice S7, also shown in Fig. 9,
or any of the latticesM3, L3, L4 and L

@
4 , the lattice satisfies

the condition

a _ b ¼ a _ c ) a _ b ¼ a _ ðb ^ cÞ;

and is called ‘‘join-semidistributive.’’
It is important to note that postulate 5 forbids the

existence of the Hasse diagrams M3, L3, L4 and L@
4

only locally. This means the diagrams made only of
covering relations are forbidden. The postulate does
not restrict the existence of a sublattice of one of
the above types. In that sense the postulate P5 is less
restrictive than a requirement of (global) semidistribu-
tivity. Postulate P5 provides the model with the neces-
sary condition towards local semidistributivity—hence
our choice for the name of this postulate. We will
show further in the text that local semidistributivity is
one of the key ingredients for the introduction of topol-
ogy in our model.

F. Postulate of uniform dimensionality

The last postulate addresses the impossibility of assign-
ing measure to intervals of the type [1,12] shown in Fig. 5.
The problem here is that although the interval is two
dimensional, it is a concatenation of the one-dimensional
interval [1,6] and the two-dimensional interval [6,12].
The interval [1,12] therefore is neither uniformly one
dimensional nor uniformly two dimensional, and it is not

clear how we could assign a measure of either length or
area to it.
The notion of uniform dimensionality that we introduce

here is illustrated in Fig. 4. The only intervals that are not
two dimensional are either covering pairs, or they are on
the lattice ‘‘boundary.’’ Here we have, however, assumed
that the lattice does not have a boundary and it continues to
infinity, i.e., none of its elements has a single cover or is
covered by a single element. The lattice shown in Fig. 5,
although two dimensional, does not have uniform dimen-
sionality, which makes it impossible to assign a measure to
some of its intervals. In order to be able to assign measure
to each and every interval in the lattice in a consistent way,
we will restrict our model to a lattice with uniform
dimensionality.
P6: Every interval in the lattice model, with maximal

chain length dþ 1, has the dimensionality d of the model
itself.
Here by maximal chain of an interval ½a; b� we mean the

largest linearly ordered subset of the interval that contains
a and b.

III. DUALITYAND CAUSAL DISTANCE

Postulate P6 completes the set of postulates of our lattice
model of spacetime. Next, we will attempt to find an
explicit form for the causal distance, whose existence is
postulated by P2. Also, in conjunction with defining the
causal distance, we will construct the topology and geome-
try of spacetime from the set of constraints imposed on our
model by its postulates.
The function of causal distance will serve a dual role.

First, in the same way as in the case of the standard metric
in general relativity, it will provide a quantification of the
distance between two events. The causal distance will
provide the information if two events are closer or further
apart in the way analogous to the standard Euclidean
distance. The (pseudo)metric in general relativity is not
positive definite and carries the information about the
timelike or spacelike nature of the distance between two
events. We will require the same from the causal distance.
Second, an aspect of the causal distance, that will not have
an analog in the metric of general relativity, is that we will
require it to carry the information about the order. We will
require that the causal distance is an order preserving
function, in the way we specified it when we postulated
its existence.

A. Duality

One of the most important consequences of the require-
ment for causal distance to be order preserving is that it
must make the distinction between the interval ½a; b� and
its reversal ½b; a�. This is certainly not the case with the
metric in general relativity. There, the metric being a
quadratic form, the information about the causal order of
the event is lost and one needs to specify a global time

S7 S7

FIG. 9. Locally distributive lattice S7 and its dual.

L4L4

FIG. 8. The nonsemidistributive lattice L4 and its dual.
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coordinate in order to keep track of the ordering between
them. One of the main consequences of this requirement is

that the causal distance cannot be the same for d̂ða; bÞ and
d̂ðb; aÞ. This brings us to the concept of duality.

The duality in a partial order is defined as reversal of the
order. Given a pair of events ða; bÞ, defined as b � a, its
dual is denoted as ða; bÞ@, and defined as a � b. Clearly
ða; bÞ@ ¼ ðb; aÞ. The principle of duality for posets states
that if a statement is true for a class of posets, then its dual,
i.e., the statement with the order relation reversed, is true in
the class of duals of the original posets. In the special case
when a statement is true for all posets, then its dual is true
for all posets too. It is important to note that the principle of
duality is valid for a global reversal of the order. That
means if a statement is globally true, i.e., true for a
Hasse diagram, by the principle of duality its dual will be
true if we turn the Hasse diagram upside down. A state-
ment about the uniqueness of the supremum, for example,
by duality is valid if and only if its dual statement about the
uniqueness of the infimum is valid too.

The mathematical principle of duality clearly mirrors
the time reversal symmetry in general relativity. This is
another property of spacetime emerging naturally from
its causal structure. We will make use of it in our defini-
tion of causal distance, keeping in mind the global nature
of the principle of duality. The principle applies only to
the general properties of the spacetime model, ones that
do not depend on the specifics of a given realization
(configuration) of the model.

B. Causal distance and Clifford algebras

The existence of a covering relation and the principle of
duality will be the two key ingredients in the construction
of the causal distance. The causal distance is a mapping
from the set of ordered pairs of events to pairs of real
numbers. The order in the pair of events and in the pair
of real numbers must be preserved by the mapping. This is
the key difference between our causal distance and the
standard metric of general relativity. We will attempt to
define the causal distance in a way that the function will
carry the information of order in a pair of events. In general
relativity it is the sign of the time coordinate, in addition to
the metric, that carries the information of causal order. The
metric itself is a quadratic function of the coordinates and it
does not carry the information about their sign. This is why
we will construct the causal distance as a linear form. Our
procedure of defining the causal metric is somewhat analo-
gous to taking a square root of the metric. This procedure
of taking the ‘‘square root’’ is such that a new algebra, the
Clifford spacetime algebra, will emerge from it. It is simi-
lar to the procedure of going from a Laplacian to the
Dirac’s operator, in which case a specific Clifford algebra,
the Dirac’s algebra, emerges.

