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The averaged null energy condition (ANEC) states that the integral along a complete null geodesic of

the projection of the stress-energy tensor onto the tangent vector to the geodesic cannot be negative.

Exotic spacetimes, such as those allow wormholes or the construction of time machines are possible in

general relativity only if ANEC is violated along achronal geodesics. Starting from a conjecture that flat-

space quantum inequalities apply with small corrections in spacetimes with small curvature, we prove that

ANEC is obeyed by a minimally coupled, free quantum scalar field on any achronal null geodesic

surrounded by a tubular neighborhood whose curvature is produced by a classical source.
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I. INTRODUCTION

It is always possible to invent a spacetime with exotic
features, such as wormholes, superluminal travel, or the
construction of time machines, and then determine what
stress-energy tensor is necessary to support the given
spacetime. To rule out such exotic spacetimes we would
like to prove energy conditions that restrict the stress-
energy tensor that might arise from quantum fields and
show that the stress-energy necessary to support an exotic
spacetime is impossible. We need a condition which is
strong enough to rule out exotic cases while simulta-
neously weak enough to be proven correct, or at least to
be free of known counterexamples.

The best possibility for such a condition seems to be
the achronal averaged null energy condition [1], which
requires the following. Let M be a manifold with
Lorentzian metric g and T be the stress-energy tensor of
some fields on M. Let � be a complete null geodesic with
tangent vector ‘. Suppose that � is achronal, i.e., no two
points of � can be connected by a timelike curve. Then

Z
�
Tab‘

a‘b � 0: (1)

That is to say, we require that the projection of the stress-
energy tensor along a geodesic integrate to a non-negative
value, but only for geodesics that are achronal. As far as we
know, there is no example of achronal averaged null energy
condition (ANEC) violation in spacetimes satisfying
Einstein’s equations with classical matter or free quantum
fields as sources.1 Achronal ANEC is sufficient to rule out
many exotic spacetimes [1].

Reference [2] proved that the ANEC holds for geodesics
traveling through empty, flat space, even if elsewhere in the
spacetime there are boundaries or spacetime curvature,
providing that these stay some minimum distance from

the geodesic and do not affect the causal structure of the
spacetime near the geodesic. Here we will extend this work
to geodesics traveling in curved spacetime, with the re-
striction that the spacetime near the geodesic must obey the
null convergence condition,

RabV
aVb � 0; (2)

for any null vector Va. Equation (2) holds whenever the
curvature is generated by a ‘‘classical background’’ whose
stress tensor obeys the null energy condition (NEC),

TabV
aVb � 0: (3)

We stress that Eqs. (2) and (3) need not hold in general, but
only in a neighborhood of the null geodesic on which we
seek to prove ANEC. Thus, for example, the results of this
paper apply to any geodesic which does not encounter
any material source, even if such sources exist elsewhere
in the spacetime.
Reference [2] used a null-contracted timelike-averaged

quantum inequality proved for flat space in Ref. [3]. Here
we will conjecture that this quantum inequality holds with
a small modification in spacetimes with small curvature.
We will then be able to rule out ANEC violation, subject to
several conditions.
In the next section we give the conditions on which our

theorem depends. In Sec. III we state our theorem. In
Sec. IV we discuss what it means to have small curvature
and state our conjecture. In Sec. V we prove the theorem,
and in Sec. VI we conclude with a discussion of remaining
possibilities for the generation of exotic spacetimes. We
use the sign convention ðþ;þ;þÞ in the classification of
Misner, Thorne, and Wheeler [4].

II. ASSUMPTIONS

A. Congruence of geodesics

As in Ref. [2], we will not be able to rule out ANEC
violation on a single geodesic. However, a single geodesic
would not lead to an exotic spacetime. It would be

1Except for the case of nonminimally coupled quantum scalar
fields. These have some unique properties, which we discuss
briefly in Sec. VI.
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necessary to have ANEC violation along a finite congru-
ence of geodesics in order to have a physical effect.

So let us suppose that our spacetime contains a null
geodesic�with tangent vector ‘ and that there is a ‘‘tubular
neighborhood’’ M0 of � composed of a congruence of
achronal null geodesics, defined as follows. Letp be a point
of �, and letMp be a normal neighborhood of p. Let v be a

null vector atp, linearly independent of ‘, and let x and y be
spacelike vectors perpendicular to v and ‘. Let q be any
point inMp such that p can be connected to q by a geodesic

whose tangent vector is in the span of fv;x; yg. Let �ðqÞ be
the geodesic through q whose tangent vector is the vector ‘
parallel transported fromp toq. If a neighborhoodM0 of� is
composed of all geodesics�ðqÞ for some choice ofp,Mp, v,

x and y, we will say thatM0 is a tubular neighborhood of �.

B. Coordinate system

Given the above construction, we can define Fermi-like
coordinates [5] onM0 as follows. Without loss of generality
we can take the vector v to be normalized so that v � ‘ ¼
�1, and x and y to be unit vectors. Then we have a pseudo-
orthonormal tetrad at p given by EðuÞ ¼ ‘, EðvÞ ¼ v,
EðxÞ ¼ x, and EðyÞ ¼ y. The point q ¼ ðu; v; x; yÞ in these

coordinates is found as follows. Let qð1Þ be found by
traveling unit affine parameter from p along the geodesic
generated by vEðvÞ þ xEðxÞ þ yEðyÞ. Then q is found by

traveling unit affine parameter from qð1Þ along the geodesic
generated by uEðuÞ. During this process the tetrad is par-

allel transported. All vectors and tensors will be described
using this transported tetrad unless otherwise specified. We
will use Latin letters from the beginning of the alphabet to
denote arbitrary components in the tetrad basis.

