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We investigate a family of inhomogeneous and anisotropic gravitational fields exhibiting a future

singularity at a finite value of the proper time. The studied spherically symmetric spacetimes are

asymptotically Friedmann-Robertson-Walker at spatial infinity and describe wormhole configurations

filled with two matter components: one inhomogeneous and anisotropic fluid and another isotropic and

homogeneously distributed fluid, characterized by the supernegative equation of state ! ¼ p=� <�1. In

previously constructed wormholes, the notion of the phantom energy was used in a more extended sense

than in cosmology, where the phantom energy is considered a homogeneously distributed fluid. Specifically,

for some static wormhole geometries the phantom matter was considered as an inhomogeneous and

anisotropic fluid, with radial and lateral pressures satisfying the relations pr=� <�1 and

pl � pr, respectively. In this paper we construct phantom evolving wormhole models filled with an isotropic

and homogeneous component, described by a barotropic or viscous phantom energy, and ending in a big rip

singularity. In two of considered cases the equation of state parameter is constrained to be less than�1, while

in the third model the finite-time future singularity may occur for !<�1, as well as for�1<! � 1.
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I. INTRODUCTION

Recent astrophysical observations indicate that our
Universe is currently in accelerating expansion [1,2].
This discovery has stimulated an intensive study of models
where a large number of possible cosmological mecha-
nisms have been proposed to explain the origin of the
current acceleration. In the framework of general relativity,
a quantitative analysis shows that a mysterious component
of energy, dubbed dark energy, is responsible for the origin
of this cosmic phenomenon and it starts dominating the
matter content dynamics only at recent times, being irrele-
vant at earlier stages of the evolution. Many dark energy
models have been proposed to solve this fundamental
problem of cosmological physics, such as �-CDM model
[3], quintessence models [2,4], k essence models [5],
phantom models [6], and so on.

These new advances in cosmology allow us to consider
new types of singularities, besides already considered stan-
dard singularities such as big bang and big crunch [7].
These nonstandard types of singularities occur at a finite
value of cosmological time and are included in the follow-
ing descriptive classification: the singularity is a big rip
when the scale factor, energy density, and pressure go to
infinity in a finite proper time and is a sudden singularity
when at a finite value of time and scale factor, curvature, or

one of its higher derivatives blow up [8].

The main motivation of this type of singularities comes

from phantom cosmological models. In the framework of

Friedmann-RobertsonWalker (FRW) cosmologies filled

with two matter contents and dominated by a phantom

type fluid, satisfying a nondissipative barotropic equation

of state, these new types of singularities can be completely

classified in the following four types: type I for a big rip

singularity; type II for a sudden singularity defined by a

finite energy density and diverging pressure; type III for

diverging energy density and pressure at a finite value of

the scale factor, and the type IV for finite curvature com-

ponents and diverging higher derivatives of H [9].
On the other hand, since the pioneering works by Morris

and Thorne [10], the study of wormholes has become one
of the most popular and intensively studied topics in rela-
tivistic physics, where most of the efforts are directed to
study Lorentzian wormholes, in the framework of classical
general relativity, sustained by an exotic matter with nega-
tive energy density. These models include both static [11]
and evolving relativistic versions [12], sustained by a
single fluid component. The interest has been mainly de-
voted to traversable wormholes, which have no horizons,
allowing two-way passage through them [13].
For static wormholes the fluid requires the violation of

the null energy condition, while in Einstein gravity there

are nonstatic Lorentzian wormholes that do not require

weak energy condition violating matter to sustain them.

Such wormholes may exist for arbitrarily small or large

intervals of time [14] or even satisfy the dominant energy

condition (DEC) in the whole spacetime [15,16]. One can
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consider also dynamic wormhole spacetimes filled with

two fluids, just like it is required in cosmology where

such two-fluid models are widely considered today in order

to explain the observed accelerated expansion of the

Universe [17].
Wormhole spacetimes filled with phantom type matter

were considered before [18]. Specifically, spherically sym-
metric static wormholes were studied, sustained by a phan-
tom type matter (or superquintessence) with anisotropic
pressure. In these static models the notion of the phantom
energy is used in a more extended sense than in cosmology
since, strictly speaking, the phantom matter is a homoge-
neously distributed fluid, and for these nondynamic worm-
hole models an inhomogeneous and anisotropic matter
component is used, having for the radial and lateral pres-
sures pr <�1 and pl � pr, respectively [19]. This type of
extended phantomlike matter was also used in dynamical
wormhole models [20].