Let us start by considering the covering pairs. These
are the minimal sets with defined partial order on them.

In other words, they are the elementary units of partial
order consisting of a single ordered pair. The only distinc-
tion between two such pairs is the partial order; ða; bÞ is not
the same covering pair as ðb; aÞ. Given the fact that the fifth
postulate specifies there are no other points, or events,
between a and b, all covering pairs are equivalent in the
sense that taken alone they carry the same amount of
information about the partial order.
This fact must be reflected by the ‘‘amount’’ of causal

distance to be assigned to each and every covering pair.
The causal distance between each and every covering pair
must be the same tuple of real numbers. The only distinc-
tion must be made when taking the dual of a covering pair.
The reversal of the causal order must be reflected in the
function of causal distance.
Let us assign a unit of causal distance to a covering pair

and its dual. For all covering pairs in P, we have

b � a ) d̂ða; bÞ ¼ D̂

and

a � b ) d̂ða; bÞ ¼ D̂@:

At this point we do not know anything about the mathe-

matical structure of D̂ and its dual D̂@. They are tuples of
real numbers, assigned as constants to each and every
covering pair. In order to expand the assignment of causal
distance to pairs that are not covers, we will have to define

addition and multiplication for the tuples D̂ and D̂@. At this
point, however, we only require that the constant tuples

D̂ and D̂@ are not necessarily identical. Furthermore, by
duality we have

ðD̂@Þ@ ¼ D̂

or more generally

d̂ða; bÞ ¼ d̂@ðb; aÞ:
In order to find the explicit form of d̂ða; bÞ and its dual,

let us observe their symmetric and antisymmetric linear
combinations

r̂ ¼ d̂þ d̂@

and

t̂ ¼ d̂� d̂@:

The reason for using the letters r and t for the symmetric

and antisymmetric parts of d̂ is that they behave in a way
analogous to the space and time coordinates upon reversal
of causality. The reversal of causality in general relativity
is given by the change of sign of the time coordinate. In the
case of our lattice model it is given by the duality opera-
tion. The function r̂ does not change upon reversal of
causality:

r̂@ ¼ ðd̂þ d̂@Þ@ ¼ d̂@ þ ðd̂@Þ@ ¼ d̂@ þ d̂ ¼ r̂:
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Here we used the fact that reversal of causality, i.e., taking
the dual, is an involution. The function t̂ is antisymmetric
upon duality:

t̂@ ¼ ðd̂� d̂@Þ@ ¼ d̂@ � ðd̂@Þ@ ¼ �ðd̂� d̂@Þ ¼ �t̂:

These are the key properties of the functions r̂ and t̂ that
relate them to the standard relativistic space and time
coordinates. We will take this analogy further by requiring
that the square of the causal distance corresponds to the
standard relativistic metric

s2 ¼ r2 � t2:

It is important to notice the absence of ‘‘hats’’ in
the standard metric. Here r and t are single-valued real
coordinates. The reversal of causality does not affect the
standard relativistic metric. We will require the same from
the square of the causal distance

d̂2 ¼ ðd̂@Þ2 ¼ s2:

Taking the squares of d̂ and d̂@ we get

d̂2 ¼ ðr̂þ t̂Þ2 ¼ r̂2 þ r̂ t̂þt̂ r̂þt̂2:

The same procedure for d̂@ gives

ðd̂@Þ2 ¼ ðr̂@ þ t̂@Þ2 ¼ ðr̂� t̂Þ2 ¼ r̂2 � r̂ t̂�t̂ r̂þt̂2:

The requirement d̂2 ¼ ðd̂@Þ2 ¼ s2 can be fulfilled if

r̂ t̂þt̂ r̂ ¼ 0; r̂2 ¼ r2

and

t̂2 ¼ �t2:

These are the defining relations of the Clifford algebra
Cl1;1ðRÞ [21]. The Clifford algebras are typically defined as
geometric algebras. This means they ‘‘live’’ in a vector
space with a defined scalar and a defined antisymmetric
product. Typically the Clifford product is defined as the
sum of the scalar and the antisymmetric product. Here we
obtained the Clifford algebra by identifying the symmetric
part of the causal distance as a measure of space and the
antisymmetric as a measure of time.

Next, we will define the causal distance beyond a single
covering pair. Let us start with the antisymmetric time
coordinate. Let us impose

d̂ða; aÞ ¼ d̂@ða; aÞ ¼ 0:

This allows us to define

t̂ða; aÞ ¼ 0:

Let us assign a unit time distance from a to a covering b:

t̂ðb; aÞ ¼ D̂t:

By duality, from t̂@ ¼ �t̂, we also have

t̂ða; bÞ ¼ �D̂t:

On the other hand, from

t̂2 ¼ �t2;

by convention, we can set

D̂2
t ¼ �1:

This means t̂ can be expressed as

t̂ ¼ têt;

where êt is the basis vector of the Clifford algebra,

ê2t ¼ �1;

and t is a single-valued real function tða; bÞ. From
t̂ða; aÞ ¼ 0 it follows that

tða; aÞ ¼ 0:

