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The retarded Green function of the wave equation for linear field perturbations in Schwarzschild black

hole space-time possesses a branch cut in the complex-frequency plane. This branch cut has remained

largely unexplored: only asymptotic analyses either for small frequency (yielding the well-known tail

decay at late times of an initial perturbation of the black hole) or for large frequency (quasinormal modes

close to the branch cut in this regime have been linked to quantum properties of black holes) have been

carried out in the literature. The regime along the cut inaccessible to these asymptotic analyses has so far

remained essentially unreachable. We present a new method for the analytic calculation of the branch cut

directly on the cut for general-spin fields in Schwarzschild space-time. This method is valid for any values

of the frequency and so it provides analytic access to the whole branch cut for the first time. We calculate

the Green function modes along the cut and investigate their connection with quasinormal modes and their

contribution to the self-force acting on a point particle on a Schwarzschild background space-time.
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I. INTRODUCTION

The study of spin-field perturbations of black holes is
important for many reasons. Classically they are important,
for example, for investigating the stability of black holes
(e.g., Refs. [1,2]), for the detection of field waves emitted
by black holes (e.g., Ref. [3]) and for the calculation of the
self-force on a point particle moving in a black hole
background space-time (which serves to model the
extreme mass-ratio inspiral of a compact object into a
massive black hole; e.g., Ref. [4]). Black hole perturba-
tions are also important for understanding the quantum
properties of black holes (e.g., Refs. [5,6]).

A crucial object for the study of Schwarzschild black
hole perturbations is the retarded Green function of the
wave equations they obey. These equations may be
separated by performing a Fourier transform in time and
a multipole decomposition in the angular separation of the
space-time points. Thus, the calculation of black hole
perturbations is reduced to that of the Fourier modes in
the complex-frequency (!) plane followed by a sum/
integral of the modes. Leaver [7] deformed the Fourier
integral along the real-frequency axis into the complex-
frequency plane, thus picking up the singularities of
the Fourier modes of the Green function. These modes
possess two types of singularities as functions of complex
frequency: an infinite number of simple poles and a branch
cut which lies on the negative-imaginary axis (NIA).
Leaver showed that the two main contributions to the
Green function then come from a series of modes
[the so-called quasinormal modes (QNMs)] at the poles
(i.e., the QNM frequencies, often also referred to loosely as

just QNMs) and an integral of modes around the branch cut
(BC), which we shall refer to as BC modes. While QNMs
have been extensively studied (see, e.g., Ref. [8] for a
review), very little is so far known about the BC modes.
To date, only the leading asymptotic behavior of the BC

modes for small frequencies along the NIA has been
studied at length in the literature. This small-frequency
regime in the BC is known to yield a leading power-law
tail decay at late times of an initial black hole perturbation
(see, e.g., the pioneering work by Price [9,10], details of
the tail at large radius in Ref. [7] and details at arbitrary
radius as well as a higher-order logarithmic behavior in
Refs. [11,12]). The BC modes for large frequencies along
the cut have only been studied by Maassen van den Brink
[13] and by the authors [14]. In Ref. [14] it was shown that
the BC modes at large frequencies lead to a divergence at
‘‘very early’’ times in the BC contribution to the Green
function as well as to the black hole response to a non-
compact Gaussian distribution as initial data (it is expected
that these divergences in the BC contributions are canceled
by similar divergences in the corresponding QNM contri-
butions). The fact that highly-damped QNM frequencies
approach the BC enabled [11–13] to apply the large-
frequency asymptotic analyses of the BC to the calculation
of highly-damped QNM frequencies. These modes have
been associated to quantum properties of black holes (e.g.,
see Ref. [15] in relation to black hole area quantization and
[16] in relation to Hawking radiation in the case of rotating
black holes).
To the best of our knowledge, the only investigations of

the BC modes for frequencies which are neither asymptoti-
cally large nor small (we will refer to this regime as the
‘‘mid-frequency’’ regime) are the following ones, which
were carried out in the gravitational case only. The BC in
the Green function modes is due to a corresponding BC of
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a particular solution, g‘ðr; !Þ, of the radial equation,
Eq. (2.4) below. In Refs. [17,18] the authors obtained the
radial solution g‘ðr; !Þ for frequencies near, but off, the
NIA via a numerical integration of the radial equation.
They thus calculated the radial solution on both sides
of—but away from—the NIA, evaluated the difference
and then extrapolated it onto the NIA, thus obtaining the
BC ‘‘strength.’’ This is a rather tricky numerical evalu-
ation, since the difference in values of g‘ between the two
sides of the NIA becomes exponentially small as the fre-
quency approaches the NIA. The only other investigation of
BC modes in the mid-frequency regime on the NIA was
carried out by Maassen van den Brink, who, in a different
and impressive work [19], performed an asymptotic analy-
sis of the BC modes about the so-called algebraically-
special frequency !AS [19–21].

The algebraically-special frequency lying within the
mid-frequency regime on the NIA occurs only for the
case of field perturbations of spin s ¼ 2 (axial gravita-
tional) and correspondingly the rest of this paragraph
applies to this case only. The BC modes have a distinct
‘‘dipole-like’’ behavior near !AS, unlike at other frequen-
cies [17,18]. The algebraically-special frequency, though
not a QNM itself for axial gravitational perturbations
(it is a QNM for polar gravitational perturbations) [19] is
intimately linked to QNMs: the dipole-like behavior of
the BC modes may be explained in terms of poles in the
‘‘unphysical’’ complex-frequency Riemann sheet [17,18].
Furthermore, a QNM frequency very close to (or exactly
equal to) !AS marks the start of the highly-damped region
of QNMs (e.g., Ref. [8]). As the rotation of the black
hole is increased from zero (i.e., the Schwarzschild case
studied in this paper), multiplets of QNMs emerge from—
exactly at or very near to, depending on the azimuthal
angular number—the algebraically-special frequency
!AS [17,18,22], at least in the case of the lowest multipole
angular momentum number ‘ ¼ s ¼ 2.

No analytic method exists so far for calculating the BC
modes of the Green function in the mid-frequency regime
(except, as mentioned above, near !AS for s ¼ 2).
However, the above works (see Ref. [18] in Ref. [17] and
Sec. VI in Ref. [19]) suggest the tantalizing possibility of
calculating the BC modes by expressing the BC strength
via a convergent series of irregular confluent hypergeomet-
ric functions evaluated directly on the NIA, so that no
extrapolation onto the NIAwould be required. In this paper
we take up this suggestion. Thus, we provide a newmethod
for calculating analytically the BC modes for general in-
tegral spin directly on the NIA for arbitrary values of the
frequency. We prove that our new series for the BC modes
is convergent for any values of the frequency along the
NIA, thus providing analytic access for the first time to the
whole mid-frequency regime. We note that our method is
also valid in the small and large-frequency regimes, but it
is not useful there since convergence becomes slower as

the frequency becomes small while, for large frequencies,
the BC modes grow and oscillate for fixed radii.
Asymptotic analyses are therefore necessary in practice
in these regimes.
We calculate the BC modes using our new method

and we investigate their properties and connection with
QNMs. We also re-analyze the so-called Jaffé series
(which is a series representation of the solution f‘ðr;!Þ
of the radial equation which is purely ingoing into the
event horizon and possesses no BC) and, in particular, the
behavior of the Jaffé coefficients. Finally, we apply our
calculation of the BC modes to investigate their contribu-
tion to the self-force (see, e.g., Ref. [4]) acting on a point
particle moving on a Schwarzschild background space-
time. In Ref. [11] we ‘‘sketched out’’ the main idea for
our new method for the calculation of the BC modes for
arbitrary frequency; in this paper we ‘‘flesh out’’ the de-
tails. We note that the method we present here provided the
results for the plots of quantities in the mid-frequency
regime in Ref. [14], where it was shown that these mid-
frequency results overlap with the large-frequency asymp-
totics presented there. In Ref. [12] we will present a
thorough small-frequency analysis of the BC modes and
we will show that these mid-frequency results also overlap
with that analysis in the small-frequency regime.
The remainder of the paper is organized as follows. In

Sec. II we introduce the main perturbation equations and
expressions for the Green function modes. In Sec. III we
present the various series representations which we use for
the calculation of the BC modes; in particular, Eq. (3.6)
is the new series that we derive and use for the calculation
of the pivotal quantity, the BC strength. In Sec. IV we
analyze the so-called Jaffé coefficients an (in particular, we
correct the large-n asymptotics of these coefficients given
in the literature), which are fundamental in the calculation
of all the series representations we use. In Secs. V, VI, VII,
and VIII we calculate the various quantities required for
the BC modes and these modes themselves. This includes
an analysis of series representations for calculating differ-
ent solutions (f‘ and g‘) to the radial ‘‘Regge-Wheeler
equation’’ everywhere on the complex-frequency plane. In
Sec. IX we investigate the contribution of the BC modes to
the self-force. Finally, in the Appendix we give some
properties of the irregular confluent hypergeometric func-
tion, which we require for the calculation of the BC modes
in the main body of the paper.
In this paper we use geometrized units, and so we

take c ¼ G ¼ 1. We will frequently use a bar over a
quantity to indicate that it has been made dimensionless
via the introduction of an appropriate factor of the radius
of the event horizon, rh ¼ 2M, where M is the mass of
the Schwarzschild black hole. We label different plots
within the same figure caption by the letters (a), (b), . . .
corresponding to the following ordering: left to right and
top to bottom.
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II. BRANCH CUT

The evolution of scalar, electromagnetic, and gravita-
tional field perturbations on Schwarzschild background
space-time are governed by wave equations. The simplest
example is that of the scalar field, which satisfies the Klein-
Gordon wave equation. After a Fourier-mode decomposi-
tion in time t and a multipole-‘ decomposition in the
angular distance �, the retarded Green function of the
Klein-Gordon wave equation for (massless) scalar field
perturbations in Schwarzschild space-time is expressed as1

Gretðx; x0Þ ¼ 1

rr0
X1
‘¼0

ð2‘þ 1ÞP‘ðcos�ÞGret
‘ ðr; r0; tÞ;

Gret
‘ ðr; r0; tÞ � 1

2�rh

Z 1þic

�1þic
d �!G‘ðr; r0;!Þe�i �! �t;

(2.1)

where c > 0. The Fourier modes of the Green function are
given by

G‘ðr; r0;!Þ ¼ f‘ðr<;!Þg‘ðr>;!Þ
Wð!Þ ; (2.2)

where r> � max ðr; r0Þ, r< � min ðr; r0Þ and r is the
Schwarzschild radial coordinate. As mentioned in the
Introduction, we use a bar over a quantity to indicate that
it has been made dimensionless via the introduction of
an appropriate factor rh ¼ 2M, e.g., �t � t=rh, �r � r=rh,
�! � !rh, �� � �rh, etc. The function