The time evolution of wormhole geometries in a
Friedmann universe exhibiting a big rip singularity were
previously studied. However the literature on this topic is
not extensive. For example, in Ref. [21] the author consid-
ers some accelerated higher-dimensional cosmologies with
a traversable static wormhole, dominated by a time-
dependent cosmological constant, and ending at a big rip.
The studied big rip solutions have an exponential scale
factor. In addition, the authors of Ref. [22] consider two
different wormhole models, modeled by a thin spherical
shell accreting the phantom fluid.

It is interesting to note that in this context, it was
recently proposed that it is possible that the Universe could
avoid the big rip singularity with the occurrence of a big
trip [23,24], which is a cosmological event that may appear
during the evolution of a wormhole embedded in a FRW
universe approaching the big rip singularity. In this case,
the wormhole accreting phantom matter expands faster
than the background FRW universe, and the radius of
the wormhole throat diverges before the big rip is reached.
In this scenario, the wormhole engulfs the entire universe,
which will reappear from the other wormhole throat [22].

In the present paper we intend to study evolving worm-
holes filled with two matter components, where one of
them is an isotropic homogeneously distributed phantom
fluid characterized by the supernegative equation of state
! ¼ p=� <�1 and presenting a future singularity at a
finite value of the proper time.

The organization of the paper is as follows. In Sec. II we
present the dynamical field equations for wormhole models
with a matter source composed of an ideal isotropic cosmic
fluid and an anisotropic and inhomogeneous one. In
Sec. III expanding wormholes filled with a barotropic
dark energy and phantom fluids are studied. We discuss
explicit models ending at a finite-time future singularity. In
Sec. IV viscous expanding wormholes are discussed.
Models that may evolve to a finite-time future singularity

are considered, and in Sec. V we conclude with some
remarks.

II. FIELD EQUATIONS

In this paper we shall make use of some previously
obtained results by one of the authors in Ref. [16]. Let us
state the main result obtained in that paper, concerning
solutions containing two fluids and admitting spherical
symmetry in the framework of the Einstein gravity theory.
Taking the metric

ds2 ¼ �dt2 þ aðtÞ2
�

dr2

1� kr2 � bðrÞ
r

þ r2d�2

�
; (1)

in comoving coordinates, filled with the anisotropic and
inhomogeneous fluid �inðt; rÞ, and the isotropic and homo-
geneous fluid �ðtÞ, the Einstein equations are given by

3H2 þ 3k

a2
þ b0

a2r2
¼ ��inðt; rÞ þ ��ðtÞ þ�; (2)

�
�
2
€a

a
þH2 þ k

a2

�
� b

a2r3
¼ �prðt; rÞ þ �pðtÞ ��; (3)

�
�
2
€a

a
þH2 þ k

a2

�
þ b� rb0

2a2r3
¼ �plðt; rÞ þ �pðtÞ ��;

(4)

where d�2 ¼ d�2 þ sin 2�d’2, � ¼ 8�G; � is the cos-
mological constant, aðtÞ is the scale factor, k ¼ �1, 0, 1;
H ¼ _a=a; and an overdot and a prime denote differentia-
tion d=dt and d=dr, respectively.
In this case the four-velocity of the fluids is given by the

timelike vector u� ¼ ð1; 0; 0; 0Þ, and the radial and tangen-
tial pressures obey the barotropic state equations

prðt; rÞ ¼ !r�inðt; rÞ; plðt; rÞ ¼ !l�inðt; rÞ; (5)

with constant state parameters !r and !l.
Note that the essential characteristics of a wormhole

geometry are encoded in the spacelike section of the metric
(1). It is clear that this metric becomes a zero-tidal force
static wormhole if aðtÞ ! const, and as bðrÞ ! kr3 it
becomes a flat FRWmetric for k ¼ 0, a closed FRWmetric
for k ¼ 1, and an open FRW metric for k ¼ �1.
It can be shown that Eqs. (1)–(4) may be rewritten in the

form [16]

ds2 ¼ dt2 � aðtÞ2
�

dr2

1� kr2 þ �C!rr
�1�1=!r

þ r2d�2

�
;