The points with u varying but other coordinates fixed
form one of the null geodesics of the previous section.

C. Curvature

We suppose that the curvature inside M0 obeys the null
convergence condition, Eq. (2). We will refer to this as a
‘‘classical background,’’ but the only way it need be
classical is Eq. (2).

We would not expect any energy conditions to hold
when the curvature is arbitrarily large, because then we
would be in the regime of quantum gravity, so we will
require that the curvature be bounded. In the coordinate
system of Sec. II B we require

jRabcdj< Rmax ; (4)

everywhere in M0.
We will also need to bound the first and second deriva-

tives of the Riemann tensor,

jRabcd;ej< R0
max ; jRabcd;efj< R00

max ; (5)

everywhere inM0. The boundsRmax ,R
0
max andR

00
max are some

(independent) finite numbers, but they need not be small.

We will also assume that the curvature is smooth.

D. Causal structure

We will also require that conditions outside M0 do not
affect the causal structure of the spacetime in M0 [2]2

Jþðp;MÞ \M0 ¼ Jþðp;M0Þ; (6)

for all p 2 M0. Otherwise the curvature outsideM0 may be
arbitrary.

E. Quantum field theory

We consider a quantum scalar field in M. We will work
entirely inside M0, and there we require that the field be
free and minimally coupled. It may be massive or massless.
Outside M0, however, we can allow different curvature
coupling, interactions with other fields, and even boundary
surfaces with specified boundary conditions.
Because M may not be globally hyperbolic, it is not

completely straightforward to specify what we mean by a
quantum field theory on M. We will use the same strategy
as Ref. [2]. Our results will hold for any quantum field
theory onM that reduces to the usual quantum field theory
on each globally hyperbolic subspacetime ofM. The states
of interest will be those that reduce to Hadamard states on
each globally hyperbolic subspacetime, and we will refer
to any such state as ‘‘Hadamard.’’ See Sec. II B of Ref. [2]
for further details.

III. THE THEOREM

We can now state our theorem.
Theorem 1.—Let ðM;gÞ be a (time-oriented) spacetime

and let � be a null geodesic on ðM;gÞ, and suppose that � is
surrounded by a tubular neighborhood M0 in the sense of
Sec. II A, obeying the null convergence condition, Eq. (2),
and that we have constructed coordinates by the procedure
of Sec. II B. Suppose that the curvature in this coordinate
system is smooth and obeys the bounds of Sec. II C, that
the curvature in the system is localized, i.e., in the distant
past and future the spacetime is flat, and that the causal
structure of M0 is not affected by conditions elsewhere in
M, Eq. (6).
Let ! be a state of the free minimally coupled quantum

scalar field on M0 obeying the conditions of Sec. II E, and
let T be the renormalized expectation value of the stress-
energy tensor in state !.
Under these conditions, it is impossible for the ANEC

integral,

A ¼
Z 1

�1
d�Tab‘

a‘bð�ð�ÞÞ; (7)

2This condition is equivalent to J�ðp;MÞ \M0 ¼ J�ðp;M0Þ
for all p 2 M0.
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to converge uniformly to negative values on all geodesics
�ð�Þ in M0.

In the next section, we will conjecture that a known flat-
space quantum inequality can be extended to spacetimes
with small curvature in a particular way. From this con-
jecture we will be able to prove Theorem 1.

IV. QUANTUM INEQUALITY

The proof will proceed very much along the lines of
Ref. [2]. That paper used the following quantum inequality
for the null-projected but timelike-averaged stress-energy
tensor, derived by Fewster and Roman [3,6]. Let wð�Þ be a
timelike geodesic segment parametrized by proper time
� 2 ð��0; �0Þ. Let gð�Þ be a smooth real function with
compact support contained in ð��0; �0Þ. Let k be the
tangent vector to wð�Þ and let ‘ be a constant null vector.
Let T be the renormalized stress-energy tensor of a mass-
less or massive3 minimally coupled quantum scalar field in
a Hadamard state. Then the projection of T on the null
vector ‘ obeys a quantum inequality when integrated along
the timelike geodesic w,

Z �0

��0

d�Tabðwð�ÞÞ‘a‘bgð�Þ2 � �ðka‘aÞ2
12�2

Z �0

��0

d�g00ð�Þ2:

(8)

Equation (8) is a consequence of the result of Ref. [6],
which applies to general worldlines in curved spacetime.
This more general result is in the form of a ‘‘difference
inequality’’ that restricts the amount by which the left-hand
side of Eq. (8) can be more negative than the same quantity
evaluated in a reference state. We need an absolute bound,
such as Eq. (8), but applicable to curved spacetime. While
such a bound has not been proven, we conjecture that
Eq. (8) can be extended to spacetimes of small curvature.

The basic idea was given by Ford and Roman [7].
Suppose that we want to test Eq. (8) in a laboratory on
the surface of the earth. We are not in flat space, but rather
in space with curvature of orderGM�=R3�. Furthermore the
apparatus for measuring T might not be in free fall but
rather accelerating with the acceleration due to gravity at
the Earth’s surface, a ¼ GM�=R2�. But in a laboratory-
scale experiment, these differences should not matter. We
expect Eq. (8) to hold with a small correction for almost
geodesic wð�Þ in spacetimes with small curvature.