Wð!Þ � W½f‘ðr; !Þ; g‘ðr;!Þ� ¼ g‘f
0
‘ � f‘g

0
‘; (2.3)

where a prime indicates a derivative with respect to r�,
is the Wronskian of two solutions f‘ðr;!Þ and g‘ðr; !Þ of
the following second order radial ordinary differential
equation (ODE):�

d2

d�r2�
þ �!2 � VðrÞ

�
u‘ðr;!Þ ¼ 0;

VðrÞ �
�
1� 1

�r

��
‘ð‘þ 1Þ

�r2
þ ð1� s2Þ

�r3

�
;

(2.4)

where �r� � �rþ ln ð�r� 1Þ is the radial ‘‘tortoise coordi-
nate.’’ We have included the spin s in Eq. (2.4) so that
the analysis in this paper applies to electromagnetic and
gravitational perturbations as well as scalar perturbations.
For �! 2 R, the solutions f‘ and g‘ obey the ‘‘physical’’
boundary conditions of, respectively, purely-ingoing
waves into the black hole

f‘ðr; !Þ � e�i �! �r� ; �r� ! �1; (2.5)

f‘ðr; !Þ � Aout
‘;!e

þi �!�r� þ Ain
‘;!e

�i �!�r� ; �r� ! þ1; (2.6)

and purely-outgoing waves out to radial infinity,

g‘ðr;!Þ � eþi �!�r� ; �r� ! 1: (2.7)

The complex-valued coefficients Ain
‘;! and Aout

‘;! are, respec-

tively, incidence and reflection coefficients and it is
straightforward to check thatW ¼ 2i!Ain

‘;!. The boundary

conditions (2.5) and (2.7) also define, respectively, the
radial solutions f‘ and g‘ unambiguously for Imð �!Þ � 0
when �r� 2 R. In Imð �!Þ< 0, with �r� 2 R, these solutions
must be defined by analytic continuation.
The parameter s ¼ 0, 1, 2 in the potential in Eq. (2.4) is

the helicity of the field perturbation, to which, with an
abuse of language, we will refer to as ‘‘spin’’: s ¼ 2
corresponds to axial—also called ‘‘odd’’—gravitational
perturbations (in which case Eq. (2.4) becomes the
Regge-Wheeler equation [23]), s ¼ 1 to electromagnetic
perturbations [24] and s ¼ 0 to scalar perturbations [9,10].
Polar—or ‘‘even’’—gravitational perturbations obey the
Zerilli equation [25,26] and solutions to this equation can
be obtained from the solutions, and their radial derivatives,
to the Regge-Wheeler equation [27]. At the algebraically-
special frequency !AS [19–21], however, this relationship
between solutions to the Zerilli equation and solutions to
the Regge-Wheeler equation becomes singular. In Fig. 1
we plot the potential VðrÞ for some token values of spin s
and multipole number ‘.
It can be shown [28] that the radial solution f‘ has no

branch cut in the complex-frequency plane whereas g‘ has
a branch cut down the negative imaginary axis NIA [see,
e.g., Eq. (3.2) below]. This BC in g‘ can be explained
[29,30] in terms of the radial potential (minus the centrifu-
gal barrier term) falling off slower than exponentially at
radial infinity. On the other hand, the exponential decay
with �r� of the potential near the horizon leads to a series of
poles in f‘ on the NIA (see Sec. V below). We note that the
Wronskian W ‘‘inherits’’ the BC from g‘ and the poles on
the NIA from f‘. We define �Að ��Þ � Aþð�i ��Þ �
A�ð�i ��Þ for any function A ¼ Að �!Þ possessing a BC
along the NIA, where A�ð�i ��Þ � lim �!0þAð��� i ��Þ,
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FIG. 1 (color online). Radial potential Eq. (2.4) as a function
of �r�. Continuous blue curve: s ¼ 2, ‘ ¼ 2; dot-dashed green
curve: s ¼ 1, ‘ ¼ 1; dashed red curve: s ¼ 0, ‘ ¼ 1.

1Note that due to a typographical error the factor 1=ðrr0Þ is
missing in Eq. (1) of Ref. [14].
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with �� > 0. We will equally refer to both quantities ! and
� � i! as ‘‘frequencies’’; we note that �� > 0 along the
NIA.

We note the symmetries

g‘ðr; !Þ ¼ g�‘ðr;�!�Þ; f‘ðr; !Þ ¼ f�‘ðr;�!�Þ;
Wð!Þ ¼ W�ð�!�Þ if �r� 2 R; (2.8)

which follow from the radial ODE (2.4) and the boundary
conditions (2.5) and (2.7). These symmetries lead to g‘� ¼
g�‘þ if �r� 2 R and toWþ ¼ W��, so that the branch cuts of
g‘ðr;!Þ and W along the NIA are only in their imaginary
parts, their real parts having no branch cut. In particular,
then, the absolute value of the Wronskian, jWj, has no BC.

The Fourier integral along just above the real frequency
line in Eq. (2.1) can be deformed on the complex-
frequency plane [7]. The two main contributions to Gret

‘

are, then, a series over the residues at the poles of the
Fourier modes G‘ðr; r0;!Þ (the QNM frequencies, which
are located at the zeros of the Wronskian W) and an
integral around the BC. The branch cut contribution GBC

to the retarded Green function is given by

GBCðr; r0;�; tÞ ¼ 1

rr0
X1
‘¼0

ð2‘þ 1ÞP‘ðcos�ÞGBC
‘ ðr; r0; tÞ;

GBC
‘ ðr; r0; tÞ � i

2�rh

Z 0

�1
d ���G‘ðr; r0;�Þe� �� �t; (2.9)

where the BC modes �G‘ can be expressed as [14,17]

�G‘ðr; r0;�Þ ¼ �2i�f‘ðr;�i�Þf‘ðr0;�i�Þ qð�ÞjWj2 ;
�r� 2 R: (2.10)

We denote the function qð�Þ as the branch cut strength as
it is defined via the equation

�~g‘ðr; �Þ ¼ iqð�Þg‘ðr;þi�Þ; (2.11)

where here, �~g‘ðr; �Þ � g‘þðr; �i�Þ � g‘�ðr; �i�Þ
(the extra tilde in the notation is justified in the next
section). From the symmetries (2.8) and the fact that
g‘ðr;þi�Þ (that is, g‘ evaluated on the positive-imaginary
axis) is real valued it follows that qð�Þ is also a real-valued
quantity. We note that ‘‘�iq’’ here corresponds to the
quantity ‘‘K’’ in Eq. (31) of Ref. [7].

III. SERIES REPRESENTATIONS FOR THE
RADIAL SOLUTIONS

If one tried to find the radial solution f‘ or g‘ in the
region Imð �!Þ< 0 by naı̈vely solving numerically the ra-
dial Eq. (2.4) and imposing the ‘‘boundary conditions’’
(2.5) and (2.7), respectively, one would run into computa-
tional problems. The reason is that these boundary con-
ditions are exponentially dominant over the other, linearly
independent solution at the radial endpoint where the

condition is imposed (that is, at �r� ! �1 for f‘ and at
�r� ! þ1 for g‘). Therefore, if one tried to numerically
integrate the radial ODE starting with the ‘‘boundary con-
dition’’ at one endpoint towards the other endpoint, any
accidental inclusion—no matter how small—of the other,
unwanted solution would grow exponentially and so the
numerical error would overwhelm the wanted solution.
There are various methods around this problem. For ex-
ample, one could solve the radial equation in the region
Imð �!Þ � 0, where the boundary conditions are well posed,
and then analytically continue onto the region Imð �!Þ< 0.
Also, Leaver’s Eqs. (32–36) in Ref. [7] provide a frame-
work for calculating the BC contribution to the retarded
Green function. However, this method is rather difficult to
implement (except in the asymptotic small- �� regime) due
to the presence of Leaver’s ‘‘phase parameter,’’ which is
required because of the use of a particular series represen-
tation for g‘ in terms of Coulomb wave functions. In this
paper we choose to use certain series representations de-
termined as analytic continuations from Imð �!Þ � 0 for f‘
and g‘ which do not involve Leaver’s phase parameter and
which we show are convergent in the desired region on the
frequency plane.
Leaver [28] provides various series representations for

the radial solutions f‘ and g‘. All calculations of the BC
modes in this paper are carried out using a specific choice
of series representation for each one of the two solutions,
which we give in Secs. III A and III B. However, while the
new series representation for�~g‘ [and therefore for the BC
strength qð�Þ] which we present in Sec. III C is fundamen-
tally based on our choice of series representation for g‘,
our calculation of the BC modes does not depend in an
important way on the specific choice of series for calculat-
ing f‘: one could just as well use any different method
valid in the mid-frequency regime for calculating f‘. We
present the various series that we use in the following
subsections and we investigate their convergence proper-
ties in the following sections.

A. Series for f‘

In order to calculate the radial function f‘, we will use
the well-known Jaffé series [28]

f‘ðr;!Þ ¼ ð�r� 1Þ�i �! �r2i �!ei �! �rJ‘ðr; !Þ;

J‘ðr;!Þ � X1
n¼0

Jn;‘ð!Þ; Jn;‘ � anð!Þ
�
1� 1

�r

�
n
:

(3.1)

We will refer to the complex-valued coefficients anð!Þ as
the Jaffé series coefficients, even though they also appear
as coefficients in the series representation that we will use
for g‘, Eq. (3.2) below. The Jaffé series coefficients are
functions of the series index n, the frequency ! and,
although not indicated explicitly, the multipole number ‘
and the spin value s. The Jaffé series coefficients satisfy a
3-term recurrence relation which we give and analyze in
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the following section. The initial value a0 remains unde-
termined by the recurrence relation; the specific value
a0 ¼ e�2i �! yields the desired normalization (2.5) for f‘
and, therefore, this will always be our choice of value for
a0 when using the Jaffé series for f‘.