(6)

3H2 þ 3k

a2
¼ ��ðtÞ þ�; (7)

_�þ 3Hð�þ pÞ ¼ 0; (8)
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where C is an integration constant, and the inhomogeneous
and anisotropic cosmic fluid is given by

pr ¼ !r�in; (9)

pl ¼ � 1

2
ð1þ!rÞ�in; (10)

�inðt; rÞ ¼ Cr�3�1=!r

a2ðtÞ : (11)

Here, the constraint !r þ 2!l þ 1 ¼ 0 for Eq. (5) was
used. From these expressions we conclude that if !r > 0
or !r <�1 the obtained gravitational configurations are
asymptotically FRW solutions at spatial infinity.

In conclusion, the main result of Ref. [16] is that the
evolution of the scale factor aðtÞ in the metric (6) is
governed by the standard Friedmann equations (7) and
(8), and it is determined by the fluid �ðtÞ. This matter
component may be in principle an ideal barotropic fluid
or any other cosmic fluid satisfying the requirements of
isotropy and homogeneity.

III. EXPANDING WORMHOLE UNIVERSES
FILLED WITH A BAROTROPIC DARK
ENERGYAND PHANTOM FLUIDS

In this section we shall consider that the isotropic and
homogeneous matter component is described by a baro-
tropic phantom energy �ðtÞ with an equation of state of
the form

pðtÞ ¼ !�ðtÞ; (12)

where the constant state parameter ! satisfies the con-
straint !<�1. In general Eq. (12) allows us to consider
a barotropic matter component describing standard matter
for ! � 0, a dark energy fluid for �1<!<�1=3, and
superquintessence for !<�1, just like it is defined in
cosmology.

From now on in this section, we shall consider solutions
with k ¼ � ¼ 0 and � ¼ 8�G ¼ 1. Thus in this case,
from Eqs. (7) and (8), we obtain that the scale factor is

given by aðtÞ ¼ DðFþ ð3=2Þð!þ 1ÞtÞ2=ð3ð!þ1ÞÞ, where D
and F are constants of integration. This scale factor we
shall rewrite as

aðtÞ ¼ a0

�
1þ 3

2
H0ð!þ 1Þt

�
2=ð3ð!þ1ÞÞ

; (13)

and the energy density in the form

�ðtÞ ¼ �0

ð1þ 3
2H0ð!þ 1ÞtÞ2 ; (14)

where �0 ¼ 3H2
0 , in order to have aðt0 ¼ 0Þ ¼ a0 > 0 and

Hðt0 ¼ 0Þ ¼ H0 > 0.
It is easy to verify that in this case the metric (6)

becomes

ds2 ¼ dt2 � a20

�
1þ 3

2
H0ð!þ 1Þt

�
4=ð3ð!þ1ÞÞ

�
�

dr2

1� ð rr0Þ�ð1þ!rÞ=!r
þ r2ðd�2 þ sin 2�d’2Þ

�
;

(15)

and the anisotropic and inhomogeneous energy density is
given by

�inðt; rÞ ¼ � ð rr0Þ�ð1þ3!rÞ=!r

r20!ra
2
0ð1þ 3

2H0ð!þ 1ÞtÞ4=ð3ð!þ1ÞÞ : (16)

The metric (15) represents an evolving wormhole with a
throat located at r0 for !r <�1 and !r > 0 [16] and is
asymptotically a flat FRW universe.
It is well known that in general to keep a wormhole open

exotic matter with a negative energy density at the throat is
needed [10]. However, there are examples of evolving
wormholes satisfying the DEC in the whole spacetime
[15,16], which implies that the energy density is positive
everywhere. In the solutions studied here, the branch with
!r > 0 is characterized by a positive radial pressure pr and
negative �in and pl. But, there are also wormholes that
avoid the usual exotic matter requirements for wormholes.
The branch with !r <�1 has a positive energy density
and lateral pressure, while the radial pressure is negative
and larger in magnitude than the energy density.
Specifically, the total matter content