By imposing D̂2
t ¼ �1 we made a choice for the unit of t

for a covering pair b � a:

tða; bÞ ¼ 1:

The assignment of a unit distance is universal among
all covering pairs; it is the same for all covering pairs in
P. The function tða; bÞ can be expressed as a difference of
an order preserving (isotone) single-valued function. By
‘‘order preserving or isotone function’’ we mean a map-
ping �: P ! R such that

if b � a then �ðbÞ � �ðaÞ:
We have

tða; bÞ ¼ �ðbÞ � �ðaÞ:
In the case of a covering pair, we have

�ðbÞ ¼ �ðaÞ þ 1:

The existence of an isotone function in P, one that
satisfies the above expression, defines P as a graded poset
[22]. The intuitive picture of a graded poset is one made by
piling layers of antichains. By ‘‘antichain’’ here we mean a
subset of P in which no two events are causally related. In
Fig. 4, for example, the subset A ¼ 4, 8, 12, 16 is an
antichain, while the subset C ¼ 1, 2, 3, 8 is a chain.
The property of a lattice being graded can be equiva-

lently expressed by the Jordan-Dedekind chain condition
[20], which states that all maximal chains in an interval
have the same length. Here we need to point out that we
could have, in principle, adopted the Jordan-Dedekind
condition as a postulate of the model and then derived
the existence of a causal distance from it. The choice of
postulating the causal distance as a fundamental property is
due to the fact that it is more physical rather than the purely
mathematical statement of the Jordan-Dedekind condition.
By being graded, our lattice model is a discrete approxi-

mation of a globally hyperbolic spacetime. Globally hyper-
bolic spacetime consists of layers of spacelike sets, ordered
along a family of timelike curves. The difference between
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our graded poset and a continuous globally hyperbolic
spacetime is that the distance between two spacelike layers
in general relativity is infinitesimally small. A single
spacelike layer in general relativity does not have a pred-
ecessor in the sense of causality. Here, we imposed the
discreteness of the model by postulating its finiteness and
therefore assured the existence of a predecessor in the
structure of antichains layered along chains of events.

Another consequence of P being graded is that the Hasse
diagram N5, shown in Fig. 6, is forbidden in P. In order to
ensure that our model is a graded lattice and that the Hasse
diagramN5 does not exist in it, it is sufficient to assume the
validity of the condition

a � a ^ b ) a _ b � b;

or its dual, which defines the lattice as upper or lower
semimodular, respectively [20]. This is one of the key
properties that will lead us to the topology and geometry
of our model.

Figure 9 illustrates the two smallest lattices that satisfy
the condition for either upper or lower semimodularity, but
not both. An important property of the lattices S7 and S

@
7 is

that they can intuitively be understood as ‘‘built’’ from
‘‘squares,’’ i.e., lattices 22 shown in Fig. 10. We can formal-
ize the notion of a square order lattice by defining it as
Boolean. The two lattices in Fig. 10 are Boolean, meaning
that each element a, except the bottom 0 and the top 1, has
a complement a0, such that

a _ a0 ¼ 1

and

a ^ a0 ¼ 0:

The intuitive notion of built from squares can be
further formalized by the definition of local distributiv-
ity. A lattice is locally upper (lower) distributive [20]
if every interval ½x; xþ� (½x�; x�) is a Boolean lattice,
where xþ (x�) is the join (meet) of all covers of (covered
by) x. Upper local distributivity is a conjunction of
meet semidistributivity and upper semimodularity [23].
Lower local distributivity is a conjunction of join semi-
distributivity and lower semimodularity. These two prop-
erties, semidistributivity and semimodularity, on the
other hand, are properties of our model, but only locally.
This is reflected in the fact that the Hasse diagrams M3

and N5 are excluded from our model. Semidistributivity
excludes the lattice M3 and semimodularity excludes
the lattice N5. We should note that the sublattices M3

and N5 are excluded only locally, with their order rela-
tion restricted to covers only. Global exclusion of M3

and N5 as sublattices would define the model as a dis-
tributive lattice, equivalent to the conjunction of upper
and lower local distributivity. In our model, instead,
local intervals satisfy upper and/or lower local distrib-
utivity, but not necessarily both at the same time. We
will define it as locally Boolean; a lattice with the
property that each interval with a maximal chain length
of dþ 1, where d is the lattice dimension, is a Boolean
lattice. Thus, our model of spacetime locally resembles a
Boolean lattice.
This is one of the key results in this work. We managed

to construct a poset model (postulate P1), intuitively
resembling a crystalline lattice structure built from
squares. In order to do that, however, we did not have to
assume any geometry, or even topology, for our model.
Instead, the structure emerges from the property of local
distributivity, or equivalently, the conjunction of the two
constraints: semidistributivity and semimodularity. The
‘‘crystallinelike’’ structure, therefore, was obtained by im-
posing these two rules, or constraints, on the causal (partial
order) structure in the model. These rules, on the other
hand, were consequence of the postulates of the model.
First, from the requirement of the existence of a causal
measure (postulate P2) and the discreteness of the model
(postulate P4), our poset model emerged as a graded one.
We expanded this property by defining our model as semi-
modular. Second, we imposed the absence of trivial covers
in postulate P5. From this, the property of semidistributiv-
ity followed. Now our insistence on postulate P3 and the
model as an ordered lattice becomes more clear. Namely,
wewould not be able to come up with any of these results if
we did not have at hand the powerful tools of the formalism
of (order) lattice theory. Hence the need for postulate P3.
Finally, postulate P6 ensures that the model is built from
squares in a uniform way. It is important to emphasize here
that the postulates were expressed in purely lattice theo-
retic terminology, without having defined any topology or
geometry in the model. In that sense the topology and
geometry emerge from the order structure of the model.
Having established the local structure of the spacetime

poset, we can now go back to the causal distance and finish
the definition of its (by duality) symmetric part, the
spatial distance r̂. We can define r̂ða; bÞ locally in each
n-dimensional Boolean interval:

rð0; xÞ ¼ tð0; xÞ () tð0; xÞ � n=2

rðx; 1Þ ¼ tðx; 1Þ () tðx; 1Þ � n=2

rð0; 1Þ ¼ 0;

rðx; x0Þ ¼ 2rð0; xÞ ¼ 2rð0; x0Þ:

22 23

FIG. 10. Two- and three-dimensional Boolean lattice.
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Defined this way, the time coordinate plays a crucial
role, while the space coordinate is expressed through time.
This is, however, only possible within a building block, an
elementary ‘‘hypercube,’’ formed by the local Boolean
interval sublattice. In the following sections we will gen-
eralize the causal distance to non-Boolean intervals, and
we will see that each Boolean interval can be understood as
a locally flat spacetime.

C. Matrix representation

The Clifford algebra Cl1;1ðRÞ can be defined as a vector

space VðRÞ with a defined symmetric scalar product

x̂ � ŷ ¼ ŷ � x̂;
and an antisymmetric ‘‘wedge’’ product

x̂
^

ŷ ¼ �ŷ
^

x̂ :

The Clifford product is defined as

x̂ ŷ ¼ x̂ � ŷþ x̂
^

ŷ :

Here we used the
V

symbol for the antisymmetric product
to distinguish it from the ^ symbol for join, typically used
in lattice theory.

Given an orthonormal (in the sense of the scalar product)
basis êt and êr in VðRÞ, we have

êtêr ¼ �êrêt:

Given the Clifford product in VðRÞ, the Clifford algebra
Cl1;1ðRÞ is defined by

ê2t ¼ �1

and

ê2r ¼ 1:

The standard matrix representation of Cl1;1ðRÞ is

êr ¼ 0 1
1 0

� �
; êt ¼ 0 �1

1 0

� �
:

The role of the Clifford product is taken by the standard
matrix product.

With the above definitions we can represent the causal
distance by matrices and their product. The causal distance
of a local pair of events is given by

d̂ða; bÞ ¼ r̂ða; bÞ þ t̂ða; bÞ ¼ rða; bÞêr þ tða; bÞêt:
The matrix representation of d̂ is

d̂ða; bÞ ¼ 0 r� t
rþ t 0

� �
:

It is important to note that the scalar product in VðRÞ is
related to the Clifford product by

2x̂ � ŷ ¼ x̂ ŷþŷ x̂ :

For a couple of vectors in VðRÞ of Cl1;1ðRÞ
x̂ ¼ xrêr þ xtêt

and

ŷ ¼ yrêr þ ytêt;

the scalar product is

x̂ ŷ ¼ xryr � xtyt;

where the product on the right-hand side is the standard
commutative product of real numbers. We see that VðRÞ of
Cl1;1ðRÞ is the hyperbolic plane or the two-dimensional

Minkowski space, R1;1.
The standard four-dimensional Minkowski space, R3;1,

can be obtained by adding two extra spacelike dimensions.
The addition of an extra dimension to a vector space
certainly has consequences on its Clifford algebra. The
Clifford algebra of R1;1 is Cl1;1ðRÞ, while the Clifford

algebra of R3;1 is Cl3;1ðRÞ, given by the basis

ê2i ¼ 1; i ¼ 1; 2; 3;

and

ê24 ¼ �1:

Finally, we should note the following important expres-
sion for the direct product of Clifford algebras:

Clpþ1;qþ1ðRÞ ’ Clp;qðRÞ � Cl1;1ðRÞ:
The matrix representation of the pseudoscalar (bivector) of
the Cl1;1ðRÞ algebra is

êrt ¼ êrêt ¼ 1 0
0 �1

� �
;

and plays a crucial role in the construction of the
matrix representation of Clpþ1;qþ1ðRÞ. Given a basis êi,

i ¼ 1; . . . ; pþ q of Clp;qðRÞ, we can construct the matrix

representation of Clpþ1;qþ1ðRÞ by directly multiplying it

with the bivector of Cl1;1ðRÞ and including the basis of

Cl1;1ðRÞ. The basis of Clpþ1;qþ1ðRÞ is therefore given by

êi ¼
êi 0

0 �êi

 !
; i ¼ 1; . . . ; pþ q;

êþ ¼ 0 1

1 0

 !

and

ê� ¼ 0 �1
1 0

� �
:

The representation of the direct product of the type
Clp;qðRÞ � Cl1;1ðRÞ will play an important role later on,
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when we will include a physical field, other than the
gravitational, in our model.

IV. MANIFOLD TOPOLOGYAND SPACETIME
GEOMETRY FROM LOCALLY

BOOLEAN LATTICE

The definition of the causal distance can be generalized
globally only in the special case of a distributive, locally
Boolean lattice of uniform dimensionality. By distributive
lattice we mean an order lattice L such that

ð8 a; b; c 2 LÞða ^ ðb _ cÞ ¼ ða ^ bÞ _ ða ^ cÞÞ:
The lattices in Figs. 4 and 10, for example, are distributive,
while the lattices in Figs. 6 and 9 are not.