B. Series for g‘

Our choice of series representation for g‘ is also given
in [28],

g‘ðr;!Þ¼ �r1þsð �r�1Þ�i �!ei �! �rh‘ðr;!Þ;

h‘ðr;!Þ�X1
n¼0

hn;‘ð!Þ; hn;‘� ~anð!ÞTð�Þ
n

Tð�Þ
n �ð�2i �!þ1ÞnUðsþ1�2i �!þn;2sþ1;�2i �! �rÞ;

(3.2)

where ~anð!Þ satisfy the same recurrence relations as the
Jaffé series coefficients an in Eq. (3.1) but it is ~a0 � a0—
that is, ~an and an only differ by an overall normalization
factor which we give below. The series (3.2) has been
broadly ignored in the literature, possibly due to the fact
that the irregular confluent hypergeometricU-functions are
rather hard to manage. We will refer to Eq. (3.2) as the
‘‘Leaver-U series.’’

It is clear from the Leaver-U series (3.2) and the prop-
erties of the irregular confluent hypergeometric function
[31] that the radial solution g‘ðr;!Þ has a branch cut
running along the line �! �r : 0 ! �1 � i. If �r > 0, then
g‘ðr;!Þ has a branch cut along the NIA, �!: 0 ! �1 � i.

The principal branch of Uða; b; zÞ is given by arg ðzÞ 2
ð��;þ��. Therefore, we can evaluate directly on the
NIA the confluent hypergeometric U-function appearing

in Eq. (3.2) and calculate the corresponding Tð�Þ
n via

Eq. (3.2). That is, Tð�Þ
n may be evaluated on the NIA and

its value will correspond to the principal branch value,
i.e., to the limiting value as the frequency ! approaches
the NIA from the third quadrant in the complex-frequency
plane. The corresponding value of g‘ will then give g‘þ
provided that the series Eq. (3.2) converges. It will be
understood, when we do not say it explicitly, that any
quantities possessing a BC along the NIA which are eval-
uated on the NIAvia the use of Eq. (3.2) will correspond to
their limiting value approaching the NIA from the third
quadrant.

In order to check what boundary condition the Leaver-U
series (3.2) satisfies for �r ! 1, we use Eq. (13.2.6) of
Ref. [31] and we obtain

g‘ðr; !Þ � �r1þsð�r� 1Þ�i �!ð�2i �! �rÞ�s�1þ2i �!~a0e
þi �! �r

for j �! �r j ! 1 and

j�=2� arg ð �!Þ � arg ð�rÞj< 3�=2: (3.3)

Therefore, when r > 0, the Leaver-U series yields the
asymptotics

g‘ðr; !Þ � ð�2i �!Þ�s�1þ2i �!~a0e
þi �!�r� for �r ! 1 and

j�=2� arg ð �!Þj< 3�=2; �r > 0: (3.4)

We note that Eq. (3.4) does not agree with Eq. (75) in
Ref. [28]; we believe that Eq. (75) of Ref. [28] is missing
the first factor on the right-hand side of Eq. (3.4).
With the specific normalization choice of ~a0 ¼

ð�2i �!Þþsþ1�2i �! the function g‘ calculated using the
Leaver-U series satisfies the desired normalization
Eq. (2.7); therefore, this will always be our choice
(different from the choice a0 ¼ e�2i �! above for the Jaffé
series for f‘) when using the Leaver-U series for g‘.
We note that ~an themselves have a branch cut along the
NIA (this was already noted in Ref. [18] of Ref. [17]), as
we have

�~an ¼ ½e�4� �! � 1�~an� ¼ ½e4� �! þ 1�~anþ; (3.5)

where ~an� � lim �!0þ ~anð! ¼ ��� i�Þ and where we
have assumed that s 2 Z.

C. Series for �~g‘

From Eqs. (3.2) and (A2) it follows that

�~g‘ðr;�Þ�g‘þðr;�i�Þ�g‘�ðr;�i�Þ
¼ �r1þsð�r�1Þ� ��e �� �r�~h‘ðr;�Þ;

�~h‘ðr;�Þ¼ 2�ie�2 �� �re�iðsþ1�2 ��Þ

�ð1�2 ��Þ
X1
n¼0

�~hn;‘;

�~hn;‘ � ~an� �Tð0Þ
n ;

Tð0Þ
n �ð�1Þn�ð1þn�2 ��ÞUðs�nþ2 ��;2sþ1;2 �� �rÞ

�ð1þ sþn�2 ��Þ�ð1� sþn�2 ��Þ :

(3.6)

This is a series for calculating�~g‘ by evaluating quantities
directly on the NIA. The principal branch is to be taken for
the confluent hypergeometric U-function in Eq. (3.6).

D. Series for �g‘

The series in this subsection, which we denote by �g‘,
would correspond to�~g‘ if the coefficients ~an did not have
a branch cut; specifically, we may view �g‘ as the dis-
continuity of g‘ across the NIA if we replace ~an by an in
Eq. (3.2). Since that is not actually the case, we will not be
using the series for �g‘ anywhere. However, we include it

here for completeness, as the factors TðþÞ
n in the terms of

this series satisfy the same recurrence relation [Eq. (6.1)

below] as the factors Tð�Þ
n and Tð0Þ

n introduced above for g‘
and �~g‘, respectively. The solution TðþÞ

n to the recurrence
relation Eq. (6.1) is linearly independent from the solutions

Tð�Þ
n and Tð0Þ

n . If we replace ~an by an in Eq. (3.2), we can
calculate the discontinuity across the NIA of the resulting
quantity as

ANALYTIC INVESTIGATION OF THE BRANCH CUT OF . . . PHYSICAL REVIEW D 87, 064010 (2013)

064010-5



�g‘ðr;�Þ�g‘þðr;�i�Þanþ
~anþ

�g‘�ðr;�i�Þan�
~an�

¼ �r1þsð �r�1Þ� ��eþ �� �r�h‘ðr;�Þ;

�h‘ðr;�Þ¼ ð�1Þ2s2�i
�ð1þ2sÞ�ð1�2 ��Þ

X1
n¼0

�hn;‘;

�hn;‘�anT
ðþÞ
n ;

TðþÞ
n ��ð1�2 ��þnÞMð1�2 ��þnþs;2sþ1;�2 �� �rÞ

�ð1�2 ��þn�sÞ ;

(3.7)

where we have used Eqs. (13.2.2) and (13.2.9) in Ref. [31].
We note the appearance of the regular confluent hyper-
geometric (Kummer) function M in (3.7) for �g‘, as
opposed to the irregular confluent hypergeometric function
U in Eq. (3.6) for �~g‘.

E. Series for the radial derivatives

An expression for calculating the r�-derivative of
the radial solution f‘ follows straightforwardly from
Eq. (3.1),

df‘
dr�

¼ ð�r� 1Þ1� �� �r2 ���1e �� �r

�
dJ‘
dr

þ �
ð �r2 � 2Þ
�rð �r� 1Þ J‘

�
;

dJ‘
dr

¼ 1

rh �r
2

X1
n¼0

ðnþ 1Þanþ1

�
1� 1

�r

�
n
: (3.8)

In order to obtain an expression for the r�-derivative of
g‘ we use Eqs. (4.22–4.24) of [32],

dg‘
dr�

¼
�
1� 1

�r

���
1þ s

r
� ��

r� rh
þ �

�
g‘ þ g‘

h‘

dh‘
dr

�
;

dh‘
dr

¼ X1
n¼0

~an
dTð�Þ

n

dr
;

dTð�Þ
n

dr
¼ sþ 1� 2 ��þ n

r

�
nþ 1� s� 2 ��

nþ 1� 2 ��
Tð�Þ
nþ1 � Tð�Þ

n

�
:

(3.9)

IV. JAFFÉ SERIES COEFFICIENTS

Both the series coefficients anð!Þ appearing in the Jaffé
series Eq. (3.1) for f‘ and the series coefficients ~anð!Þ
appearing in the Leaver-U series Eq. (3.2) for g‘ satisfy the
following 3-term recurrence relation,

�nanþ1 þ �nan þ �nan�1 ¼ 0; n ¼ 1; 2; . . . (4.1)

with an ¼ 0 for n < 0 and where

�n � ðnþ 1Þðn� 2 ��þ 1Þ;
�n ��½2n2þð2� 8 ��Þnþ 8 ��2� 4 ��þ ‘ð‘þ 1Þþ 1� s2�;
�n � n2� 4 ��nþ 4 ��2� s2: (4.2)

We note that although in this section we use the notation an
to indicate a solution of Eq. (4.1) the results in this
section apply equally to the coefficients ~an since these
results are independent of the specific choice of the
n ¼ 0 coefficient.

A. Singularities of an

From Eq. (4.1) it follows that, in principle, the coeffi-
cients an will have a simple pole where �n�1 ¼ 0, i.e., at
n� 2 �� ¼ 0. Therefore, if �� ¼ k=2 for some k 2 N then
an will have a simple pole 8n � k (see, e.g., Appendix B
of Ref. [17]). However, such a pole will not occur if at the
same time it happens that �k�1ak�1 þ �k�1ak�2 ¼ 0. This
occurs for s ¼ 2 at the algebraically-special frequency
�!AS ¼ �i ��AS, where ��AS � ð‘� 1Þ‘ð‘þ 1Þð‘þ 2Þ=6
[19]. Therefore, the coefficients an do not have a pole at
�� ¼ ��AS for s ¼ 2 while they do have a simple pole there
for s ¼ 0; 1.
Suppose that fbng and fcng are two sets of solutions to a

recurrence relation, then, if lim n!1bn=cn ¼ 0 it is said
that bn are minimal and cn are dominant. If the solution one
seeks is dominant, then one can find the desired solution by
solving the recurrence relation using standard forward
recursion. However, if one wants to obtain a minimal
solution, using forward recursion would be unstable and
one must resort to finding the desired solution using, e.g.,
Miller’s algorithm of backward recursion (see Ref. [33]).
In order to investigate whether the solutions to the recur-
rence relation Eq. (4.1) are minimal, dominant or neither,
we require the large-n behavior of the coefficients an. We
also require the large-n behavior of an in order to study the
convergence properties of any series involving these
coefficients.

B. Large-n asymptotics

In order to obtain the large-n asymptotics of the coef-
ficients an we follow Appendix B of Ref. [34]. We thus
express the asymptotic behavior as the so-called Birkhoff
series,

an ¼ e�0n ln nþ�1nn�0e
P

I
j¼0

�jþ1n
��j=	þOðn��ðIþ1Þ=	Þ

; (4.3)

for a certain chosen value of I 2 N, where � 2 ½0; 1Þ,
�1 � 0, 	 2 Z, 	 � 1 and �j, �j 2 C for all j.