�Tðt; rÞ ¼ �ðtÞ þ �inðt; rÞ; (17)

for these models is determined by Eqs. (14) and (16). Thus,
for any value of the state parameters! and!r < 0we have
that always �T � 0. For !r > 0 we can have in general
time intervals where the total energy is positive or negative.
In effect, for !>�1=3 the wormhole model starts with a
positive total energy density (since for a fixed value r ¼
const the isotropic component dominates over the other
one), then decreases till zero at certain t0, and becomes
negative for t > t0. For !<�1=3 the total energy density
starts negative, then increases till zero at certain t0, and
becomes positive for t > t0. If ! ¼ �1=3 both compo-
nents of total energy density (17) behave as�1=a2, and the
expansion occurs at a constant velocity.
In order to have accelerated (decelerated) expansion

we must consider !<�1=3 (!>�1=3). Notice that at
t ¼ 0 we have that the total energy density is given by

�Tð0; rÞ ¼ �0 �
ð rr0Þ�ð1þ3!rÞ=!r

r20!ra
2
0

: (18)

We can see from Eq. (18) that if the values of !r are
constrained to be in the ranges !r <�1=3 and !r > 0,

then the relation �ð0Þ>�inð0; rÞ is fulfilled for r >

ð�r1þ1=!r

0 !�1
r a�2

0 ��1
0 Þ!r=ð1þ3!rÞ. If the last inequality is

not fulfilled, then at t ¼ 0 the inhomogeneous component
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begins dominating. If �1=3<!r < 0 we have that

�inð0; rÞ>�ð0Þ for r > ð�r1þ1=!r

0 !�1
r a�2

0 ��1
0 Þ!r=ð1þ3!rÞ.

For these models it is useful to state that if the isotropic
perfect fluid satisfies the DEC, i.e., �1<!< 1, we can
rescale the cosmological time so that 1þ 3

2H0ð!þ 1Þt !
t and the solution for the scale factor takes the standard

form aðtÞ ¼ a0t
2=ð3ð!þ1ÞÞ, with the isotropic energy density

given by �ðtÞ ¼ �0=t
2.

In order to study these models during a phantom evolu-
tion we must consider the values !<�1. In this case we
have that 1þ 3

2H0ð!þ 1Þt � 1� 3
2H0j!þ 1jt, so during

the cosmic evolution this expression may vanish at some
value of time t > 0. Thus we conclude that if !<�1 we
have a future singularity at a finite value of the proper time

tbr ¼ � 2

3H0ð!þ 1Þ> t0 ¼ 0; (19)

since aðtÞ ! 1, �ðtÞ ! 1 and p ! �1 at t ¼ tbr. By
considering only the behavior of scale factor and the iso-
tropic fluid we may conclude that this future singularity is
of a big rip type.

However, we must also consider the presence of the
inhomogeneous matter component (16). As we have stated
above, in this case we have that �inðt; rÞ> 0 for !r < 0,
and �inðt; rÞ< 0 for !r > 0. For !r ¼ �1=3 this matter
component becomes a homogeneous and isotropic one
with pr ¼ pl ¼ ��in=3. Note that for !>�1, !r <
�1=3 and !r > 0 we have that �inðtc; r ! 1Þ ! 0 and
�inðt ! 1; rcÞ ! 0 for constant values tc and rc.
For !<�1, !r <�1=3 and !r > 0 we have that at

t ¼ 0 the anisotropic and inhomogeneous energy density
starts to evolve from the constant value �inð0; rcÞ, where
the constant rc � r0, and then decreases, becoming zero at
t ¼ tbr.
As a consequence, for t ¼ tbr and !<�1 we have that

aðtÞ ! 1, �ðtÞ ! 1, p ! �1, �inðt; rÞ ¼ 0, and
prðt; rÞ ¼ plðt; rÞ ¼ 0. This allows us to conclude that if
we consider the total matter content given by Eq. (17), for
t ¼ tbr and!<�1, we have that aðtÞ ! 1, �Tðt; rÞ ! 1,
pTrðt; rÞ ! �1, pTlðt;rÞ!�1, where pTrðt; rÞ ¼ pðtÞ þ
prðt; rÞ and pTlðt; rÞ ¼ pðtÞ þ plðt; rÞ. In conclusion, the
scale factor, the total energy density, and the total pressures
blow up at the finite time tbr, so this finite-time future
singularity is of a big rip type. Figure 1 shows a conformal
diagram of an evolving wormhole with !r <�1 and a
phantom energy with w<�1.
Lastly, let us introduce the equilibrium time defined by