What does it mean for the curvature to be small? First of
all, since the curvature has dimensions ðlengthÞ�2, we have
to multiply by the square of some length to get a number
that we can require to be much less than 1. The obvious
length in the present example is �0.

We also face a problem that curvature is a tensor, and we
would like to make coordinate-invariant statements. In a

Riemannian space, we could require, for example, that the
sectional curvature of each plane in the tangent space at
each point be small. But in a Lorentzian spacetime this
does not work: the sectional curvature is never bounded
unless it is constant [8,9]. A simple example of the problem
is that the spacetime could contain a plane gravitational
wave. The amplitude of such a wave is entirely dependent
on the reference frame; it can be made arbitrarily small or
arbitrarily large by the choice of coordinates. Thus one
cannot say that all components of the Riemann tensor are
small without regard to coordinate system.
Fortunately, in our case, we have a privileged observer

whose stress-energy tensor we want to integrate. Thus the
worldline of that observer can be used to generate a
preferred coordinate system.4 This works straightfor-
wardly on that worldline, but to apply this idea to other
places in the spacetime we will have to parallel transport
the observer’s 4-velocity. Fortunately, in the case where the
curvature is in fact small, the precise details of this trans-
port will not matter.
With these considerations in mind we proceed as

follows. Let ðN; gÞ be a globally hyperbolic spacetime
and let wð�Þ be a timelike path in N, parametrized by
proper time � 2 ð��0; �0Þ, with tangent vector k. In
general we will only need to consider the ‘‘double cone’’
N ¼ J�ðwð�0ÞÞ \ Jþðwð��0ÞÞ. Let � � 1. We will say
that ðN; gÞ has small curvature � relative to w if N is a
normal neighborhood of the point p ¼ wð0Þ and there
exists a set of three unit spacelike vectors EðiÞ, i¼1, 2, 3
at p, orthogonal to each other and to Eð0Þ ¼ k, such that at
each point q, every component of the Riemann tensor in
the tetrad basis formed by parallel transporting the tetrad
fEðaÞg along the geodesic connecting p and q obeys

jRabcdj�20 < �: (9)

Suppose ðN; gÞ has small curvature � by the above
definition, and we consider the curvature components in
a different tetrad basis resulting from a choice of EðiÞ other
than the one which satisfies Eq. (9). Changing to such a
basis will give curvature components that are linear com-
binations of the ones we had before, and so may be larger
than the bound of Eq. (9), but only by factors of order 1.
We could also choose a different starting point p on w.

Since the curvature is small, the different parallel transport
would change the Riemann tensor components only by
factors of 1þOð�Þ, so the condition would be the same
at first order.
We will also require that the proper acceleration of the

path on which we want the quantum inequality to hold
should be small. Since acceleration has the units of
inverse time, we will multiply by the time �0 to get a
dimensionless measure limiting the total acceleration
along the path of interest.

3The derivation of Ref. [3] was for the massless case, but the
same argument holds in the massive case as well [2]. 4Similar techniques were used, for example, in Refs. [7,10,11].
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Once we are in curved spacetime, we must address
ambiguities in the definition of the stress-energy tensor
T. We will adopt the axiomatic definition given by Wald
[12], but there remains the ambiguity of adding local
curvature terms with arbitrary coefficients. These terms
are the metric, the Einstein tensor, and two terms that are
second order in the curvature or involve second derivatives
of the curvature [13],

ð1ÞHab ¼ 2R;ab � 2gabhRþ gabR
2=2� 2RRab; (10a)

ð2ÞHab ¼ R;ab �hRab � gabhR=2þ gabR
cdRcd=2

� 2RcdRacbd: (10b)

A multiple of the metric will not concern us here, because
it vanishes when contracted with the null vector ‘. A term
proportional to the Einstein tensor can be absorbed into
renormalization of Newton’s constant, and we assume that
that has been done.

As it turns out, the remaining ambiguity will not affect
our proof below. However, it must be taken into account in
the present conjecture. Following an idea in Ref. [14], we
will allow any definition of Tab and absorb the ambiguity
into a local curvature term in our bound.

We now can now conjecture that Eq. (8) holds with a
modification of order � and a local curvature term.

Conjecture 1.—Let ðN; gÞ be a globally hyperbolic
spacetime and let wð�Þ be a timelike path in N, parame-
trized by proper time � 2 ð��0; �0Þ. Let k be the tangent
vector to w and let ‘ be a null vector field obeying
kara‘

b ¼ 0. Let gð�Þ be a smooth real function with
compact support contained in ð��0; �0Þ. Let T be any
definition (obeying Wald’s axioms [12]) of the renormal-
ized stress-energy tensor of a massless or massive mini-
mally coupled quantum scalar field in a Hadamard state.
If ðN; gÞ has small curvature � relative to w and
jD2wa=d�2j�0 < � everywhere on w, then

Z �0

��0

d�Tabðwð�ÞÞ‘a‘bgð�Þ2

� �ðka‘aÞ2
12�2

Z �0

��0

d�g00ð�Þ2½1þ cð�Þ�

þ
Z �0

��0

d�gð�Þ2Cab‘
a‘b; (11)

where cð�Þ is a function that goes to zero as � ! 0, andCab

is a linear combination of Eqs. (10). The form of cð�Þ and
the coefficients of ð1ÞH and ð2ÞH in Cab do not depend on
the spacetime or the quantum state. Note that terms in
Eqs. (10) whose tensor structure is that of the metric do
not contribute in Eq. (11) because ‘ is null.