Substituting this expression into the recurrence relation
(4.1) we obtain
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an ¼ n� ���3=4e
�2

ffiffiffiffiffiffi
2 ��n

p
iþPI

j¼1
�jþ1n

1=2�j=2þOðn1=2�ðIþ1Þ=2Þ
;

�3 ¼ ið�9� 48‘� 48‘2 � 48 ��þ 64 ��2Þ
48

ffiffiffi
2

p ffiffiffi
��

p ;

�4 ¼ 3þ 16‘þ 16‘2 � 48 ��þ 64s2 ��þ 128 ��2 þ 128 ��3

128 ��
;

�5 ¼ i

30720
ffiffiffi
2

p
��3=2

½315� 1280‘4 � 2560‘3 þ 160‘2 þ 1440‘þ ð7680‘2 þ 7680‘þ 13728Þ ��

þ ð�30720‘2 � 30720‘� 3200Þ ��2 � 10240 ��3�;
�6 ¼ 1

24576 ��2
½�81þ 768‘4 þ 1536‘3 þ 480‘2 � 288‘þ ð�1536‘2 � 1536‘� 288Þ ��þ ð6144‘2 þ 6144‘þ 1152Þ ��2

þ ð24576s2 � 16384Þ ��3 þ 24576 ��4 þ 16384 ��5�: (4.4)

For �� 2 R the coefficients �j are real for j even and they
are purely imaginary for j odd. We note that the spin
dependence does not appear until the term �6. The coeffi-
cient �2 corresponds to an undetermined overall normal-
ization and the ‘‘�’’ sign corresponds to the two linearly
independent solutions of the recurrence relation. Since the
recurrence relation (4.1) is unchanged under n ! ne2�i,
one solution can be obtained from the other under this
change; this is essentially equivalent to changing the sign
of �jþ1 for j even in (4.4). On the NIA, where �� > 0, the
two solutions behave similarly (that is, no solution is
dominant over the other) and an appropriate linear combi-
nation of them should be taken. Off the NIA, if ! is not a
QNM frequency then the an are dominant [7] and they are
generated by forward recursion; whereas if ! is a QNM
frequency then the an are minimal and they can be gen-
erated by Miller’s algorithm of backward recursion.
Indeed, requiring for the solutions an to be minimal has
become a widely used, successful method for finding
QNM frequencies of black holes [35].

Finally, we note that the leading order of Eq. (4.4) differs
from Eq. (46) of Ref. [28] in having a power of n equal to
‘‘� ��� 3=4’’instead of ‘‘�2 ��� 3=4’’; we have checked
numerically for specific values of the parameters (both for
! on and off the NIA) that Eq. (4.4) gives the correct
asymptotic behavior.

C. Plots

In Fig. 2 we show that the large-n asymptotics given in
Eq. (4.4) match the exact solution to the recurrence relation
(4.1). We note the appearance of a ‘‘pulse,’’ after which the
values of an decay rapidly. Figure 3 is a 3D-plot of an as a
function of both n andM�. We have only included plots for
s ¼ 2 as representative of the behavior of the coefficients
an, as the behavior is similar for other spins. The behavior
is also similar at the algebraically-special frequency !AS.
At the poles described in Sec. IVA the behavior of
‘‘sin ð2� ��Þan’’ is also similar, except that the first n < 2 ��
terms are exactly zero.

V. CALCULATION OF f‘ðr;!Þ
We calculate the radial solution f‘ using the Jaffé series

Eq. (3.1). As shown by Leaver in Sec. IV A of Ref. [28],
the Jaffé series is absolutely convergent 8 �! 2 C and for
any �r 2 ½1;1Þ, since then lim n!1janþ1ð1� 1=�rÞnþ1=
ðanð1� 1= �rÞnÞj ¼ j1� 1= �rj< 1. By the same argument
the Jaffé series is uniformly convergent on r 2 ½rh; rmax �
for any finite rmax but will generally not be so at radial
infinity, provided the coefficients are not singular (see
below). However, as shown by Leaver, the Jaffé series is
uniformly convergent—including radial infinity—if

P
nan

is finite, which is guaranteed if the sequence fang is mini-
mal and this occurs at the QNM frequencies. At these
frequencies it is Ain

‘;! ¼ 0 and Aout
‘;! ¼ e�2i �!

P
nan.

As shown in Sec. IVA, an have simple poles 8n � k
when �� ¼ k=2 for some k 2 N. The exception is the case
� ¼ �AS � i!AS for s ¼ 2, which is not a pole. These
poles carry over to f‘ so that this radial solution has simple
poles at �� ¼ k=2 (these poles of f‘ were shown in
Refs. [36,37] using a different method, namely, a Born
series), except at ��AS when s ¼ 2. However, the BC modes
�G‘ are independent of the normalization of f‘, and so it is
useful to define

â0 � �a0 sin ð2�i �!Þ; (5.1)

with a0 ¼ e�2i �!. We denote the corresponding quantities
an, Jn;‘, J‘, f‘ andW obtained using this normalization by

ân, Ĵn;‘, Ĵ‘, f̂‘ and Ŵ, respectively. We note that at the pole

�� ¼ k=2, the first nonzero value of the new set of coeffi-
cients ân will be for n ¼ k. Therefore, at �� ¼ k=2 it is

f̂‘ � eþi �!�r� as �r� ! �1 and so f̂‘ðr; !Þ / f̂‘ðr;�!Þ
[19]. In the particular case of the algebraically-special
frequency ��AS, exact solutions to the radial equation have
been found [21].
Therefore, as a function of �! 2 C, the radial solution f‘

only has singularities at the simple poles �! ¼ �ik=2, k 2
N, on the NIA (except at ��AS for s ¼ 2) while f̂‘ is analytic
in the whole frequency plane.
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In Fig. 4 we illustrate, for frequencies on the positive-
imaginary axis (PIA) of the complex-frequency plane, the
convergence properties of the Jaffé series and we plot f‘
(there is no need to calculate f̂‘ on the PIA since f‘ has no
poles there) as a function of j ��j. In Fig. 5 we do similarly

but for f̂‘ on the NIA instead of f‘ on the PIA. In this case

we do not plot the partial term Ĵn;‘ since the behavior is

essentially the same as that of an in Fig. 2(d). The radial

derivative of f̂‘ as a function of the frequency has a similar

behavior to that of f̂‘. In Fig. 6 we plot, on the NIA, ln jf̂‘j
and ln jdf̂‘=dr�j as functions of the radius: for some values

of �� the solution f̂‘ has a zero and for other values of �� it
does not. We note that in Figs. 4–6 we only include plots
for s ¼ 2 as the behavior for other spins is very similar.

In Ref. [12] we show that the Jaffé series for f̂‘ agrees well
with a small- �� series expansion.

VI. CALCULATION OF g‘ AND THE
BC STRENGTH

A. Recurrence relation

The terms in the n-series in Eq. (3.2) for g‘, Eq. (3.6) for
�~g‘ and Eq. (3.7) for �g‘ all consist on the coefficient an
times a n-dependent factor, which we denote by Tð�Þ

n , Tð0Þ
n

and TðþÞ
n , respectively (these quantities do not include the

n-independent factors multiplying the series). All three

FIG. 3 (color online). Exact solution an to the recurrence rela-
tions with s ¼ 0, ‘ ¼ 2 as a function of both M�: 7:1001 !
10:1001 and n ¼ 1000 ! 5000. We chose the initial value a0 ¼ 1.
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n
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n

1

104
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1012

an

FIG. 2 (color online). Jaffé coefficient an as a function of n for s ¼ 2, ‘ ¼ 2. Top plots (a) and (b) are for �� ¼ 0:2 and bottom plots
(c) and (d) for �� ¼ 15:4. Right plots (b) and (d) are log-plot versions of (a) and (c), respectively. Blue dots: Exact solution an to the
recurrence relation (4.1) with a0 ¼ 1; the continuous blue curve is an interpolation of the blue dots. Dashed green curve: Large-n
asymptotics Eq. (4.4) where we have taken a linear combination of the two linearly independent asymptotic solutions such that the
linear combination matches the exact value of an at both n ¼ 1000 and n ¼ 2000 for �� ¼ 0:2, and at n ¼ 145 and n ¼ 150 for
�� ¼ 15:4. We note the pulse centered around n ¼ 25 in the case �� ¼ 15:4 (the equivalent pulse in the case �� ¼ 0:2 is centered around
its first peak at n 	 20); the coefficient an reaches its maximum magnitude at the pulse and then the magnitude decays rapidly with n.
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factors, Tð�Þ
n , Tð0Þ

n and TðþÞ
n , satisfy the same, following

recurrence relation [31,32,38]:

ðnþ 1� 2 ��Þðn� 2 ��ÞTn�1

� ðnþ 1� 2 ��Þð2nþ 1� 4 ��� 2 �� �rÞTn

þ ðnþ 1� 2 ��þ sÞðnþ 1� 2 ��� sÞTnþ1 ¼ 0;

(6.1)

where Tn denotes any of Tð�Þ
n , Tð0Þ

n and TðþÞ
n .

In the subsections below we will show the following. On

the NIA, all three factors, Tð�Þ
n , Tð0Þ

n and TðþÞ
n , have the

same leading-order behaviorOðn�1=4e�2i
ffiffiffiffiffiffiffiffiffi
2 �� �r n

p
Þ for large n

[see, respectively, Eqs. (6.2), (6.3), and (6.5) below]. The

solution Tð�Þ
n and either the solution Tð0Þ

n or TðþÞ
n of the

recurrence relation Eq. (6.1) are linearly independent. We
show that, when solving the recurrence relation (6.1) for �!

anywhere except on the NIA, Tð�Þ
n is a subdominant solu-

tion and Tð0Þ
n and TðþÞ

n are dominant solutions. In this case

of �! =2 NIA, if one wishes to find Tð�Þ
n , one expects that

forward recurrence will be unstable in that the dominant
solution will ‘‘creep in’’ as n is increased. One should then

use instead Miller’s algorithm of backward recursion [32].
On the other hand, when solving the recurrence relation
(6.1) on the NIA there are no dominant nor subdominant

solutions, all solutions asymptoting like Oðn�1=4Þ. In this
case of �! 2 NIA, there is no danger of a dominant solution
‘‘creeping in’’ and so there is no need for using Miller’s
algorithm of backward recursion for finding any of the
three solutions.

