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Realistic models of high-energy physics include multiple scalar fields. Renormalization requires that

the fields have nonminimal couplings to the spacetime Ricci curvature scalar, and the couplings can be

large at the energy scales of early-universe inflation. The nonminimal couplings induce a nontrivial field-

space manifold in the Einstein frame, and they also yield an effective potential in the Einstein frame with

nontrivial curvature. The ridges or bumps in the Einstein-frame potential can lead to primordial non-

Gaussianities of observable magnitude. We develop a covariant formalism to study perturbations in such

models and calculate the primordial bispectrum. As in previous studies of non-Gaussianities in multifield

models, our results for the bispectrum depend sensitively on the fields’ initial conditions.

DOI: 10.1103/PhysRevD.87.064004 PACS numbers: 04.62.+v, 98.80.Cq

I. INTRODUCTION

Inflationary cosmology remains the leading account
of the very early universe, consistent with high-precision
measurements of the cosmic microwave background radia-
tion [1–3]. A longstanding challenge, however, has been to
realize successful early-universe inflation within a well-
motivated model from high-energy particle physics.

Realistic models of high-energy physics routinely
include multiple scalar fields [4,5]. Unlike single-field
models, multifield models generically produce entropy
(or isocurvature) perturbations. The entropy perturbations,
in turn, can cause the gauge-invariant curvature perturba-
tion, � , to evolve even on the longest length scales, after
modes have been stretched beyond the Hubble radius during
inflation [6–13]. Understanding the coupling and evolution
of entropy perturbations in multifield models is therefore
critical for studying features in the predicted power spec-
trum, such as non-Gaussianities, that are absent in simple
single-field models. (For reviews see Refs. [12–17].)

Recent reviews of primordial non-Gaussianities have
emphasized four criteria, at least one of which must be
satisfied as a necessary (but not sufficient) condition for
observable power spectra to deviate from predictions of
single-field models. These criteria include [15,17] (1) mul-
tiple fields; (2) noncanonical kinetic terms; (3) violation of
slow-roll; or (4) an initial quantum state for fluctuations
different than the usual Bunch-Davies vacuum. As we
demonstrate here, the first three of these criteria are
generically satisfied by models that include multiple scalar
fields with nonminimal couplings to the spacetime Ricci
curvature scalar.

Nonminimal couplings arise in the action as neces-
sary renormalization counterterms for scalar fields in

curved spacetime [18–23]. In many models the nonmini-
mal coupling strength, �, grows without bound under
renormalization-group flow [21]. In such models, if the
nonminimal couplings are ��Oð1Þ at low energies, they
will rise to � � 1 at the energy scales of early-universe
inflation. We therefore expect realistic models of inflation
to incorporate multiple scalar fields, each with a large
nonminimal coupling. (Non-Gaussianities in single-field
models with nonminimal couplings have been studied
in Ref. [24].)
Upon performing a conformal transformation to the

Einstein frame—in which the gravitational portion of the
action assumes canonical Einstein-Hilbert form—the non-
minimal couplings induce a field-space manifold that is not
conformal to flat [25]. The curvature of the field-space
manifold, in turn, can induce additional interactions among
the matter fields, beyond those included in the Jordan-
frame potential. Moreover, the scalar fields necessarily
acquire noncanonical kinetic terms in the Einstein frame.
These new features can have a dramatic impact on the
behavior of the fields during inflation and, hence, on the
primordial power spectrum.
Chief among the multifield effects for producing new

features in the primordial power spectrum is the ability of
fields’ trajectories to turn in field space as the system
evolves. Such turns are not possible in single-field models,
which include only a single direction of field space. In the
case of multiple fields, special features in the effective
potential, such as ridges or bumps, can focus the back-
ground fields’ trajectories through field space or make
them diverge. When neighboring trajectories diverge, pri-
mordial bispectra can be amplified to sufficient magnitude
that they should be detectable in the cosmic microwave
background [13–16,26–32].
To date, features like ridges in the effective potential

have been studied for the most part phenomenologically
rather than being strongly motivated by fundamental
physics. Here we demonstrate that ridges arise naturally
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in the Einstein-frame effective potential for models that
incorporate multiple fields with nonminimal couplings.
Likewise, as noted above, models with multiple nonmini-
mally coupled scalar fields necessarily include noncanon-
ical kinetic terms in the Einstein frame, stemming from the
curvature of the field-space manifold. Both the bumpy
features in the potential and the nonzero curvature of the
field-space manifold routinely cause the fields’ evolution
to depart from slow-roll for some duration of their evolu-
tion during inflation.