the condition �ðteqÞ ¼ �inðteq; rÞ for wormholes models

with a positive total energy density and big rip. This allows
us to find teq as a function of the radial coordinate r:

teq ¼ 2

3H0ð1þ!Þ

2
4
0
@� ð rr0Þ

�1þ3!r
!r

r20!ra
2
0�0

1
A

�3ð1þ!Þ
2ð1þ3!Þ

� 1

3
5: (20)

FIG. 1. Penrose diagram for an evolving wormhole with !r <
�1 and !<�1. The dotted line is the wormhole throat and the
dashed line represents the future big rip singularity.

(a) (b) (c)

FIG. 2. For wormhole models with !r <�1 and !<�1, the qualitative behavior of the dimensionless energy density for the
isotropic component �ðtÞ (dotted line), anisotropic matter �inðt; rcÞ (dash-dotted line), and the total matter content �Tðt; rcÞ (solid
line) as a function of the time t, at a constant value of the radial coordinate rc. The comoving time varies from 0 to the big rip time tbr.
(a) and (b) show plotted curves fulfilling the constraint (21): if r0 < rc < r� the anisotropic component dominates for 0 � t < teq,

while the isotropic component dominates over the anisotropic one at the time interval teq < t < tbr (Fig. 2(a)); on the other hand if

rc > r� the isotropic component always dominates over the anisotropic for 0 � t < tbr (b). (c) The constraint (21) is not fulfilled, thus
the isotropic component always dominates over the anisotropic one for 0 � t < tbr and any constant value rc � r0.
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It becomes clear that in general teq can take complex as

well as real values. In order to have always real values of
the equilibrium time the condition !r < 0 must be re-
quired. For wormhole models with a positive total energy
density and big rip the equilibrium time is positive if
!r <�1, !<�1 and

� ð rr0Þ
�1þ3!r

!r

r20!ra
2
0�0

> 1: (21)

Thus, for r0 < r < r�, where

r� ¼ r0ð�r20!ra
2
0�0Þ�!r=ð1þ3!rÞ; (22)

we have that teq > 0 and teq < 0 for r > r�. Notice that

from Eqs. (18) and (21) we obtain for the total energy
density the equivalent constraint �Tð0; rÞ> 2�0, and from
Eqs. (19) and (20) the condition teq < tbr is automatically

fulfilled for !r < 0. By using Eqs. (20)–(22) qualitative
plots for wormholes defined by conditions !r <�1 and
!r > 0 are shown in Figs. 2(a)–2(c) and in Figs. 3(a)–3(c)
respectively.

Now we want to study evolving wormhole models with
future singularities and those filled with a viscous phantom
matter. This issue will be addressed in the next section.

IV. VISCOUS EVOLVING WORMHOLES

Let us now consider wormhole models with the isotropic
and homogeneous matter component described by a vis-
cous phantom fluid. The role of the dissipative processes
has been extensively considered in cosmology [25,26],
where the study is done within the framework of the
standard Eckart theory of relativistic irreversible thermo-
dynamics. Any dissipation process in a FRW cosmology is
scalar and therefore may be modeled as a bulk viscosity

within a thermodynamical approach. The bulk viscosity
introduces dissipation by only redefining the effective
pressure, Peff , according to

Peff ¼ pþ� ¼ p� 3�H; (23)

where � ¼ �ðtÞ is the bulk viscous pressure, � ¼ �ðtÞ
is the bulk viscosity coefficient, and H is the Hubble
parameter.
In this case the Friedmann equations (7) and (8), with

k ¼ 0 and � ¼ 8�G ¼ 1, take the form

3H2 ¼ �þ�; (24)

_�þ 3Hð�þ pþ�Þ ¼ 0: (25)