We intend to prove Conjecture 1 in future work.

V. PROOF OF THE THEOREM

A. Outline of the proof

Following Ref. [2], we will prove Theorem 1 by contra-
diction using integrals over a parallelogram shown below
in Fig. 2. By considering this parallelogram as made up of
segments of the null geodesics of M0, and assuming
Theorem 1 is violated, we set a negative upper bound on
the integral of the null-contracted stress-energy tensor over
the parallelogram. Then we consider the same set of points
as being made up of timelike paths, and demonstrate that
these paths obey the conditions of Conjecture 1. Thus using
Eq. (11), we can set a lower bound on the same integral
over the parallelogram. In the limit where the parallelo-
gram becomes long and narrow, these bounds conflict,
proving the theorem.

B. The parallelogram

We will use the ðu; v; x; yÞ coordinates of Sec. II B.
Let r be a positive number small enough such that when-
ever jvj, jxj, jyj< r, the point ð0; v; x; yÞ is inside the
normal neighborhood Np defined in Sec. II A. Then the

point ðu; v; x; yÞ 2 M0 for any u.
Now consider the points

�ðu; vÞ ¼ ðu; v; 0; 0Þ: (12)

With v fixed and u varying, these are null geodesics inM0.
(See Fig. 1.) Write the ANEC integral

AðvÞ ¼
Z 1

�1
duTuuð�ðu; vÞÞ: (13)

Suppose that, contrary to Theorem 1, Eq. (13) converges
uniformly to negative values for all jvj< r. We will prove
that this leads to a contradiction.
Since the convergence is uniform, AðvÞ is continuous.

Then since AðvÞ< 0 for all jvj< r, we can choose a

φ= (u,v,0,0)

E (u)

E(v)

γ

v

(0,v,0,0)

u

(0,0,0,0)

FIG. 1. Construction of the family of null geodesics � using
Fermi normal coordinates.
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positive number v0 < r and a negative number �A larger
than all AðvÞwith v 2 ð�v0; v0Þ. Then it is possible to find
some number u1 large enough that

Z uþðvÞ

u�ðvÞ
duTuuð�ðu; vÞÞ<�A=2; (14)

for any v 2 ð�v0; v0Þ as long as

uþðvÞ> u1; (15a)

u�ðvÞ<�u1: (15b)

As in Ref. [2], we will define a series of parallelograms
in the ðu; vÞ plane, and derive a contradiction by integrating
over each parallelogram in null and timelike directions.
Each parallelogram will have the form

v 2 ð�v0; v0Þ; (16a)

u 2 ðu�ðvÞ; uþðvÞÞ; (16b)

where u�ðvÞ, uþðvÞ are linear functions of v obeying
Eq. (15). On each parallelogram we will construct a
weighted integral of Eq. (14) as follows. Let fðaÞ be a
smooth function supported only within the interval ð�1; 1Þ
and normalized

Z 1

�1
dafðaÞ2 ¼ 1: (17)

Then we can write

Z v0

�v0

dvfðv=v0Þ2
Z uþðvÞ

u�ðvÞ
duTuuð�ðu;vÞÞ<�v0A=2: (18)

We can construct this same parallelogram as follows.
First choose a velocity V. Eventually we will take the limit
V ! 1. Define the Doppler shift parameter

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V

1� V

s
: (19)

Let � be some fixed number with 0<�< 1=3 and then let

�0 ¼ ���r: (20)

As V ! 1, � ! 1 and �0 ! 0.
Now define the set of points

�Vð�; �Þ ¼ �

�
�þ ��ffiffiffi

2
p ;

�ffiffiffi
2

p
�

�
: (21)

Wewill be interested in the paths given by�Vð�; �Þwith �
fixed and � ranging from ��0 to �0. In flat space, such
paths would be timelike geodesic segments, parametrized
by � and moving at velocity V with respect to the original
coordinate frame. In our curved spacetime, this is nearly
the case, as we will show below. Define

�0 ¼ u1 þ �0�=
ffiffiffi
2

p
; (22a)

v0 ¼ �0=ð
ffiffiffi
2

p
�Þ; (22b)

u�ðvÞ ¼ ��0 þ �2v; (22c)

so that u� satisfies Eq. (15). Then the range of points given
by Eq. (12) with coordinate ranges specified by Eq. (16) is
the same as that given by Eq. (21) with coordinate ranges

��0 < �< �0; (23a)

��0 <�< �0: (23b)

The parallelogram is shown in Fig. 2.
The Jacobian ��������@ðu; vÞ

@ð�; �Þ
��������¼ 1ffiffiffi

2
p

�
; (24)

so Eq. (18) becomesZ �0

��0

d�
Z �0

��0

d�Tuuð�Vð�; �ÞÞfð�=�0Þ2 <�A�0=2: (25)

We will show that this is impossible by applying the
quantum inequality of Sec. IV.