Recent analyses of primordial non-Gaussianities have
emphasized two distinct types of fine-tuning needed to
produce observable bispectra: fine-tuning the shape of
the effective potential to include features like ridges and
separately fine-tuning the fields’ initial conditions so that
the fields begin at or near the top of these ridges [29–32].
Here we show that the first of these types of fine-tuning is
obviated for multifield models with nonminimal couplings;
such features of the potential are generic. The second
type of fine-tuning, however, is still required: even in
the presence of ridges and bumps, the fields’ initial con-
ditions must be fine-tuned in order to produce measurable
non-Gaussianities.

In Sec. II we examine the evolution of the fields in the
Einstein frame and emphasize the ubiquity of features such
as ridges that could make the fields’ trajectories diverge in
field space. Section III introduces our covariant, multifield
formalism for studying the evolution of background fields
and linearized perturbations on the curved field-space
manifold. In Sec. IV we analyze adiabiatic and entropy
perturbations and quantify their coupling using a covariant
version of the familiar transfer-function formalism
[11,13,33]. In Sec. V we build on recent work [34–36] to
calculate the primordial bispectrum for multifield models,
applying it here to models with nonminimal couplings.
We find that although the nonminimal couplings induce
new interactions among the entropy perturbations com-
pared to models in which all fields have minimal coupling,
the dominant contribution to the bispectrum remains
the familiar local form of fNL, made suitably covariant to
apply to the curved field-space manifold. Concluding
remarks follow in Sec. VI. We collect quantities relating
to the curvature of the field-space manifold in the Appendix.

II. EVOLUTION IN THE EINSTEIN FRAME

We consider N scalar fields in (3þ 1) spacetime di-
mensions, with spacetime metric signature ð�;þ;þ;þÞ.
We work in terms of the reduced Planck mass, Mpl �
ð8�GÞ�1=2 ¼ 2:43� 1018 GeV. Greek letters label space-
time indices,�, � ¼ 0, 1, 2, 3; lower-case latin letters label
spatial indices, i, j ¼ 1, 2, 3; and upper-case latin letters
label field-space indices, I, J ¼ 1; 2; . . . ;N .

In the Jordan frame, the scalar fields’ nonminimal cou-
plings to the spacetime Ricci curvature scalar remain
explicit in the action. We denote quantities in the Jordan

frame with a tilde, such as the spacetime metric, ~g��ðxÞ.
The action forN scalar fields in the Jordan frame may be
written

SJordan¼
Z
d4x

ffiffiffiffiffiffiffi�~g
p

�
�
fð�IÞ ~R�1

2
~GIJ~g

��@��
I@��

J� ~Vð�IÞ
�
; (1)

where fð�IÞ is the nonminimal coupling function and
~Vð�IÞ is the potential for the scalar fields in the Jordan
frame. We have included the possibility that the scalar
fields in the Jordan frame have noncanonical kinetic terms,

parametrized by coefficients ~GIJð�KÞ. Canonical kinetic
terms correspond to ~GIJ ¼ �IJ.
We next perform a conformal transformation to work in

the Einstein frame, in which the gravitational portion of the
action assumes Einstein-Hilbert form. We define a rescaled
spacetime metric tensor, g��ðxÞ, via the relation,

g��ðxÞ ¼ �2ðxÞ~g��ðxÞ; (2)

where the conformal factor is related to the nonminimal
coupling function as

�2ðxÞ ¼ 2

M2
pl

fð�IðxÞÞ: (3)

Equation (1) then takes the form [25]

SEinstein¼
Z
d4x

ffiffiffiffiffiffiffi�g
p

�
�M2

pl

2
R�1

2
GIJg

��@��
I@��

J�Vð�IÞ
�
: (4)

The potential in the Einstein frame is scaled by the
conformal factor,

Vð�IÞ ¼ 1

�4ðxÞ
~Vð�IÞ ¼ M4

pl

4f2ð�IÞ
~Vð�IÞ: (5)

The coefficients of the noncanonical kinetic terms in the
Einstein frame depend on the nonminimal coupling func-
tion, fð�IÞ, and its derivatives, and are given by [25,37]

GIJð�KÞ ¼ M2
pl

2fð�IÞ
�
~GIJð�KÞ þ 3

fð�IÞ f;If;J
�
; (6)

where f;I ¼ @f=@�I.