The violation of DEC is expressed by the relation �þ pþ
�< 0. This condition implies an increasing energy den-
sity of the isotropic fluid filling the evolving wormhole, for
a positive bulk viscosity coefficient. The condition � > 0
guarantees a positive entropy production and, in conse-
quence, no violation of the second law of the thermody-
namics [27].
We shall assume that the viscous component obeys the

state equation (12), hence from Eq. (23) we have that
Peff ¼ !�� 3�H. Thus from Eqs. (24) and (25) we obtain
the following evolution equation for H:

2 _Hþ 3ð!þ 1ÞH2 ¼ 3�H þ ð!þ 1Þ�: (26)

From this equation we obtain for � ¼ 0 that

HðtÞ ¼ e
3
2

R
�ðtÞdt

Cþ 3
2 ð!þ 1ÞR e

3
2

R
�ðtÞdtdt

: (27)

Thus for ! � �1 the scale factor is given by

(a) (b) (c)

FIG. 3. For wormhole models with !r > 0 and !<�1, the qualitative behavior of the dimensionless energy density for the
isotropic component �ðtÞ (dotted line), anisotropic matter �inðt; rcÞ (dash-dotted line), and the total matter content �Tðt; rcÞ (solid
line) as a function of the time t, at a constant value of the radial coordinate rc. The comoving time varies from 0 to the big rip time tbr.
In this case the isotropic component always dominates over the anisotropic one. The total energy density vanishes at t ¼ t0. In (a) we
have taken 0< t0 < tbr, while for (b) and (c) t0 < 0. Here r�� ¼ r0ðr20!ra

2
0�0Þ�!r=ð1þ3!rÞ. Note that in this case the anisotropic energy

density is always negative.

PHANTOM EVOLVING WORMHOLES WITH BIG RIP . . . PHYSICAL REVIEW D 87, 064012 (2013)

064012-5



aðtÞ ¼ D

�
Cþ 3

2
ð!þ 1Þ

Z
e
3
2

R
�ðtÞdtdt

�
2=ð3ð!þ1ÞÞ

; (28)

while for ! ¼ �1 it may be written as

aðtÞ ¼ DeC
R

e
3
2

R
�ðtÞdt

dt; (29)

where C andD are integration constants. In general, for the
considered case, the solution may be written through �ðtÞ
or aðtÞ because there are three independent equations for
the four unknown functions aðtÞ, �ðtÞ, �ðtÞ, and pðtÞ. In our
case we have written the solution through the bulk viscos-
ity �ðtÞ. It is worth mentioning that for a given aðtÞ we can
write H and then obtain the expressions for the energy
density from Eq. (24) and the bulk viscosity from Eq. (26).

It becomes clear that for � ¼ 0 and ! � �1 we obtain
from Eq. (28) the solution (13) discussed in the previous
section, while for a vanishing bulk viscosity the de Sitter
scale factor aðtÞ ¼ eH0t is obtained for � ¼ �p ¼ const.

On the other hand, note that from Eqs. (24) and (25) we
may write that

€a

a
¼ _HþH2 ¼ � 1

6
ð�þ 3PeffÞ þ�

3
: (30)

Thus the condition for an expansion with constant ve-
locity is given by �þ 3Peff ¼ 2�. By taking into account
Eq. (23) we may write

� ¼ 1

9H
ðð1þ 3!Þ�� 2�Þ: (31)

Note that for � ¼ 0, and by taking into account Eq. (24),
we conclude that in order to have dynamic wormholes
expanding with constant velocity the bulk viscosity must
be given by

� ¼ ð1þ 3!Þ
3

ffiffiffi
3

p �1=2: (32)

In this case we see that a necessary condition to have a
positive bulk viscosity coefficient is that !>�1=3.

Now we shall consider specific viscous phantom evolv-
ing wormhole models.