B. Calculation of g‘

We need a method for calculating the radial solution g‘
on the PIA, as required by qð�Þ in Eq. (2.11), as well as on
the NIA, as required by the Wronskian Eq. (2.3). We will
calculate g‘ directly on the NIA, as well as on the PIA,
using the Leaver-U series Eq. (3.2). As mentioned in
Sec. III B, the Leaver-U series allows us to calculate g‘
directly on the NIA, specifically as the limit from the third
quadrant, i.e., g‘þ. The advantage of evaluating g‘ on the
NIA is twofold. First, no extrapolating procedure � ! 0þ
onto the NIA is then needed. Secondly, on the NIA there
are no dominant/subdominant solutions to the recurrence
relation (6.1) and so there is no need for Miller’s algorithm
of backward recursion.

(c)
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Jn,l

200 400 600 800 1000
n

1 1048
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n
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(d)
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error
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1020

1025

fl

(a) (b)

FIG. 4 (color online). Construction of f‘ðr; !Þ on the PIA using Eq. (3.1) for s ¼ 2, ‘ ¼ 2, �r ¼ 5. Plots (a)–(c) are with a0 ¼ 1, for the
value �! ¼ 9:8002i and with n on the x-axis. (a) Partial term Jn;‘. (b) Partial sum

P
n
n0¼0 Jn0;‘. (c) Partial error jJn;‘=

P
n
n0¼0 Jn0 ;‘j. (d) Log-

plot of f‘ðr; !Þ using Eq. (3.1) (blue dots interpolated by the continuous blue curve) as a function of j �!j and log-plot of (ei �! �r� þ e�i �!�r� )
(dashed green curve), which corresponds to the asymptotics of Eq. (2.6) ignoring the incidence and reflection coefficients.
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The confluent hypergeometric U-functions, however,
are notoriously difficult to evaluate. We have three options

in order to calculate the factors Tð�Þ
n in the Leaver-U series:

(1) from their definition (3.2) and using the in-built
U-function in the Mathematica computer algebra system,
(2) from their definition (3.2) and using the integral repre-
sentation Eq. (A1) for the U-function, and (3) from the
above recurrence relation Eq. (6.1). We note that method
(1) is highly unstable, whereas it is a lot more stable to

calculate Tð�Þ
n using method (2) (see Eq. (4.16) of Ref. [32],

Appendix B of Refs. [38,39]).

1. Large-n asymptotics

We obtain the large-n behavior of the terms in the
Leaver-U series Eq. (3.2) in order to investigate its con-
vergence properties. From Eq. (3.2) and (A6), we have

Tð�Þ
n � e� �� �r�1=2

�ð1�2 ��Þð2j ��j�rÞsþ1=4
e�i
ðsþ1=4Þn�1=4e�2

ffiffiffiffiffiffiffiffiffiffi
2j ��j�rn

p
ei
=2 ;

n!1; (6.2)

which is valid for all 
 � arg ð� ��Þ 2 ð��;þ�� and
�r > 0. Equation (6.2) agrees with Eq. (4.19) of Ref. [32].

(b)(a)
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5
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10

1 2 M

FIG. 6 (color online). Plots of ln jf̂‘j as a function of r�=M for s ¼ 2, ‘ ¼ 2 and (a) �� ¼ 4:4002, (b) �� ¼ 9:8002. Continuous blue
curve: ln jf̂‘j obtained using Eq. (3.1). Dashed green curve: ln jei �!�r� þ e�i �! �r� j. Dotted red curve: ln jMdf̂‘=dr�j obtained using
Eq. (3.8). Dot-dashed brown curve: ln jM!ðei �! �r� þ e�i �! �r� Þj. The curves for ln jei �! �r� þ e�i �!�r� j and its radial derivative only serve as
very crude approximations to the large- �r asymptotics of f̂‘ in Eq. (2.5).
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FIG. 5 (color online). Construction of f̂‘ on the NIA using Eq. (3.1) for s ¼ 2, ‘ ¼ 2. (a) Partial error jĴn;‘=
P

n
n0¼0 Ĵn0;‘j as a function

of n with a0 ¼ 1 for �� ¼ 9:8002 and �r ¼ 5. (b) f̂‘ from Eq. (3.1) as a function of ��. The continuous blue and dotted red curves are
calculated using the Jaffé series Eq. (3.1) for �r� ¼ 0:1 and �r� ¼ 0:2, respectively. Note that they are both zero at �� ¼ ��AS because of
the fact that, for s ¼ 2, ��AS is not a pole of f̂‘. The dashed green and dot-dashed brown curves are the large- �� asymptotics in Ref. [14]
for �r� ¼ 0:1 and �r� ¼ 0:2, respectively.
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It follows from Eq. (6.2) that the series for ~hn;‘ is absolutely
convergent everywhere except, maybe, on the NIA.

The convergence properties of the series h‘ ¼
P

nhn;‘ on
the NIA (which would yield g‘þ) is the same as that for

�~h‘ ¼ P
n�~hn;‘ in Sec. VIC 2 and as that for �h‘ ¼P

n�hn;‘ in Sec. VID 1, and so we refer the reader to this

latter section.

2. Results

In Fig. 7 we plot g‘þ as a function of the frequency on
the NIA. Since g‘ ! e �� �r 2 R for large �r and the asymp-
totic series for g‘ for large �r contains only real coefficients
(e.g., Sec. B 1 of Ref. [32]), one would expect that
jImðg‘þÞj 
 jReðg‘þÞj, especially as �� increases—this is
indeed what happens in Fig. 7. This figure shows that the
calculation of Imðg‘þÞ becomes unstable at large ��. In
Fig. 2 in Ref. [14] we show similar plots for s ¼ 0.

When calculating the terms in the series Eq. (3.2) for
g‘þðr;�i�Þ in practice using Mathematica, the first two

terms Tð�Þ
n¼0 and Tð�Þ

n¼1 on the NIA we calculate using

Eq. (A1) for the U-function instead of obtaining it using
Mathematica’s in-built HypergeometricU function.

In Fig. 8 we plot both the radial function g‘þ and its
radial derivative as functions of the radius. The radial
derivative as a function of the frequency has a very similar
behavior to that of g‘þ in Fig. 7.
On the PIA, as noted in Sec. VI B 1, solving the recur-

rence relation Eq. (6.1) to obtain g‘ is unstable since it
corresponds to the subdominant solution and the dominant
solution would be ‘‘creeping in’’. One option is to obtain
g‘ðr;þi�Þ using Eqs. (3.2) and (A6). In Fig. 9 we show that
using the recurrence relation is unstable whereas the latter
option does well. The following is the method we use:
when calculating the terms in the series Eq. (3.2) for
g‘ðr;þi�Þ in practice in Mathematica, we use a numerical
evaluation of the integral representation Eq. (A1) in order

to calculate Tð�Þ
n ,8n, on the PIA instead of obtaining it by

solving the recurrence relation that it satisfies.

C. Calculation of �~g‘

From Eq. (13.3.7) in Ref. [31] and the property

�ðzþ 1Þ ¼ z�ðzÞ we easily see that Tð0Þ
n in Eq. (3.6) satisfy

the recurrence relation Eq. (6.1). In Fig. 10 we plot
e13M��~g‘ðr; �Þ as a function of �� obtained with Eq. (3.6).
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FIG. 7 (color online). Log-plots of the radial solution g‘þ as a function of �� for s ¼ 2, ‘ ¼ 2. Top plots (a) and (b) are for �r ¼ 1:4M
and bottom plots (c) and (d) are for �r ¼ 2:5. Left plots (a) and (c) are e� �� �r�Reðg‘þÞ and right plots (b) and (d) are Imðg‘þÞ, all obtained
using Eq. (3.2) and finding Tð�Þ

n by solving the recurrence relation (6.1) with Tð�Þ
0 and Tð�Þ

1 calculated using Mathematica’s in-built

HypergeometricU function; cf. Fig. 2 of Ref. [14]. A similar behavior is exhibited by the radial derivative dg‘þ=dr�.
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Note that, when carried out in practice in Mathematica, it is
better to numerically evaluate the integration representa-
tion Eq. (A1) instead of using Mathematica’s in-built
HypergeometricU function in order to calculate the two

initial values Tð0Þ
n¼0 and Tð0Þ

n¼1.

1. Zeros and singularities of �~hn;‘

Any possible zeros and singularities of the terms �~hn;‘
in Eq. (3.6) may only come from the ~an, theU-function and
the four �-functions. The U-function has no singularities
other than its branch point, and the �-function has no zeros.
We do not know analytically the possible zeros of ~an nor of
theU-function, so we can only determine some of the zeros

of �~hn;‘, and we cannot be sure that any of the poles we

might find are not actually canceled out by zeros of ~an and/
or the U-function.
From Sec. IVA we know that an have simple poles

8n � k if �� ¼ k=2 for some k 2 N (with the exception
of � ¼ �AS when s ¼ 2). The gamma function �ðzÞ has
simple poles at z 2 Z�. Let us distinguish two cases:
(i) Case 1� 2 �� =2 Z� [ 0.—Neither an nor the

�-functions have any pole. Therefore �~hn;‘ has no

zeros (other than any coming from an or the
U-function) and it has no poles.

(ii) 1� 2 �� � �k 2 Z� [ 0.—In the numerator, an has
simple poles (except if � ¼ �AS when s ¼ 2)
at n ¼ k; kþ 1; kþ 2; . . . and �ð1þ n� 2 ��Þ at
n ¼ 0; 1; 2; . . . ; k. In the denominator, �ð1þ sþ
n� 2 ��Þ�ð1� sþ n� 2 ��Þ has double poles at
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FIG. 8 (color online). Log-plots of g‘þ and dg‘þ=dr� as functions of r�=M for s ¼ 2, ‘ ¼ 2, �� ¼ 4:4002. These radial functions are

obtained using Eqs. (3.2) and (3.9) and finding Tð�Þ
n by solving the recurrence relation (6.1) with Tð�Þ

0 and Tð�Þ
1 calculated using

Mathematica’s in-built HypergeometricU function. (a) Continuous blue curve: Reðg‘Þ; dashed green curve: large-�r asymptotics
g‘ � e ���r� ; dotted red curve: jReðMdg‘þ=dr�Þj; dot-dashed brown curve: large-�r asymptotics Mdg‘þ=dr� �M�e ���r� . (b) Similar to
(a) but the continuous blue curve and the dotted red curve here correspond to the imaginary—instead of real—part of g‘þ and
Mdg‘þ=dr�, respectively. We note that for �� ¼ 9:8002 the calculation of the imaginary part using the method as in these plots
becomes unstable for r� * 8M.
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FIG. 9 (color online). Radial solution g‘ on the PIA for s ¼ 2, ‘ ¼ 2, �r ¼ 2:5. (a) Continuous blue curve: Tð�Þ
n in Eq. (3.2) as a

function of n for �! ¼ 4:4002i obtained using Mathematica’s HypergeometricU function [a similar curve is obtained by solving the
recurrence relation Eq. (6.1)]; this curve shows how the dominant solution ‘‘creeps in’’ in the solution of the recurrence relation. Dashed

red curve: similar to the continuous blue curve but Tð�Þ
n is obtained using Eq. (A1). (b) Solution g‘ðr;þi�Þ as a function of j �!j on the PIA

obtained by numerically evaluating the integral representation Eq. (A1): convergence is achieved up to large values of j �!j whereas using
the recurrence relation Eq. (6.1) the series coincides with the curve plotted up to j �!j 	 14 but ceases to converge after that value.
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n ¼ 0; 1; 2; . . . ; k� jsj and simple poles at n ¼ k�
jsj þ 1; k� jsj þ 2; . . . ; kþ jsj. Also in the de-
nominator, �ð1� 2 ��Þ has a simple pole 8n 2 N.