C. Transformation of the Riemann tensor

We would like to work in coordinates which bring to
rest, as much as possible, the path �Vð�; �Þ with � fixed.
So let us construct new Fermi coordinates by a Lorentz
transformation. We define

x�
0 ¼ ��0

� x�; (26)

where � is diagonal with

�u0
u ¼ ��1; (27a)

�v0
v ¼ �; (27b)

�x0
x ¼ �y0

y ¼ 1: (27c)

−v0

v0

uη,
τ

v

FIG. 2 (color online). The parallelogram �ðu; vÞ, v 2
ð�v0; v0Þ, u 2 ðu�ðvÞ; uþðvÞÞ, or equivalently �Vð�; �Þ, � 2
ð��0; �0Þ, � 2 ð��0; �0Þ.
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In the primed coordinates, we have

�Vð�; �Þ ¼ ð�=�þ �=
ffiffiffi
2

p
; �=

ffiffiffi
2

p
; 0; 0Þ: (28)

Equation (4) gives a bound on the components of
the Riemann tensor, measured in the original tetrad. The
covariant components Rabcd transform oppositely to the
coordinate components, so

Ra0b0c0d0 ¼ �a
a0�

b
b0�

c
c0�

d
d0Rabcd; (29)

where

�u
u0 ¼ �; (30a)

�v
v0 ¼ ��1; (30b)

�x
x0 ¼ �y

y0 ¼ 1: (30c)

Since we are taking � ! 1, components of R with more
u’s than v’s diverge after the transformation. Components
of R with fewer u’s than v’s go to zero and components
with equal numbers of u’s and v’s remain the same. We
want the curvature to be bounded by Rmax in the primed
coordinate system, which will be true if all components of
the Riemann tensor with more u’s than v’s are zero. We
will now show that this is the case in our system.

All points of interests are on achronal null geodesics,
which thus must be free of conjugate points. Using Eq. (2)
and proposition 4.4.5 of Ref. [15], each geodesic must
violate the ‘‘generic condition.’’ That is to say,wemust have

‘c‘d‘½aRb�cd½e‘f� ¼ 0; (31)

everywhere inM0.
The only nonvanishing components of the metric in

the tetrad basis are guv ¼ gvu ¼ �1 and gxx ¼ gyy ¼ 1.

The tangent vector ‘ has only one nonvanishing component
‘u ¼ 1, while the covector has only one nonvanishing
component ‘v ¼ �1. Thus Eq. (31) becomes

‘½aRb�uu½e‘f� ¼ 0: (32)

Let j, k, l, m and n denote indices chosen only from fx; yg.
Choosing a ¼ m, e ¼ n, and a ¼ f ¼ v we find

Rmuun ¼ 0; (33)

for all m and n. Thus

Ruu ¼ 0: (34)

Equation (34) also follows immediately from the fact that
since Ruu cannot be negative, any positive Ruu would lead
to conjugate points.

If we apply the null convergence condition, Eq. (2), to
V ¼ EðuÞ þ �EðmÞ þ ð�2=2ÞEðvÞ, where � � 1, we get

Ruu þ 2Rmu�þOð�2Þ � 0: (35)

Since Ruu ¼ 0 from Eq. (34), in order to have Eq. (35) hold
for both signs of �, we must have

Rmu ¼ 0: (36)

Since Rmu ¼ �Rumvu þ gjkRjmku,

Rumvu ¼ gjkRjmku: (37)

Now we use the Bianchi identity,

Rluum;n þ Rlunu;m þ Rlumn;u ¼ 0: (38)

From Eq. (33), Rluum;n ¼ 0. The correction to make the

derivatives covariant involves terms of the forms

RauumrnE
ðaÞ
l and RlaumrnE

ðaÞ
u . Because of Eq. (33), the

only contribution to the first of these comes from a ¼ v,
which we can transform using Eq. (37). For the second, we

observe that 0¼rnðEðvÞ �EðvÞÞ¼2rnE
ðvÞ �EðvÞ¼2rnE

ðvÞ
u ,

so a ¼ v does not contribute. Furthermore Rlumn;u ¼
Rlumn;u, because the u direction is the single final direction

in the coordinate construction of Sec. II B, and so in this
direction the tetrad vectors are just parallel transported.
Thus we find

dRlumn

du
¼gjk½RjmkurnE

ðvÞ
l þRjlkurnE

ðvÞ
m

�RjnkurmE
ðvÞ
l �RjlkurmE

ðvÞ
n �

þðRlkumþRlukmÞrnE
ðkÞ
u þðRlknuþRlunkÞrmE

ðkÞ
u :

(39)

Equation (39) is a first-order differential equation in the
pair of independent Riemann tensor components Rxuxy and

Ryuxy. By assumption, the curvature and its derivative

vanish in the distant past, and therefore the correct solution
to these equations is

Rlumn ¼ 0: (40)

Equations (37) and (40) then give

Rumvu ¼ 0: (41)

Combining Eqs. (33), (40), and (41) and their trans-
formations under the usual Riemann tensor symmetries,
we conclude that all components of the Riemann tensor
with more u’s than v’s vanish as desired. It follows that

jRa0b0c0d0 j<Rmax ; (42)

everywhere in M0.
A similar argument using the Bianchi identity twice

more would show that Rabcd ¼ 0 unless 2 of a, b, c, and
d are v, but we will not need that result here.