In the case when our model, in addition to the structure
imposed by the postulates, is also a distributive lattice, it is
a model of a flat Minkowski spacetime. Then t and r take

the role of time and space coordinates and d̂ is related to

the Minkowski metric � as Trðd̂2Þ=2 ¼ ���dx
�dx�. In

order to generalize the definition of the causal distance to
a model of curved spacetime, we will have to introduce
topology and geometry, with a corresponding metric, in the
lattice model.

To illustrate the difference between a distributive and a
nondistributive locally Boolean lattice, let us consider
Figs. 4, 11, and 12. The two-dimensional locally Boolean
lattice in Fig. 4 is distributive and it is intuitively clear how
it relates to the geometry of a flat spacetime. The way the
Hasse diagram of the lattice was drawn suggests that it
suffices to identify each of the square Boolean sublattices
with a geometric square of a flat space.

The lattice layout in a Hasse diagram is certainly not
unique; we can easily come up with a different image of the
same order lattice. This is illustrated in Figs. 11 and 12.
The two lattices are identical. They are locally Boolean and
two dimensional too, but they are not distributive. The only
difference between Fig. 11 and 12 is the way we drew the
two, equally valid, Hasse diagrams. Intuitively, however, it
is clear from the diagram in Fig. 12 that if we identify each
of the Boolean sublattices with a geometric square, the
nondistributivity of this lattice translates as curvature in the
geometric space.
The lattice structures in Figs. 11 and 12 are analogous

to the discrete spacetime structures in the dynamically
triangulated models. In the dynamically triangulated mod-
els, the building blocks, or elementary volume units, are
generalized n-dimensional tetrahedrons. In the case of a
two-dimensional spacetime, the dynamically triangulated
models are collections of triangles. In the language of
algebraic topology, a unit of volume (a triangle in 2D and
a tetrahedron in a general case) is called a ‘‘simplex’’ and the
collection of simplexes is called a ‘‘simplicial complex.’’
The lattice in Fig. 11 is practically identical to a 2D CDT
model, except for the missing horizontal spacelike connec-
tions between two neighboring, but causally unrelated
events. Adding such connections would produce a triangu-
lated simplicial complex, identical to a 2D CDT model.
In our model, in the case of a two-dimensional lattice,

the unit ‘‘building block’’ is the square lattice in Fig. 10.
The three-dimensional unit is the cube in Fig. 10. In
general, the building block of an n-dimensional spacetime
lattice model is an n-dimensional hypercube Boolean

FIG. 12. Alternative Hasse diagram of the lattice in Fig. 11.

FIG. 11. Hasse diagram of a nondistributive lattice.
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lattice. We will use these building blocks to construct the
topology of our model in a way similar to the one used for
the dynamical triangulations. One way of doing this is to
triangulate the Boolean sublattices, in analogy to a trian-
gulation of a cube. This, however, would introduce con-
nections between events that are not causal in nature. In
other words, we would have two types of connected pairs
of events, timelike and spacelike. This is true for the
dynamically triangulated models, but it is not in the spirit
of our model, where we included only causal relations
between events, and we will avoid it.

The question that we must ask here is whether we
can define the topology of our model without the usage
of a simplicial complex. The answer is confirmative, and a
powerful mathematical theory of algebraic topology based
on a generalization of the notion of a simplicial complex
has been developed. The generalized simplex structure is
called a ‘‘cell’’ in algebraic topology, and the correspond-
ing complex is called a ‘‘cell complex.’’ A cell complex is
defined inductively by defining points as 0-cells, pairs of
connected points as 1-cells, and inductively, n-cells are
constructed by ‘‘gluing’’ n-1-cells along their borders,
where the notion of border has a specific topological
meaning.

Given the notion of a cell complex, it is fairly straight-
forward to define the topology of our model by defining
events as 0-cells, covering pairs as 1-cells and, inductively,
n-dimensional Boolean intervals as n-cells forming a cell
complex [24]. Having defined it as a cell complex, we can
now investigate the topological properties of our model
that follow from the causal (order) structure imposed by
the postulates.

The most important property of the cell complex
structure of our model is that it is a topological manifold.
This result is illustrated in Figs. 11 and 12, where it is
intuitively clear that a two-dimensional locally Boolean
lattice can be understood as a discrete approximation of a
continuous two-dimensional surface.

Here we need to mention that we could have obtained
our model with a reverse procedure of embedding our
lattice in an existing continuous surface (with defined
causality flow, i.e., a time coordinate, on it), rather than
construct it as an order poset and imposing the constraints
on its order structure. Regardless of the curvature of the
surface (except in the presence of singularities), we could
have found a discretization fine enough to build the surface
out of forward oriented squares. This in fact is the proce-
dure used in the causal dynamical triangulations, except
that in those cases one uses triangles, not squares, to form
the discrete mesh. A similar mesh is used in the Regge
calculus [25]. Our model is similar to that of the Regge
calculus, except that the only connections in our model are
causal, without any spacelike relations explicitly defined.

Another procedure, as mentioned above, of defining a
discrete approximation of spacetime is the sprinkling used

in the causal sets theory. There, one starts with the con-
tinuous manifold of spacetime and sprinkles points at
random on it. Then, neighboring points, in the sense of
causality inherited from the spacetime manifold, are con-
nected, thus forming a random mesh with well defined
causal order, a causet. The causet of causal sets theory in
many ways is analogous to our model. The difference is
that causal sets theory postulates the discreteness of space-
time. The procedure of sprinkling is necessary in causal
sets theory, since there is no constructive procedure to
create a causet that would be a discrete approximation of
a continuous manifold. Furthermore, the causal sets theory
considers the continuous manifold an approximation of the
actual physical discrete spacetime, since the assumed dis-
creteness is essential for obtaining some of the theory’s key
results. In our theory we do not assume the discreteness of
spacetime. Our model may be understood as a discrete
approximation of a continuum.