Therefore, �~hn;‘ has no poles. Regarding the

zeros (other than any coming from an or the

U-function), if n � k, �~hn;‘ has double zeros at

n ¼ 0; 1; 2; . . . ; k� jsj and simple zeros at n ¼ k�
jsj þ 1; k� jsj þ 2; . . . ; kþ jsj; the term n ¼ k
is not a zero if s � 0 and it is just a simple zero
if s ¼ 0.

In the particular case � ¼ �AS for s ¼ 2, an does not have a
pole for any n 2 N. In this case, a similar analysis to

the one in the above paragraph shows that �~hn;‘ has a

zero there.

2. Large-n asymptotics

Using Eq. (A5) and Eq. (5.11.3) of Ref. [31] we obtain

Tð0Þ
n � e �� �rð2 �� �rÞ�s�1=4ffiffiffiffi

�
p ð�1Þnn�1=4

� cos

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �� �rð2n� 4 ��þ 1Þ þ �

�
2 ��� n� 1

4

�s 1
A;

n ! 1; (6.3)

which is valid for all arg ð ��Þ 2 ð�3�=2; 3�=2Þ and �r > 0.
Finally, together with the large-n asymptotics (4.4) for an
we can obtain the large-n asymptotics of the terms in the

series for �~h‘,

�~hn;‘� ~Cð�;rÞð�1Þnn� ���1e�2
ffiffiffiffiffiffi
2n ��

p
i

�cos

0
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �� �rð2n�4 ��þ1Þþ�

�
2 ���n�1

4

�s 1
A;

n!1; if s�0 and �� �r>0; (6.4)

for fixed �. The normalization factor ~Cð�; rÞ is irrelevant
to the convergence analysis. The modulus of the large-n

asymptotics of �~hn;‘ in Eq. (6.4) is basically the same

as that for �hn;‘ in Eq. (6.6) below. Therefore the con-

clusions below Eq. (6.6) regarding the convergence of
the series �h‘ ¼

P
n�hn;‘ apply equally to the series

�~h‘ ¼ P
n�~hn;‘.

D. Calculation of �g‘

From Eq. (13.3.1) in Ref. [31] and the property

�ðzþ 1Þ ¼ z�ðzÞ we easily find that TðþÞ
n in Eq. (3.7)

satisfy the same recurrence relation Eq. (6.1) as the Tð�Þ
n

in the series for g‘ and the Tð0Þ
n in the series for �~g‘—see

Refs. [32,38]. To investigate the convergence properties of
this series, we require the large-n asymptotics of its terms.

1. Large-n asymptotics

From Eq. (3.7) and Eq. (9.228) in Ref. [40] we obtain

TðþÞ
n � ��1=2e� �� �r�ð2sþ 1Þð2 �� �rÞ�1=4�sn�1=4

� cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 4 ��þ 2nÞ4 �� �r

p
� �ð4sþ 1Þ

4

�
;

n ! 1; (6.5)

which is valid for all arg ð ��Þ 2 ½0; 2�� and �r > 0.
This agrees with Eq. 4.20 [32] (except for a typo in
Ref. [32] in the sign of s inside the �-function). Note
that Eq. (6.5) differs from Eq. (12) in Sec. 6.13.2 of
Ref. [41] in having an extra factor 1=2 and also a power
‘‘�1=4� s’’instead of a ‘‘þ1=4� s.’’ We have, however,
checked with Mathematica for various values of the
parameters that Eq. (6.5) is the correct expression.
From Eq. (6.5) and the large-n asymptotics (4.4) for an

we can now obtain the large-n asymptotics of the terms in
the series for �g‘,

�hn;‘ � Cð�; rÞ
�
n� 2 ��þ 1

2

�� ���1
e�2

ffiffiffiffiffiffiffiffiffi�2n ��
p

� cos

0
@�ð4sþ 1Þ

4
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
n� 2 ��þ 1

2

�
2 �� �r

s 1
A;

n� 2 �� � 1; (6.6)

where Cð�; rÞ is a normalization factor which is irrelevant
to the convergence analysis. The ratio test yields
j�hnþ1;‘=�hn;‘j ! 1 as n ! 1, and so it is inconclusive.

However, we may apply the integral test as follows.
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FIG. 10 (color online). Plot of ‘‘�ie ���r��~g‘’’ as a function of ��
for s ¼ 2, ‘ ¼ 2, �r ¼ 5. We have obtained �~g‘ from Eq. (3.6) by

solving the recurrence relation Eq. (6.1) with Tð0Þ
0 and Tð0Þ

1

calculated using Mathematica’s in-built HypergeometricU func-
tion. We have removed from �~g‘ the large- �r behavior of
Eq. (2.11), g‘ðr;þi�Þ � e� ���r� . The zeros of the curve occur at
�� steps of approximately 1=2, agreeing with the large- �� asymp-
totics of qð�Þ in Eq. (38) of Ref. [14].
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For �� > 0, the function kðnÞ � jCð�; rÞjn� ���1 ¼ jkðnÞj is
positive and monotone decreasing with n and it satisfies

Z 1

1
dnjkðnÞj ¼ jCð�; rÞj

Z 1

1
dnn� ���1

¼ jCð�; rÞj
��

h
1� lim

n!1n
� ��

i
<1; if �� > 0:

(6.7)

Therefore jkðnÞj satisfies the integral test and so the seriesP
nkðnÞ is absolutely convergent for �� > 0. Since j�hn;‘j<

jkðnÞj for sufficiently large n, from the comparison test we
have that

P
n�hn;‘ is also absolutely convergent for �� > 0.

Indeed, in our calculations, the series has converged for
arbitrary values of ��. However, while the series is fast
convergent for large �� the speed of convergence becomes
slower for smaller values ��.

E. Calculation of qð�Þ
We calculate the BC strength qð�Þ using Eq. (2.11),

where we calculate �~g‘ using the method described in
Sec. VIC and g‘ðr;þi�Þ on the PIA using Eq. (3.2) with
� ! �� everywhere. We note that an alternative method,
which we have not explored, for calculating g‘ðr;þi�Þ
might be to use Eq. (74) of Ref. [28]. In Fig. 11 we plot
qð�Þ as a function of ��. This figure is to be compared with
Fig. 2 in Ref. [17] (also Fig. 2 in Ref. [18]).

VII. CALCULATION OF THE WRONSKIAN

We calculate, on the NIA, the Wronskian Ŵþ of the

radial solutions f̂‘ � � sin ð2�i �!Þf‘ and g‘þ using the
methods described in the previous sections: the Jaffé series
Eq. (3.1) for f‘, Eq. (3.8) for df‘=dr�, the Leaver-U series
Eq. (3.2) for g‘þ and Eq. (3.9) for dg‘þ=dr�.
In Figs. 5–8 we plot, on the NIA, the radial solutions

f̂‘ðr;�i�Þ and g‘þðr;�i�Þ and their radial derivatives,
which are required for the Wronskian.

Let us define Ŵ1 � g‘þf̂0‘ and W2 � f̂‘g
0
‘þ, so that

Ŵþ ¼ Ŵ2 � Ŵ1. Figures 12(a) and 12(b) show that the

magnitudes of the two contributions Ŵ1 and Ŵ2 are very
close for all r� except near r� ¼ 0. Therefore, the compu-

tation of Ŵ ¼ Ŵ2 � Ŵ1 would require the knowledge of
these two contributions to very high accuracy away from
this ‘‘window’’ near r� ¼ 0. We note that for the imaginary

part, for r� � 0 the two contributions Ŵ1 and Ŵ2 actually
add up and so there is no computational difficulty there
either. Figure 12(c) shows that, indeed, there is a window
near r� ¼ 0 where the calculation of the absolute value of
the Wronskian is reliable. We note that in this window it

is ImðŴÞ � ReðŴÞ, so the imaginary part dominates but,
for accuracy, the real part cannot be neglected. We have
checked that a similar window near r� ¼ 0 occurs for
different values of the spin, the multipole number ‘ and
the frequency on the NIA.

In Figs. 13 we plot Ŵ1, Ŵ2 and Ŵ at �r ¼ 1:4 as func-
tions of ��. Figure 13(c), together with Figs. 7–9 of
Ref. [14] where these mid-frequency results are compared
to large- �� asymptotics, show that the calculation of the
Wronskian at this value of the radius yields a reliable
result. In Ref. [12] we show that the mid-frequency results
for the Wronskian agree well with small- �� asymptotics.
Figure 13(c) also shows—for the particular value ‘ ¼ 2—

that for s ¼ 2 the Wronskian Ŵþ � W½f̂‘; g‘þ� has a zero
of order one at � ¼ �AS. This is as expected because of the

definition f̂‘ � � sin ð2�i �!Þf‘ and the fact that �� ¼ ��AS

is not a pole of f‘ for s ¼ 2 and it agrees with Ref. [17].