D. Timelike paths

We would like to apply Eq. (11) to the paths in Eq. (28).
First we show that they are timelike. Differentiating
Eq. (28), we find the components of the tangent vector
k ¼ d�V=d� in the primed Fermi coordinate basis
(not the tetrad basis),

ku
0 ¼ kv

0 ¼ 1ffiffiffi
2

p : (43)
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The squared length of k in terms of these components is

g�0	0k�
0
k	

0
. We showed in Ref. [5] that g�0	 ¼ ��0	0 þ

h�0	0 , where h�0	 at some point X is a sum of a small

number of terms (6 in the present case of two-step Fermi
coordinates) each of which is a coefficient no greater than 1
times an average of

R�0�0�0	0X�0
X�0

(44)

over one of the geodesics used in the construction of the
Fermi coordinate system. The summations over �0 and �0
in Eq. (44) are only over restricted sets of indices depend-
ing on the specific term under consideration. From
Eqs. (28) and (22a) the points under consideration satisfy

ju0j< u1=�þ ffiffiffi
2

p
�0; (45a)

jv0j< �0=
ffiffiffi
2

p
; (45b)

x0 ¼ y0 ¼ 0: (45c)

From Eq. (20), the first term in Eq. (45a) decreases faster
than the second, so we find that all components of X are
Oð�0Þ. Using Eq. (42) we find

h�0	0 ¼ OðRmax �
2
0Þ; (46)

so

g�0	0k�
0
k	

0 ¼ �1þOðRmax �
2
0Þ: (47)

Thus for sufficiently large �, and thus small �0, k is
timelike.

Now we consider the acceleration of our paths.

Reference [5] gives the affine connection r	0E�0
ð�0Þ as a

sum of 2 averages of terms of the form

R�0
�0�0	0X�0 ¼ OðRmax �0Þ; (48)

just as above. Thus the acceleration is given by

ja	0 j ¼ Dk	
0

d�
¼ jk�0r�0k	

0 j ¼ jk�0
k�

0r�0E	0
ð�0Þj

¼ OðRmax �0Þ: (49)

We want to show that the components of the acceleration
are small, so we will calculate the dimensionless quantity

ja	0 j�0 ¼ OðRmax �
2
0Þ: (50)

E. Causal diamond

For each �, we would like to apply Eq. (11). But what is
the spacetime N in which we are to work? It must include
the timelike path from p ¼ �Vð�;��0Þ to q ¼ �Vð�; �0Þ,
and to be globally hyperbolic it must include all points in
both the future of p in the past of q, so we can let N be the
‘‘double cone’’ or’’causal diamond,’’

N ¼ JþðpÞ \ J�ðqÞ: (51)

We have shown that the curvature is small everywhere in
the tube M0, so we must show that N � M0.
From the previous section, we have that the metric in

primed coordinates can be written as

g�0	0 ¼ ��0	0 þ h�0	0 ; (52)

where h�0	0 consists of terms of the form R�0�0�0	0X�0
X�0

.

The double cone in flat space obeys

jx0j; jy0j; jv0j< �0; (53)

so the same is true at zeroth order in the Riemann tensor R.
Thus at zeroth order,

h�0	0 ¼ OðRmax �
2
0Þ; (54)

and so at first order in R,

jx0j; jy0j; jv0j< �0ð1þOðRmax �
2
0ÞÞ: (55)

Since �0 � r for large �, we have

jx0j; jy0j; jv0j< r: (56)

Now we can replace the primed coordinates,

x0 ¼ x; (57a)

y0 ¼ y; (57b)

v0 ¼ v�; (57c)

so

jxj; jyj; jvj< r; (58)

and N � M0 as desired.

F. Quantum inequality

We would now like to apply Eq. (11) to give a lower
bound on the integral of Tuu on the paths �Vð�; �Þ.
Because of the ambiguity involving local curvature terms
in Conjecture 1, we will first bound

T0
uu ¼ Tuu � Cuu; (59)

where Cab the is the particular local curvature term for
which Conjecture 1 holds. We will then show that Cuu does
not contribute.
Equation (42) shows that the curvature is small in the

tetrad basis transported according to the construction of
Sec. II B. These are not precisely the coordinates used in
the conditions of Conjecture 1, but the difference is of no
consequence, precisely because the curvature is small.
Equations (47) and (50) show that, for sufficiently large
�,�Vð�; �Þ is a timelike path with small acceleration. The
parameter � is not exactly the proper time, but we show in
the Appendix that this contributes only a correction of
order Rmax �

2
0. Thus Eq. (11) givesZ �0

��0

d�T0
uuð�Vð�; �ÞÞfð�=�0Þ2 � � ð‘akaÞ2

12�2�40

	
Z �0

��0

d�f00ð�=�0Þ2½1þ cðRmax �
2
0Þ�; (60)
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where cðRmax �
2
0Þ vanishes as �0 ! 0. In the unprimed

coordinates, the only nonvanishing covariant component

of ‘ is ‘v ¼ �1, so ‘ak
a ¼ �kv ¼ �1=ð ffiffiffi

2
p

�Þ so

ð‘akaÞ2 ¼ 1

2�2
: (61)

Let

F ¼
Z

f00ð�Þ2d� ¼ 1

�0

Z
f00ð�=�0Þ2d�: (62)

Then Eq. (60) becomesZ �0

��0

d�T0
uuð�Vð�; �ÞÞfð�=�0Þ2

� � F

24�2�2�30
½1þ cðRmax �

2
0Þ�: (63)

Integrating in � givesZ �0

��0

d�
Z �0

��0

d�T0
uuð�Vð�; �ÞÞfð�=�0Þ2

� � F�0

12�2�2�30
½1þ cðRmax �

2
0Þ�: (64)

Now considerZ �0

��0

d�
Z �0

��0

d�Cuuð�Vð�; �ÞÞ: (65)

Terms from Eq. (10) proportional to gab do not contribute,
because guu ¼ 0. Similarly Ruu ¼ 0 from Eq. (34). The
term RcdRucud vanishes because Rucud¼0 unless c¼d¼v,
from Eqs. (33) and (41), while Rvv ¼ guvguvRuu ¼ 0.