A. Discrete manifold topology

Let us go back to the topological properties of
our model, specifically its manifold structure [18]. The
manifold structure of a simplicial complex, and more gen-
erally a cell complex, is a discrete analog of the manifold
topology in the continuous case. A discrete manifold, in
fact, can be understood, and constructed, as a discrete
approximation of a continuous manifold. Such discrete
cell structures are extensively used in computer aided
engineering designs, where a smooth surface, for example,
is represented by finite elements, typically triangles, but
sometimes also by a more general collection of connected
polygons. What they have in common is that they are
connected in a way that allows the approximation to be
embedded in a continuous surface.
The intuitive notion of a discrete manifold above has a

precise meaning, independent of any continuous approxi-
mation, in the theory of discrete cell complexes. In order to
define a discrete manifold, we will need to define some of
the essential concepts in algebraic (discrete) topology.
Having defined inductively a cell complex above, we will
now define its boundary. The precise algebraic topological
definition of a boundary of an n-cell complex is the
collection of n-1-cells not shared by any pair of n-cells
in the complex. An n-cell element (n-ball) is a cell com-
plex topologically equivalent to an n-simplex. A cell
sphere is a cell complex whose boundary vanishes, i.e.,
the sphere is its own boundary. In other words, an n-sphere
is an n-complex equivalent to the boundary of an nþ
1-simplex. Clearly, a ball and a sphere are homeomorphic
to (can be continuously deformed into) a two-dimensional
ball and sphere, respectively. Finally, we will define the
neighborhood of a point (0-cell) as the cell complex con-
structed from all n-cells to which the point belongs.
With the definitions above we are ready to give a precise

meaning to the notion of a discrete manifold. In our model
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of spacetime, the cells are identified with the Boolean
sublattices, so a neighborhood of an event (0-cell) is
formed by all the Boolean lattices to which the event
belongs. A cell manifold in combinatorial topology is
defined as a cell complex such that each point (0-cell)
has a neighborhood that is a ball or a sphere.

Similarly to the continuous case, the discrete manifold
structure is given by the existence of local discrete analogs
of topological balls as neighborhoods of each point. In the
continuous case, each local region of a manifold can be
approximated with a Euclidean space by mapping a sur-
rounding ball at each point of the manifold to such
Euclidean space. Similarly, a cell manifold is characterized
by the fact that each of its points is surrounded by points
that form an n-cell ball or an n-1-cell sphere.

Now we are ready to investigate the topology of our
model of spacetime. The very fact that our model is built
from n-cubes glued to one another provides an intuitive
picture that each point in it will be surrounded by a com-
plex topologically equivalent to a ball. We have seen that
the n-cube building blocks emerge from the fact that our
model is a locally Boolean lattice. More precisely each
interval of length equal to the lattice global dimensionality
is a Boolean lattice. In a uniformly two-dimensional lattice
this means that if an event x is the supremum (or dually
infimum) of more than one Boolean sublattice, pairs of
them share at most one covering pair.

Next, we need to consider all of the Boolean sublattices
(squares) in which x is neither the supremum nor the
infimum. In two dimensions there can be only two
such sublattices, formed by the two covers on the ‘‘sides’’
of the Boolean intervals. More precisely, in the two-
dimensional case, the Boolean sublattices to which x
belongs form a polygon built from squares, i.e., a cell
2-ball (homeomorphic to a Euclidean 2-ball or polygon).
This implies that, in the case of uniform local two-
dimensionality, the model is a manifold.

In the case of dimensionality higher than 2, the above
conjecture, although perhaps intuitively clear, is not trivial
to prove and we will assume its validity at this point.

B. Geometry and clifford-valued metric

The geometry of the model [26,27] is defined by
identifying the interior of each n-cell with a bound region
of an n-dimensional Minkowski spacetime. This assign-
ment is analogous to the geometry of spacetime in Regge
calculus [25]. It is important to note that the causal struc-
ture of our model defines the geometry of spacetime up to a
volume factor. In other words, we need to assign a unit of
volume to each n-cell. As we mentioned before, since the
model is a discrete one, the assignment of a volume of a
region in the model is reduced to counting the number of
n-cells that make up the region.

While each n-cell is considered a region of flat space-
time, the curvature is concentrated on n-2-cells. This can

be easily illustrated in a two-dimensional spacetime. Each
Boolean sublattice is representing a geometrical square in
the physical spacetime. An event x and its two covers are
considered to form a 90	 angle. If an event belongs to four
Boolean lattices (i.e., four squares), the curvature of space-
time at that event is zero. In that case the event covers and
is covered by two other events. The event and its neighbor-
hood, the interval ½x�; xþ�, can be shown flattened on a
sheet of paper, as is the case with any of the events in Fig. 4,
for example. If the event however is covered by more or
less than two events, as is the case with some of the events
in Fig. 9, the curvature of the model at that point is not
zero. This is illustrated in Fig. 12. It is intuitively clear that
if the square Boolean lattices in Fig. 12 were geometric
squares, it would not be possible to lay out the model flat
on a sheet of paper.
In addition to the curvature, most of the concepts of

differential geometry can be generalized to the discrete
case. The concept of tangent space, for example, general-
izes naturally by assigning a distributive, locally Boolean,
uniformly n-dimensional lattice, and a corresponding flat
spacetime to an n-cell. It is straightforward to define
coordinates and geometric algebra on it by ê0 ¼ êt and
the direct product êi ¼ êr � �̂i, where �̂i is the basis in
Cln�1;0ðRÞ. The matrix representation of a basis of the flat

n-dimensional Minkovski spacetime is

êi ¼
0 êi

�êi 0

 !
; i ¼ 1; . . . ; n� 1;