VIII. CALCULATION OF BC MODES

We obtain the branch cut modes �G‘ðr; r0;�Þ by calcu-
lating the different quantities in Eq. (2.10) using the meth-
ods described in the previous sections. In particular, for the
calculation of the Wronskian we have evaluated the radial

functions f̂‘ and g‘ at �r ¼ 1:4 while for the branch cut
strength qð�Þ we have evaluated the radial functions at �r ¼
2:5. In Fig. 14 we plot �G‘ as a function of �� for different
spins. In the spin-2 case the plot is to be compared with
Fig. 3 in Ref. [17] (also Fig. 3 in Ref. [18]). From Figs. 5,

11, and 13(c), respectively, the radial solution f̂‘, the BC

strength q and the absolute value of the Wronskian jŴj all
have a simple zero at �� ¼ ��AS in the case � ¼ �AS and
s ¼ ‘ ¼ 2. From Eq. (2.10) it then follows that �G‘ has a

2 4 6 8 10
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5

q

FIG. 11 (color online). BC strength qð�Þ of Eq. (2.11) as a
function of �� for s ¼ 2, ‘ ¼ 2. Continuous blue curve: qð�Þ
obtained using Eq. (2.11) with the value �r ¼ 2:5 and g‘ðr;þi�Þ
obtained using Eq. (A1). Dashed green curve: Large- �� asymp-
totics of Eq. (38) of Ref. [14] (see Fig. 5 in Ref. [14] for a better
agreement for larger values of ��). Dot-dashed red curve: Small- ��
asymptotics of Eqs. (2.2) and (2.5) in Ref. [17] (we note that the
small- �� asymptotics in Ref. [17] do not work well for other
spins, see Ref. [12] for better agreement for small �� for any
spin); cf. Fig. 2 in Ref. [17] (also Fig. 2 in Ref. [18]). We note
that when g‘ðr;þi�Þ is obtained using the recurrence relation
Eq. (6.1) instead of Eq. (A1), the result for qð�Þ is incorrect from
�� 	 11; see Fig. 9(a).
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simple zero at that frequency, as Fig. 14(c) reflects. In
Fig. 15 we plot again�G‘ðr; r0;�Þ but in this case for larger
values of the radius r0: the magnitude of �G‘ increases
rapidly with the radius, as expected from Fig. 5(b).

The spin-2 case is quite distinct due to the algebraically-

special frequency ��AS (¼ 4 when ‘ ¼ 2): while the branch
cut mode �G‘ is zero at �� ¼ ��AS [17], �G‘ is particularly

large for frequencies near �AS. This behavior is explained,

in the case ‘ ¼ 2 for �r0� ! �1 and �r� ! 1, as arising

from nearby ‘‘unconventional damped modes,’’ that is a

pair of poles in the unphysical Riemann sheet. The

imaginary part of the QNM frequencies is negative and

increases in magnitude as the overtone number n increases,

so that n is an index which indicates the speed of damping

of the mode with time. For spin-2, QNM frequencies

approach the algebraically-special frequency as n is in-

creased from the lowest damped mode, n ¼ 0, until a

certain value of n, say nM, whose QNM frequency is

very close to �!AS; for ‘ ¼ 2 it is nM ¼ 9. As n is further

increased from nM, the real part of the spin-2 QNM fre-

quencies in the 3rd quadrant increases monotonically.

Therefore, in a certain sense, the algebraically-special

frequency marks the start of the highly-damped asymptotic

regime for QNMs.

In Fig. 16 we plot the radius-independent quantity

‘‘j2�q=ðMŴ2Þj,’’ which is the branch cut mode �G‘ of
Eq. (2.10) but without the f‘ factors. The zeros of this
radius-independent quantity correspond to the zeros of
qð�Þ. Figure 16 shows that, for the cases with s ¼ 1 and
2, these zeros occur with a period in �� close to that of the
increment in the imaginary part of the QNM frequencies
�!QNM at consecutive overtone numbers. For s ¼ 2,
(minus) the imaginary part of the QNM frequencies lie
close to the zeros of qð�Þ. For s ¼ 1, for which the QNM
frequencies approach the NIA particularly fast [14],
(minus) the imaginary part of the QNM frequencies lie

close to the maxima points of j2�q=ðMŴ2Þj which are

directly related to nearby zeros of Ŵ, i.e., the QNM fre-
quencies by definition. For s ¼ 0, on the other hand, the
periods of the zeros of qð�Þ and of Imð �!QNMÞ differ slightly
for mid- �� while, for large- ��,�Imð �!QNMÞ tend to lie some-

where in between the zeros of qð�Þ and the maxima points

of j2�q=ðMŴ2Þj. For all spins in the large- �� asymptotic
regime, the separation of the zeros of qð�Þ approaches 1=2,
which coincides with the separation in the imaginary part
of highly-damped QNM frequencies for consecutive over-
tone numbers (see, e.g., Ref. [14] for the asymptotic
expressions).
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FIG. 12 (color online). Wronskian Ŵþ � W½f̂‘; g‘þ;!� ¼ Ŵ2 � Ŵ1 as a function of r�=M for s ¼ 2, ‘ ¼ 2 and �� ¼ 4:4002. Top
plots (a) and (b): Log-plots of the absolute values of, respectively, the real and imaginary parts ofM � Ŵ1 � Mg‘þf̂0‘ (continuous blue
curve) and M � Ŵ2 � Mf̂‘g

0
‘þ (dashed red curve). Bottom plot (c): Log-plot of MjŴj.
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IX. SELF-FORCE

The motion of a (nontest) point particle moving on a
background space-time deviates from geodesic motion of
that space-time due to a self-force (see, e.g., Ref. [4] for a
review). The self-force may be calculated via an integra-
tion of the covariant derivative of the retarded Green
function integrated over the whole past worldline of the
particle. In particular, for a scalar charge e moving on
Schwarzschild background space-time, the �-component
of the self-force is given by

f�ð�Þ ¼ rhe
2ð��

� þ u�u
�Þ
Z ���

�1
d ��0r�Gretðzð�Þ; zð�0ÞÞ;

(9.1)

where zð�Þ is the worldline of the particle, � is its proper
time and u� its 4-velocity. In the rest of this section we will
deal with the case of a scalar charge (s ¼ 0) only, although
the self-force in the cases of an electromagnetic charge
(s ¼ 1) and of a point mass (s ¼ 2) also involve the
integration of the Green function in a similar way. We
will investigate the contribution to the scalar self-force

from a single BC multipole mode GBC
‘ ðr; r0; tÞ in the

case of a particle on a worldline at constant radius and
dt=d� ¼ const.
In Fig. 17 we construct the mode ‘ ¼ 1 of the retarded

Green function, Gret
‘¼1ðr; r0; tÞ, in the scalar case s ¼ 0 at

the radii �r ¼ �r0 ¼ 5. We plot: (1) the BC contribution to
Gret

‘ , i.e., GBC
‘ , (2) the sum of GBC

‘ and the QNM contribu-

tion to Gret
‘ (taking into account the QNMs for the first

24 overtones), and (3) a numerical approximation to the
full Gret

‘ . We calculate GBC
‘ by integrating over the fre-

quency the BC modes �G‘ obtained using a different
method in each of these three regimes: small-frequency
(0< �� < 0:2), mid-frequency (0:2< �� < 50) and large-
frequency (50< ��). In the small-frequency regime we
use the asymptotics of Refs. [11,12]. In the mid-frequency
regime, we interpolate the values of the BC modes
�G‘ obtained as described in the previous section. In the
large-frequency regime we use the asymptotics of
Ref. [14] for the BC modes. We calculate the QNM
contribution to Gret

‘ using the method in Ref. [42]. We

obtain the numerical approximation to Gret
‘ by numerically

integrating the (1þ 1)-dimensional partial differential
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FIG. 13 (color online). Wronskian Ŵ � W½f̂‘; g‘;!� ¼ Ŵ2 � Ŵ1 as a function of �� for s ¼ 2, ‘ ¼ 2, �r ¼ 1:4 (�r� 	 0:49). Top
plots (a) and (b): Log-plots of, respectively, the real and imaginary parts of both MŴ1 (continuous blue curve) and MŴ2 (dashed red
curve). Bottom plot (c): Plot of the real part (continuous blue curve), imaginary part (dashed red curve) and absolute value (dot-dashed
green curve) of MŴþ=ð ��AS � ��Þ. We note the zero of order one of jŴþj at the algebraically-special frequency �� ¼ ��AS.

MARC CASALS AND ADRIAN OTTEWILL PHYSICAL REVIEW D 87, 064010 (2013)

064010-16



equation ð�@2�t þ @2�r� � VÞ
‘ðr; tÞ ¼ 0 [with the potential

V given by Eq. (2.4)] for the ‘-mode 
‘ of the field using
the following initial data. We choose zero data for the
initial value of the ‘-mode of the field. For the initial value
of the time derivative of the ‘-mode of the field, on the
other hand, we choose a Gaussian distribution in r�
‘‘peaked’’ at a certain value r�0. From the Kirchhoff inte-
gral representation for the field (e.g., Ref. [7]), the solution

‘ðr; tÞ thus obtained should approximate the ‘-mode
of the retarded Green function, Gret

‘ ðr; r0; tÞ, where r0 �
rðr�0Þ. We used a Gaussian width of approximately 0:2M

and we checked that the change in the numerical solution
obtained by using smaller values of the width was negli-
gible for our purposes. For the numerical integration of the
(1þ 1)-dimensional partial differential equation we used
Wardell’s C-code available in Ref. [43]. A slightly differ-
ent version of this numerical approach using a Gaussian
distribution (though using it as the source, rather than as
initial data) has recently been successfully applied in
Ref. [44] in the full (3þ 1)-dimensional case. We observe
from Fig. 17 that the BC contribution becomes most sig-
nificant for small values of the ‘‘time’’ �T � �t� j�r�j � j�r0�j
but, in the regime plotted, the BC contribution is always
subdomı̀nant to the QNM contribution. We note that, in the
particular case being plotted, the large-frequency regime of
the BC never contributes significantly and the mid-
frequency regime of the BC only contributes noticeably
in the region �T < 1. The matching between the numerical
solution and the sum of GBC

‘ plus QNM contribution is

excellent. For �T < 0 neither the QNM series nor the BC
integral is expected to converge separately [14].
Let us now define the ‘‘‘-mode of the partial field’’ as


partial
‘ ðrÞ � rh

Z 1

2j�r�j
d�tGret

‘ ðr; r0 ¼ r; tÞ: (9.2)

The contribution to the radial component of the self-force
per unit charge in the case of a particle at constant radius
from the ‘-mode of the Green function from the segment of
the worldline lying between �t ¼ 2j�r�j and �t ! 1 is then
obtained as

fpartial‘;r

e
� ð2‘þ 1Þ

r2
P‘ðcos�Þ d�dt

�
d
partial

‘

dr
�
partial

‘

r

�
:

(9.3)

The sum
P1

‘¼0 f
partial
‘;r clearly only yields a partial contri-

bution to the radial component of the self-force since in
Eq. (9.2) we are integrating from �t ¼ 2j�r�j instead of from
�t ¼ 0þ, as required in order to obtain the full self-force.
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FIG. 14 (color online). Branch cut mode �G‘=M of Eq. (2.10)
as a function of �� for �r� ¼ 0:1 and �r0� ¼ 0:2. The Wronskian has
been calculated at �r ¼ 1:4 while qð�Þ has been calculated with
functions at �r ¼ 2:5. (a) s ¼ 0, ‘ ¼ 1. (b) s ¼ 1, ‘ ¼ 1.
(c) s ¼ 2, ‘ ¼ 2; cf. Fig. 3 in Ref. [17] (also Fig. 3 in Ref. [18]).
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FIG. 15 (color online). Same as Fig. 14(c), i.e., �G‘=M as a
function of �� for s ¼ 2, ‘ ¼ 2 and �r� ¼ 0:1 but here it is
with �r0� ¼ �r�ð�r ¼ 2:5Þ in the continuous blue curve and �r0� ¼
�r�ð�r ¼ 5Þ in the dashed red curve.
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Because of the divergence of the BC and QNM contribu-
tions for �T < 0, in order to obtain the contribution from
the worldline segment for �t: 0þ ! 2j�r�j we require a
different method for calculating the Green function, such

as a quasi-local series (see, e.g., Ref. [45]). The BC con-

tribution to
partial
‘ is obtained by insertingGBC

‘ in the place

of Gret
‘ in Eq. (9.2). In Fig. 18(a) we plot this contribution

and its r�-derivative (evaluated using a central difference
scheme) as functions of the radius in the case s ¼ 0 and
‘ ¼ 1. In Fig. 18(b) we plot the corresponding BC con-

tribution to f
partial
‘;r =e in the static case, where � ¼ 0 and

d�=dt ¼ ð1� 1= �rÞ1=2.