The remaining term is R;uu. As explained in conjunction

with Eq. (38), the covariant nature of the derivatives does
not matter, and R;uu is a total derivative in u. In Eq. (65),

it is integrated d� which is just du. In the limit where
�0 ! 1, the boundary term vanishes because the curva-
ture is localized. Thus Cuu does not contribute and we can
use Tuu in place of T0

uu in Eq. (64).
Now we compare Eq. (64) to Eq. (25). Equation (64)

says that integral over the parallelogram is no more nega-
tive than something that goes to zero in the � ! 1 limit as

�0

�2�30

 �2��1: (66)

Equation (25) says that the same integral is more
negative than something that goes to zero as �0 
 ��a.
Since �< 1=3, the lower bound in Eq. (64) goes to zero
more quickly than the upper bound in Eq. (25). Thus for
sufficiently large �, the lower bound will be above the
upper bound, so they cannot simultaneously be satisfied.
This contradiction proves Theorem 1.

VI. DISCUSSION

As discussed in Ref. [1], to have an exotic spacetime
there would have to be violation of ANEC on achronal

geodesics, generated by a state of quantum fields in that
same spacetime. We have proved, subject to Conjecture 1
and the various assumptions above, that minimally coupled,
free quantum scalar fields can only violate ANEC on geo-
desics traveling through parts of spacetime that violate the
null convergence condition. Could it be that a single effect
both violates ANEC and produces the curvature that allows
ANEC to be violated? The following heuristic argument
casts doubt on this possibility.
Suppose ANEC violation and NEC violation have the

same source. We will say that they are produced by an
exotic stress-energy tensor Texotic. This Texotic gives rise to
an exotic Einstein curvature tensor,

Gexotic ¼ 8�l2PlanckTexotic; (67)

in units where c ¼ ℏ ¼ 1. It isGexotic that permits Texotic to
arise from the quantum field. Without Gexotic, the space-
time would obey the null convergence condition, and
so, since Texotic violates ANEC, it would have to vanish.
A reasonable conjecture is that as Gexotic ! 0, Texotic ! 0
at least linearly.5 Then we can write schematically

jTexoticj & l�2jGexoticj; (68)

where l is a constant length obeying l � lPlanck. The
parameter l, needed on dimensional grounds, might be
the wavelength of some excited modes of the quantum
field. Equation (68) is just schematic because we have
not said anything about the places at which these tensors
should be compared, or in what coordinate system they
should be measured.
Combining Eqs. (67) and (68), we find

jTexoticj & ðlPlanck=lÞ2jTexoticj; (69)

which is impossible since l � lPlanck.
Given the assumptions of this paper, it appears that the

only remaining possibility for self-consistent achronal
ANEC violation using minimally coupled free fields is to
have first a quantum field that violates NEC but obeys
ANEC, and then a second quantum field (or a second,
weaker effect produced by the same field) that violates
ANECwhen propagating in the spacetime generated by the
first field. The stress-energy tensor of the second field
would be a small correction to that of the first, but perhaps
this correction might lead to ANEC violation on geodesics
that were achronal (and thus obeyed ANEC only margin-
ally) taking into account only the first field. This idea
seems rather unlikely to us, and we will attempt to rule it
out in future work.
If one considers quantum scalar fields with nonminimal

curvature coupling, the situation is rather different. Even
classical nonminimally coupled scalar fields can violate
ANEC [16,17], with large enough (Planck-scale) field

5Not, for example, changing discontinuously for infinitesimal
but nonzero Gexotic or going as G1=2

exotic.
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values. However, as the field values increase toward
such levels, the effective Newton’s constant first diverges
and the becomes negative. Such situations may not be
physically realizable. If one excludes such field values,
some restrictions are known, but there are no quantum
inequalities of the usual sort [18,19], and there are general
[20] and specific [21,22] cases where conformally coupled
quantum scalar fields violate ANEC in curved space. It
may be possible to control such situations by considering
only cases where a spacetime is produced self-consistently
by fields propagating in that spacetime, but the status of
this ‘‘self-consistent achronal ANEC’’ for nonminimally
coupled scalar fields outside the large-field region is not
known.
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APPENDIX: PROPER TIME

We start with �Vð�; �Þ given by Eq. (21) with tangent
vector

k ¼ @

@�
�Vð�; �Þ ¼

�
�ffiffiffi
2

p ;
1ffiffiffiffiffiffi
2�

p
�

(A1)

in the coordinate basis. We would like to reparametrize the
path �Vð�; �Þ in terms of proper time, which we will
denote �0. Then gabk