ên ¼
0 �1

1 0

 !
;

where �̂i, i ¼ 1; . . . ; n� 1, is the basis of the Clifford
algebra Cln�1;0ðRÞ. For a four-dimensional spacetime,

this is the three-dimensional Euclidean space, and the basis
�̂i is typically represented by the Pauli matrices. The
inclusion of the �̂i basis, however, is not necessary and
we will omit it in the rest of the paper.
The relation between the metric and the causal distance

in a flat Minkovski spacetime can now be generalized as

d̂2 ¼ ĝ�;�dx̂
�dx̂�;

where x̂� are Clifford-valued local coordinates, and ĝ is the

Clifford-valued metric with

ĝ0;i ¼ g0;iêrt

and

g0;i ¼ �gi;0

for i � 0 and

det ĝ > 0:

The Clifford-valued metric, therefore, has scalar symmet-
ric and pseudoscalar antisymmetric components and, more
importantly, it is Euclidean. It is important to note that
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operation of multiplication in the determinant of the metric
is the noncommutative Clifford product.

The Clifford-valued metric of the flat spacetime is gen-
eralized naturally by the procedure analogous to the one in
the Regge calculus. For each pair of n-cells, a coordinate
system can be introduced, such that the metric is constant
in both cells, except at the n-2-cells on the boundary
between the two n-cells. Each of the n-2-cells is associated
with an excess angle, given by the excess of n-cells that
share it, which in turn is the measure of the curvature on it.

It is important to remind ourselves that we obtained the
geometric picture above constructively, by identifying
each Boolean sublattice as an n-dimensional geometric
hypercube. It is the lattice order properties of the model,
i.e., the fact that the model is a locally Boolean lattice, that
allow this identification to result in a discrete version of
spacetime with all of its topological and geometric prop-
erties. This is a reversal of the procedure in Regge calculus,
where the continuous spacetime, with all of its topological
and geometric properties, is shown to allow its discretiza-
tion. The discrete model in Regge calculus is an approxi-
mation of the continuous spacetime. Here, in our model,
the continuum can be considered an approximation of our
model. We do not, however, postulate the discreteness of
the physical spacetime itself. Our model can also be under-
stood as a discrete approximation of a continuous space-
time, which in turn is recovered in the limit of the volume
of each n-cell being infinitesimally small.

Our model is discrete; therefore its cardinality is the
same as the one of a subset of the set of natural numbers. In
other words, it is countable. The spacetime continuum
model of general relativity has the cardinality of the set
of real numbers. It is uncountably infinite. It is important to
note that when going from the discrete to a continuous
model, and vice versa, we have made a silent assumption
about a transition of the cardinality of the model. The
question of the cardinality of the physical spacetime is
certainly not a trivial one; the proponents of the causal
sets theory, for example, are decidedly on the side of a
discrete spacetime. In that sense, we should emphasize
again that although we have postulated our model as dis-
crete, we do not postulate the discreteness of the physical
spacetime. A future modification of our model may be
defined as a continuous one, i.e., as a poset generalization
of the continuum. We will leave this for a future study.

V. CLIFFORD-VALUED ACTION

Having defined the topology and geometry of our model
of spacetime, we can now go on and add physical fields in
it [28–34]. The inclusion of physical fields is crucial for the
solution of the sign problem. It is exactly the presence of
physical field terms that prevents the formulation of a
positive definite Lagrangian of the gravitational field.

Let us include a physical real scalar field � in the
model [35], in a way consistent with the causal order of

spacetime. We will do this by defining it as an ordered pair
of an event and a one-dimensional vector field ðx;�ðxÞÞ.
This can also be expressed as an ordered pair of the tuple of

coordinates of the event, x̂ ¼ ðr̂; t̂Þ and the field �̂ðx̂Þ. Here,
we will have to specify the meaning of the hat on the field

�̂. In other words, our model is quantified by the values of
a Clifford algebra, so we will have to specify how the field
fits in it.
Let us remind ourselves that the reason for using the

Clifford algebra is that the concept of causality and its
quantitative expression, the causal distance, are expressed
naturally in it. Our physical field, being a function with a
Clifford-valued argument, must also obtain values in the
Clifford algebra. One choice is to insist on the fields
being Clifford scalars, i.e., represented by the identity

matrix 1̂ multiplied by a number �. This however will
make the field fully insensitive to the inversion of causality,
something wewould like to avoid.We have seen above that
reversal of causality is reflected in our model by the
involution of duality

ðd̂@Þ@ ¼ d̂:

This means that the reversal of causality will be represented
by one of the matrix involutions—matrix transposition, for
example. In general, the causal reversal can be expressed as
an involution in the Clifford algebra, independent of the
matrix representation. Going back to the physical field, if
we assign to it only scalar values, it will not be affected by
an involution. This means we will not be able to capture
properly any effect of causality reversal on it.
In order to include the field in a nontrivial way into the

causal structure of our model we will assign it values of the
pseudoscalar, the bivector of the Clifford algebra Cl1;1ðRÞ.
Another aspect of this choice is that the Clifford algebra
of spacetime and the field is given by the direct pro-
duct Cln�1;1ðRÞ � Cl1;0ðRÞ. The standard way of defining

this direct product is to directly multiply the basis bivector
(pseudoscalar) of Cl1;1ðRÞ with the basis vector of Cl1;0ðRÞ
[21]. The field � then becomes Clifford pseudoscalar