A. Wormhole models with constant bulk viscosity

Let us now consider wormhole models with a vanishing
cosmological constant and a bulk viscosity given by

�ðtÞ ¼ �0 ¼ const: (33)

For ! � �1, Eq. (28) allows us to write the scale factor in
the form

aðtÞ ¼ a0

�
1þH0

�0

ð!þ 1Þðe3�0t=2 � 1Þ
�
2=ð3ð!þ1ÞÞ

; (34)

from which we obtain that the homogeneous and isotropic
energy density is given by

�ðtÞ ¼ 3H2
0e

3�0t

ð1þ H0

�0
ð!þ 1Þðe3�0t=2 � 1ÞÞ2 : (35)

Then the anisotropic and inhomogeneous matter compo-
nent takes the following form:

��inðt; rÞ ¼� ð rr0Þ�ð1þ3!rÞ=!r

r20!ra
2
0ð1þH0

�0
ð!þ1Þðe3�0t=2�1ÞÞ4=ð3ð!þ1ÞÞ :

(36)

As in the previous section, for !<�1 we have a future
singularity at a finite value of the comoving proper time
tbr since aðtÞ ! 1, �ðtÞ ! 1, and p ! �1 at tbr ¼
2
3�0

ln ð1� �0

H0ð!þ1ÞÞ> 0. In this case at t ¼ tbr the energy

density of the anisotropic matter threading the wormhole
vanishes since if !r > 0 or !r <�1 we obtain that
�inðtbr; rÞ ¼ 0 for any r � r0.
If we consider the total energy density �T , given now by

Eqs. (17), (35), and (36), we conclude that for !<�1
�T ! 1, pTr ! 1, and pTl ! 1 at t ¼ tbr. Thus, this
future singularity is characterized by a diverging scale
factor, total energy density, and total pressures, but with
a well-behaved bulk viscosity, since � is constant during all
evolution.
Notice that for the ! ¼ �1 branch solution we obtain

from Eq. (29), the scale factor is given by

aðtÞ ¼ De
2Ce

3
2
�0t

3�0 : (37)

In this case the model is characterized by an accelerated
expansion and does not end in a future singularity.

B. Accelerating wormhole models with � � �1=2

Another interesting example in this line is obtained for a

bulk viscosity given by � ¼ ��1=2, where � is a constant
parameter. In this case, for any value of the state parameter
! and � ¼ 0, the integration of Eq. (26) allows us to write

H ¼ H0

1þ 3
2H0ð!þ 1� ffiffiffi

3
p

�Þt ; (38)

where H0 ¼ Hðt ¼ 0Þ. Thus, the scale factor becomes

aðtÞ ¼ a0

�
1þ 3

2
H0ð!þ 1� ffiffiffi

3
p

�Þt
� 2
3ð!þ1� ffiffi

3
p

�Þ; (39)

with a0 ¼ aðt ¼ 0Þ. The energy density of the isotropic
component takes the form

�ðtÞ ¼ 3H2
0

ð1þ 3
2H0ð!þ 1� ffiffiffi

3
p

�ÞtÞ2 ; (40)

while the bulk viscosity and the energy density of the
anisotropic and inhomogeneous fluid are given by

�ðtÞ ¼ �
ffiffiffi
3

p
H0

1þ 3
2H0ð!þ 1� ffiffiffi

3
p

�Þt ; (41)
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��inðt; rÞ ¼ � ð rr0Þ�ð1þ3!rÞ=!r

r20!ra
2
0ð1þ 3

2H0ð!þ 1� ffiffiffi
3

p
�ÞtÞ 4

3ð!þ1� ffiffi
3

p
�Þ
;

(42)

respectively.
By demanding that ffiffiffi

3
p

�>!þ 1; (43)

the scale factor, the isotropic energy density, and pressure
blow up to infinity at a finite time

tbr ¼ 2H�1
0

3ð ffiffiffi
3

p
�� ð!þ 1ÞÞ> 0; (44)

and then we have the occurrence of a future singularity. As
in the previous case, at t ¼ tbr the energy density and
pressures of the anisotropic matter threading the wormhole
vanish for any r � r0.