X. DISCUSSION

In this paper we have presented the first analytic method
for calculating the branch cut modes in the nonasymptotic,
mid-frequency regime in Schwarzschild space-time for
fields of any integral spin. We have investigated their
properties, in particular regarding their relation to quasi-
normal mode frequencies and around the algebraically-
special frequency. We have applied our calculation of the
BC modes to investigate their partial (i.e., from �t > 2j�r�j)
contribution for one ‘ mode to the self-force on a scalar
charge moving on Schwarzschild background at con-
stant radius. We have found that, for the particular case
investigated, the BC contribution becomes larger as �t
approaches 2j�r�j (where the high-frequency asymptotics
of the BC modes become important) but the QNM contri-
bution dominates the self-force at most times.
In Ref. [46] the first successful application of the

so-called method of matched expansions for the calcula-
tion of the self-force was achieved. This method consists
on calculating the Green function at ‘‘early times’’ using a
quasilocal expansion and in the ‘‘distant past’’ using a
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FIG. 16 (color online). Log-plot of j2�q=ðMŴ2Þj (this is the
branch cut mode �G‘ of Eq. (2.10) but without the f̂‘ factors) as
a function of ��. The vertical lines are located at the values of
(minus) the imaginary part of the QNM frequencies—obtained
from Ref. [53] for the cases s ¼ 1 and s ¼ 2 and using Ref. [42]
for s ¼ 0. The Wronskian Ŵ and the BC strength qð�Þ have been
calculated by evaluating the radial solutions at, respectively, �r ¼
1:4 and �r ¼ 2:5. (a) s ¼ 0, ‘ ¼ 1. (b) s ¼ 1, ‘ ¼ 1. (c) s ¼ 2,
‘ ¼ 2: in this case we log-plot j2�qð ��� ��ASÞ2=ðMŴ2Þj, i.e., we
include an extra factor ð ��� ��ASÞ2 to account for the double zero
of jŴj2 at �� ¼ ��AS).
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FIG. 17 (color online). Mode ‘ ¼ 1 of the retarded Green
function, i.e., Gret

‘ ðr; r0; tÞ, for s ¼ 0 and �r ¼ �r0 ¼ 5 as a function
of the time �T � �t� j�r�j � j�r0�j. Continuous blue curve:
Numerical approximation to Gret

‘ obtained using Ref. [43].

Dashed black curve: GBC
‘ of Eq. (2.9). Dotted green curve:

QNM series contribution (summing overtone numbers
n: 0 ! 23) obtained using the method in Ref. [42]. Dot-dashed
red curve (overlapping with the continuous blue curve): GBC

‘

plus the QNM series contribution. The matching between the
numerical solution and the sum of GBC

‘ plus QNM series con-

tribution is excellent.
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Fourier mode and multipole decomposition of the Green
function as in Eq. (2.1). In Ref. [46] the method was
applied to the specific case of a black hole toy model
space-time, namely the Nariai space-time, where the
Green function possesses QNMs but not a BC and so
the Green function in the distant past is fully determined
by the QNM series. In Schwarzschild space-time, on the
other hand, the QNM series must be complemented by a
BC integral. In Ref. [47] the QNM series was calculated for
large ‘ and it was shown that it yields an interesting global
singularity structure of the Green function. In this paper we
have presented a method for calculating the BC integral
and we have applied it to one ‘ mode. In Ref. [48] we plan
to apply a calculation of the BC integral for all ‘ modes,
add it to a similar calculation of the QNM series and
supplement it with a quasilocal expansion at ‘early times’
in order to calculate the full self-force in Schwarzschild
space-time using the method of matched expansions.

Another situation where it is important to investigate the
contribution of the BC is that of the response of a black
hole to an initial perturbation. In this case, we expect that
the BC contributes at early times (that is, for �t close to
j�r�j þ j�r�j) as well as at late times (where a logarithmic
behavior precedes the known power-tail decay [11]).
We investigate the latter in depth in Ref. [12].

On the quantum side, the asymptotically constant spac-
ing in the imaginary part of the highly-damped QNM
frequencies led to suggestions of a link with the quantiza-
tion of the black hole area [15,49]. In Ref. [14] we showed
that, in the large- �� regime, the spacing in the imaginary
part of the QNM frequencies asymptotically equals that of
the zeros of the BC modes for all spins s ¼ 0, 1 and 2.
In this paper we have shown that, in the mid-frequency
regime, these two spacings also remain very close in the
cases s ¼ 1 and 2 studied, while they differ more signifi-
cantly in the case s ¼ 0. Intriguingly, the algebraically-
special frequency for gravitational perturbations plays a
special rôle in the connection between QNMs and the BC,

not only harbouring in its neighborhood an almost purely
imaginary QNM frequency but also marking the onset of
the highly-damped regime for QNMs. In a different work,
highly-damped QNMs in Kerr space-time have been inter-
preted as semiclassical bound states along a specific con-
tour in the complex-r plane and have been linked to
Hawking radiation [16]. The least-damped QNMs have
also been linked to Hawking radiation [50]. Given that
QNM frequencies, particularly in the spin-1 case,
‘‘approach’’ the branch cut [14] in the high-damping limit
and that a connection with the branch cut also appears to
exist in the mid-frequency regime, it would be interesting
to investigate whether branch cut modes may play any rôle
in the quantum properties of black holes.
An impending generalization of our current results in

Schwarzschild is that to a rotating, Kerr black hole space-
time. In principle, our method is readily generalizable to
the rotating case, since Leaver’s series representations for
the radial solutions are already valid in Kerr [28].
Immediately, however, some significant differences appear
with respect to the nonrotating Schwarzschild case. For
example, the corresponding symmetry (2.8) in Kerr also
involves a change in the sign of the azimuthal angular
number, on which the radial solutions depend in the rotat-
ing case. As a consequence, the radial solution f‘ is not
necessarily real along the branch cut and the discontinuity
of g‘ across the branch cut is generally not only in its
imaginary part but also in its real part, and so the BC
strength qð�Þ is not necessarily real valued. To further spice
up the analysis in Kerr, the angular eigenvalue has various
branch points in the complex-frequency plane (see, e.g.,
Ref. [51]). This intricate and delicate structure of the
modes in Kerr has various physical manifestations. We
plan to investigate these issues in a future publication.
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APPENDIX: IRREGULAR CONFLUENT
HYPERGEOMETRIC U-FUNCTION

In this Appendix we give some properties of the
irregular confluent hypergeometric U-function, which we
have used in the main body of the paper.

A useful integral representation of the U-function is
given in, e.g., Eq. (13.4.4) of [31],

Uða; 2sþ 1; zÞ ¼ 1

�ðaÞ
Z 1

0
dte�ztta�1ð1þ tÞ2s�a;

ReðaÞ> 0; j arg zj<�=2: (A1)

From Eqs. (13.2.4) and (13.2.41) in Ref. [31] we obtain
the following expression for the discontinuity across the
branch cut of the U-function,

ðze�2�iÞaUða; b; ze�2�iÞ � zaUða; b; zÞ

¼ 2�iezð�zÞa
�ðaÞ�ð1þ a� bÞUðb� a; b;�ze�2�iÞ: (A2)

Finally, we require asymptotics for large values of the
first argument of the U-function. To achieve these it is
convenient to express the irregular confluent hypergeomet-
ric U-function in terms of the Whittaker W-function as

Uða; 2sþ 1; zÞ ¼ ez=2z�s�1=2W�;sðzÞ; (A3)

where � � s� aþ 1
2 . TheWhittakerW-function is in turn

related to the Whittaker M-function by

W�;sðzÞ ¼ �ð�2sÞ
�ð12 � s� �ÞM�;sðzÞ þ �ð2sÞ

�ð12 þ s� �ÞM�;�sðzÞ;

(A4)

where, by construction, the apparent singularities at
integer s are removable. We may now use the asymptotics
of López [52] to derive the appropriate asymptotics by
noting that

1

�ð12 � s� �Þ ¼
1

�
�

�
1

2

 sþ �

�
cos ð�
 sÞ

�
ffiffiffiffi
2

�

s
��
se�� cos ð�
 sÞ;

j�j ! 1; j arg�j<�;

1

�ð12 � s� �Þ �
1ffiffiffiffiffiffiffi
2�

p ð��Þ�
se��;

j�j ! 1; j arg ð��Þj<�:

To leading order, we find

Uða; 2sþ 1; zÞ � 21=2e�����1=4ez=2z�s�1=4

� cos

� ffiffiffiffiffiffiffiffi
4�z

p þ �

�
1

4
� �

��
;

j�j ! 1; j arg�j<�

2
; (A5)

and

Uða;2sþ1;zÞ�2�1=2e��ð��Þ��1=4ez=2z�s�1=4e�2ð��zÞ1=2 ;

j�j!1; jargð��Þj<�

2
; (A6)

both under the conditions z � 0 and j arg ðz1=2Þj< 3�=4.
These expressions are in agreement with Sec. 9.229 of
Gradshteyn and Ryzhik [40].
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