0ak0b ¼ �1 where k0 is the tangent
vector to the reparametrized path,

k0 ¼ @

@�0
�Vð�; �ð�0ÞÞ ¼ k

d�0=d�
; (A2)

so

d�0

d�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gabk

akb
q

¼ ffiffiffi
h

p
(A3)

with

h ¼ 1� habk
akb: (A4)

Now the left-hand side of Eq. (60) can be writtenZ �0

��0

d�T0
abð�Vð�; �ÞÞkakbfð�=�0Þ2

¼
Z �0

��0

d�0T0
abð�Vð�; �ð�0ÞÞÞk0ak0b

ffiffiffi
h

p
fð�=�0Þ2

¼
Z �0

��0

d�0T0
abð�Vð�; �0ÞÞk0ak0bgð�0Þ2; (A5)

where we let

gð�0Þ � fð�ð�0Þ=�0Þh1=4: (A6)

Now we can apply the quantum inequality for the function
g and proper time �0. Since the curvature and the function f
are smooth, so is g. We get

Z �0

��0

d�0T0
abð�Vð�; �0ÞÞk0ak0bgð�0Þ2

� �ð‘ak0aÞ2
12�

Z �0

��0

d�0g00ð�0Þ2½1þ cðRmax �
2
0Þ�: (A7)

Now let us determine h. Since we are working only in
the u-v plane, we have two-step Fermi coordinates
with one index in each step. Thus we can use Eq. (27) of
Ref. [5] to get

habðXÞ ¼ 2Fab ¼ 2
Z 1

0
d��2mð�Þð1� �Þ

	 RacdbðXð1Þ þ �Xð2ÞÞXd
ð2ÞX

c
ð2Þ; (A8)

where Xð1Þ ¼ �ð0; vÞ and Xð2Þ ¼ �ðu; 0Þ. Because of the
symmetry of the Riemann tensor, the only nonvanishing
case is

hvv ¼ 2
Z 1

0
d�ð1� �ÞRvuuvð�ð�u; vÞÞu2; (A9)

and

h ¼ 1� hvvk
vkv ¼ 1� hvv

2�2
: (A10)

The maximum magnitude of u is u1 þ
ffiffiffi
2

p
�0�, so in the

limit � ! 1, h ¼ 1þOðRmax �
2
0Þ.

We are not interested in OðRmax �
2
0Þ correction

terms, and we will write  to show that such terms have
been ignored. Thus we can take h  1, except where it is
differentiated, and we will not worry about the difference
between k0a and ka, and that between d�0 and d� on the
right-hand side of Eq. (A7).
Wewould like to write g00 in terms of f00 and a correction

that vanishes in the limit � ! 1. So we will calculate the
derivatives of g,

dg

d�0
¼ 1ffiffiffi

h
p dg

d�
¼ h�1=4 df

d�
þ f

4
h�5=4 dh

d�
 df

d�
þ f

4

dh

d�

(A11)

d2g

d�02
 d2f

d�2
� 5f

16

�
dh

d�

�
2 þ f

4

d2h

d�2
: (A12)

To compute the derivatives of h, we will change variables
to q ¼ �u in Eq. (A9) to get

h ¼ 1� 1

�2

Z u

0
dqðu� qÞRvuuvð�ðq; vÞÞ: (A13)

Now we can calculate the first derivative,
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dh

d�
¼ ku

dh

du
þ kv

dh

dv
¼ �ffiffiffi

2
p dh

du
þ 1ffiffiffi

2
p

�

dh

dv

¼ � 1ffiffiffi
2

p
�

Z u

0
dqRvuuvð�ðq; vÞÞ

� 1ffiffiffi
2

p
�3

Z u

0
dqðu� qÞRvuuv;vð�ðq; vÞÞ: (A14)

Using the bounds from Sec. II C, we find in the � ! 1
limit, ��������dhd�

��������� �0Rmax þ �20ffiffiffi
2

p
�
R0
max : (A15)

For sufficiently large � the second term is negligible
compared to the first.

For the second derivative we can write

d2h

d�2
¼ �2

2

d2h

du2
þ d2h

dudv
þ 1

2�2

d2h

dv2

¼ � 1

2
Rvuuv � 1

�2

Z u

0
dqRvuuv;vð�ðq; vÞÞ

� 1

2�4

Z u

0
dqðu� qÞRvuuv;vvð�ðq; vÞÞ: (A16)

Again using the bounds from Sec. II C, we find��������d
2h

d�2

��������� 1

2
Rmax þ

ffiffiffi
2

p
�0
�

R0
max þ �20

2�2
R00
max : (A17)

As before, for sufficiently large �, the second and third
term can be neglected in comparison to the first.
Keeping only the most important corrections, we then

find ��������d2g

d�02

�������� &
f00

�20
� 5

16
fR2

max �
2
0 þ

1

8
fRmax

¼ 1

�20
½f00 þOðRmax �

2
0Þ�; (A18)

which justifies ignoring the difference between � and �0 in
Eq. (60).
A similar argument applies to the acceleration. In

Sec. VD we found that the acceleration was small,

Dk	
0

d�
¼ OðRmax �0Þ: (A19)

Changing to the proper time �0 means that we should
consider instead

Dk0	0

d�0
 Dk0	0

d�
¼ D

d�

�
k	ffiffiffi
h

p
�
 Dk	

d�
� 1

2

dh

d�
k	

0

¼ OðRmax �0Þ (A20)

from Eqs. (A19), (A15), and (43). Thus Eq. (50) holds for
the proper acceleration as well.
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