By considering the total energy density �T , given now
by Eqs. (17), (40), and (42), we conclude that for the
constraint (43) we have that �T ! 1, pTr ! 1 and pTl !
1 at t ¼ tbr. Thus, this future singularity is characterized
by a diverging scale factor, total energy density, and total
pressures, and diverging too bulk viscosity (41), since it
blows up at the time tbr. In conclusion, in these viscous

expanding wormhole models the scale factor, the total
energy density, the total pressures, and the bulk viscosity
blow up at the finite time tbr, so this finite-time future
singularity is of a big rip type.
It is interesting to note that the constraint (43) implies

that if the bulk viscosity is positive, i.e., �> 0, we can
have a future singularity also for ! � �1. Thus we have a
big rip singularity not only for viscous phantom energy, but
also for viscous dark energy, and even for standard viscous
matter [see Figs. 4(a) and 4(b)]. Clearly all these models
have an accelerated expansion. It is easy to show that in
order to have models expanding with constant velocity we

must require that 2
3ð!þ1� ffiffi

3
p

�Þ ¼ 1. This implies that � ¼
ð1þ 3!Þ=3 ffiffiffi

3
p

in agreement with Eq. (32).

V. CONCLUSIONS AND FURTHER COMMENTS

This paper deals with inhomogeneous and anisotropic
spacetimes, ending in a future singularity at a finite value
of the proper time, and filled with an inhomogeneous and
anisotropic fluid and another isotropic and homogeneously
distributed superquintessence fluid. The studied solutions
describe evolving wormholes for which the rate of expan-
sion is determined by the phantom energy, while the in-
homogeneous and anisotropic component threads and
sustains the wormhole. The main purpose of this work is
to present analytic wormhole models exhibiting a big rip
during its evolution. Three independent cosmological
models are explored.
In the first model it turns out that the isotropic and

homogeneous component is a barotropic phantom fluid.
For these evolving wormholes the scale factor, the total
energy density, and the total pressures blow up at a finite
proper time, so this finite-time future singularity is of a
big rip type. In the second wormhole configuration the
isotropic and homogeneous component is a viscous phan-
tom fluid with a constant bulk viscosity. Now, the future
singularity is characterized by a diverging scale factor,
total energy density, and total pressures, but with a well-
behaved bulk viscosity, due to the constant character of �
during all evolution. In the latter model the isotropic and
homogeneous component is a viscous phantom fluid with

a bulk viscosity of the form �� �1=2. For these viscous
dynamic wormholes the scale factor, the total energy
density, the total pressures, and the bulk viscosity blow
up at a finite proper time, so this future singularity is also
of a big rip type. It must be added that this third model
allows us to consider big rip wormholes not only for a
viscous superquintessence energy. Effectively, if � > 0,
we can have a big rip also for viscous dark energy (i.e.,
for �1<!<�1=3), and even for standard viscous mat-
ter (i.e., for !>�1=3). If �< 0 the big rip is avoided.
However in this case the bulk viscosity becomes negative
and, in consequence, the second law of the thermodynam-
ics is not fulfilled.

FIG. 4. For viscous wormholes with �� �1=2, the qualitative
behavior of the dimensionless energy density for the isotropic
component �ðtÞ (dotted line), anisotropic matter �inðt; rcÞ
(dash-dotted line), and the total matter content �Tðt; rcÞ (solid
line) as a function of the time t, at a constant value of the radial
coordinate rc. The comoving time varies from 0 to the big rip
time tbr. For wormholes defined by !r <�1, we can have a
similar behavior for all values of the state parameter !, i.e., for
!<�1, �1<!<�1=3, and !>�1=3, as is shown in (a).
Here teq represents the time at which �inðt; rcÞ ¼ �ðtÞ and the

big rip singularity is present even if !>�1. For wormholes
defined by!r > 0we have again a similar behavior for all values
of the state parameter!, i.e., for!<�1,�1<!<�1=3, and
!>�1=3, as is shown in (b). Note that in this case the
anisotropic energy density is always negative. The big rip
singularity is also present even if !>�1 and t0 represents
the time at which �Tðt; rcÞ ¼ 0.
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Notice that in all solutions considered here the mixed
component of the energy-momentum tensor Ttr vanishes.
This means that there is no radial energy flow and no
accretion onto the wormhole of phantom energy from the
cosmic fluid. Thus the mechanism by which the big trip
could be achieved is out of the possibilities for these
wormhole models [24].

Lastly, we want to state that all results on future
singularities obtained here are applicable also for flat
FRW cosmological models, since all the discussed

wormhole solutions are asymptotically flat FRW
cosmologies.
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