�̂ ¼ �êrt, with the standard representation

�̂ ¼ � 0
0 ��

� �
:

This way, the field obtains a geometrical interpretation. It
can be understood as a degree of freedom in addition to the
ones of spacetime. This is certainly desirable when con-
sidering fields beyond a simple scalar one.
Having defined the scalar field as a Clifford-valued

bivector, we are now ready to define the Clifford-valued
action too. Having taken the limit of infinitesimally small
elementary volume assigned to the Boolean lattice, our
model can be approximated by a continuous manifold.
The continuous approximation carries over the Clifford
algebra, now defined at each of its points. We can therefore
define Clifford derivatives
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@̂0 ¼ êt@0

and

@̂i ¼ êr@i;

where @ is the ordinary partial derivative. These expres-
sions are analogs to the ones for a vector derivative ~ex@=@x.
The Clifford derivatives carry the algebraic structure of the
Clifford product, so we have

@̂t@̂r ¼ �@̂r@̂t:

Also, the field �̂ anticommutes with the derivatives

@̂��̂@̂��̂ ¼ �@̂��@̂��:

Given that the metric has either scalar or bivector values,
we have

g��@��@�� ¼ �ĝ��@̂��̂@̂��̂:

With this, we are ready to define the Clifford-valued

action. Rescaling � by k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�G=3

p
and having

�̂;a ¼ @̂a�;

the kinetic and mass terms in the Einstein-Hilbert action,
with scalar field �, become

I½~g;�� ¼ 1

16�G

Z �
�6ĝab�̂;a�̂;b � 1

2
�2ĝab�̂;a�̂;b

þ 1

2
�4m2�̂2

� ffiffiffî
g

p
d4x:

We should note the absence of trace in the Clifford-valued
action. The reason is that the action is Clifford scalar. This
means that the expression can be understood either in
matrix representation, in which case the trace would add
a trivial multiplicative factor, or as an abstract Clifford-
valued expression resulting in a real number, i.e., a Clifford
scalar. In other words, the expression for action is repre-
sentation free, and can be used for direct calculation of the
partition function.

In the absence of a gravitational field, the case of
flat spacetime, the above action is equivalent to the

Klein-Gordon one. Varying �̂ and having

@̂ð��̂ @̂ �̂Þ ¼ ð@̂��̂Þ@̂ �̂���̂@̂2�̂;

in the case of flat spacetime, leads to the Euler-Lagrange
equation

�̂��@̂�@̂��̂�m2�̂ ¼ 0; det ð�̂Þ> 0;

from which we get the Klein-Gordon equation

���@�@���m2� ¼ 0; det ð�Þ< 0;

by multiplying with êrt and calculating the Clifford
products.

Perhaps the most important result in this letter is the fact
the two kinetic terms in the action I have the same sign.
Given that det ðĝÞ> 0, the action is Euclidean. This opens

up the possibility to treat I½ĝ; �̂� as a positive definite and
Euclidean action. The mass term, however, has the sign
opposite of the kinetic terms. We will therefore introduce a
negative mass parameter

m2
n ¼ �m2

and the action can be defined as positive definite

In ¼ �I½ĝ; �̂�:
The partition function of the model can be obtained from

the corresponding path integral by defining an imaginary-
valued temperature 	 ¼ i=ℏ,

Z ¼
Z

D½g�D½��e�	In½ĝ;�̂�:

VI. CONCLUSION

We constructed a model of spacetime as a set of causally
related events, with as little of an assumed background as
possible. Its background independence is evident in the
fact that we postulated only the order structure, not its
topology or geometry. The topology and the geometry of
the model are emerging from its causal structure [36–38].
We build the model from six postulates. The first two of

the postulates are motivated by the physics of spacetime.
The first postulate states that the causal relationship among
events in spacetime is expressed as a relation of partial
order in the model. The second postulate is given as a
general statement that the causality can be physically
measured, and therefore can be expressed in a quantitative
way in our model. The difference between the quantitative
expression of causality in our case and general relativity is
that we do not require the presence of a time coordinate, a
part of the background, in addition to the background
independent metric.
The last four postulates fix the mathematical structure of

the model, one that allows the definition of a background
independent measure of causality, the causal distance. One
of the novelties of this work is the use of Clifford algebra to
express the causal order in a quantitative way. The causal
distance is a Clifford-valued function on the poset model.
One significant consequence of this is that the physical
fields included in the model cannot be expressed as com-
mutative real numbers, but must be introduced in a way
consistent with the spacetime Clifford algebra.
Another significant consequence of the introduction

of the Clifford algebra is that the kinetic terms in the
action have the same sign, which in turn leads to a positive
definite action, perhaps the most important result of
this work. The positive action will allow us to create a
computation model, similar to the causal dynamical trian-
gulations model, but without the need to single out the time
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coordinate. The time ‘‘foliation,’’ imposed as a constraint
in the causal dynamical triangulations, is mirrored in our
model by the fact that it is a graded poset.

The discrete model, as formulated here, can be under-
stood either as exact, or as an approximation of the con-
tinuous physical spacetime. If the former case is true, a
physical scale must exist, the Planck length being the

obvious candidate, at which Lorentz invariance in space-
time fails. Regardless of whether this is correct or not, we
hope that future computational studies of the discrete
model presented here may help us understand the elemen-
tary excitations of the quantized gravitational field, and
perhaps provide clues if, and how, the model is related to
other approaches to quantum gravity.
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