As demonstrated in Ref. [25], the nonminimal couplings
induce a field-space manifold in the Einstein frame, asso-
ciated with the metric GIJð�KÞ in Eq. (6), which is not
conformal to flat for models in which multiple scalar fields
have nonminimal couplings in the Jordan frame. Thus
there does not exist any combination of conformal trans-
formation plus field rescalings that can bring the induced
metric into the form GIJ ¼ �IJ. In other words, multifield
models with nonminimal couplings necessarily include
noncanonical kinetic terms in the Einstein frame, even if
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the fields have canonical kinetic terms in the Jordan frame,
~GIJ ¼ �IJ. When analyzing multifield inflation with non-
minimal couplings, we therefore must work either with a
noncanonical gravitational sector or with noncanonical
kinetic terms. Here we adopt the latter. Because there is
no way to avoid noncanonical kinetic terms in the Einstein
frame in such models, we do not rescale the fields. For the
remainder of the paper, we restrict attention to models with

canonical kinetic terms in the Jordan frame, ~GIJ ¼ �IJ, in
which the curvature of the field-space manifold in the
Einstein frame depends solely upon fð�IÞ and its
derivatives.

Varying the action of Eq. (4) with respect to g��ðxÞ
yields the Einstein field equations,

R�� � 1

2
g��R ¼ 1

M2
pl

T��; (7)

where

T�� ¼ GIJ@��
I@��

J

� g��

�
1

2
GIJg

�	@��
I@	�

J þ Vð�IÞ
�
: (8)

Varying Eq. (4) with respect to �I yields the equation of
motion,

h�I þ g���I
JK@��

J@��
K �GIKV;K ¼ 0; (9)

where h�I � g���I
;�;� and �I

JKð�LÞ is the Christoffel

symbol for the field-space manifold, calculated in terms
of GIJ.

We expand each scalar field to first order around its
classical background value,

�Iðx�Þ ¼ ’IðtÞ þ ��Iðx�Þ; (10)

and also expand the scalar degrees of freedom of
the spacetime metric to first order, perturbing around a
spatially flat Friedmann-Robertson-Walker (FRW) metric
[11,12,38],

ds2 ¼ g��ðxÞdx�dx�
¼ �ð1þ 2AÞdt2 þ 2að@iBÞdxidt

þ a2½ð1� 2c Þ�ij þ 2@i@jE�dxidxj; (11)

where aðtÞ is the scale factor. To background order, the 00
and ij components of Eq. (7) may be combined to yield the
usual dynamical equations,

H2 ¼ 1

3M2
pl

�
1

2
GIJ _’I _’J þ Vð’IÞ

�
;

_H ¼ � 1

2M2
pl

GIJ _’I _’J;

(12)

where H � _a=a is the Hubble parameter, and the
field-space metric is evaluated at background order,
GIJ ¼ GIJð’KÞ.

Both the curvature of the field-space manifold and
the form of the effective potential in the Einstein frame
depend upon the nonminimal coupling function, fð�IÞ.
The requirement of renormalizability for scalar matter
fields in a (classical) curved background spacetime dictates
the form of fð�IÞ [18–21]:

fð�IÞ ¼ 1

2

�
M2

0 þ
X
I

�Ið�IÞ2
�
; (13)

where M0 is some mass scale that could be distinct from
Mpl, and the nonminimal couplings �I are dimensionless

constants that need not be equal to each other. If any of
the fields develop nonzero vacuum expectation values,
h�Ii ¼ vI, then one may expect M2

pl ¼ M2
0 þ

P
I�IðvIÞ2.

Here we will assume either that vI ¼ 0 for each field or
that

ffiffiffiffiffi
�I

p
vI � Mpl, so that M0 ’ Mpl.

The nonminimal couplings �I could in principle take
any ‘‘bare’’ value. (Conformal couplings correspond to
�I ¼ �1=6; we only consider positive couplings here,
�I > 0.) Under renormalization-group flow, the constants
vary logarithmically with energy scale. The exact form of
the 	 functions depends upon details of the matter sector,
but for models whose content is akin to the Standard
Model, the 	 functions are positive and the flow of �I

has no fixed point, rising with energy scale without bound
[21]. Studies of the flow of � in the case of Higgs inflation
[39] indicate growth of � by Oð101–102Þ between the
electroweak symmetry-break scale, �� 102 GeV, and
typical inflationary scales, �� 1016 GeV [40]. Hence we
anticipate that realistic models will include nonminimal
couplings �I � 1 during inflation.
Renormalizable potentials in (3þ 1) spacetime dimen-

sions can include terms up to quartic powers of the fields.
A potential in the Jordan frame that assumes a generic
renormalizable, polynomial form such as

~Vð�IÞ¼1

2

X
I

m2
I ð�IÞ2þ1

2

X
I<J

gIJð�IÞ2ð�JÞ2þ1

4

X
I


Ið�IÞ4

(14)

will yield an effective potential in the Einstein frame that is
stretched by the conformal factor in accord with Eq. (5). As
the Jth component of �I becomes arbitrarily large, the
potential in that direction will become asymptotically flat,

Vð�IÞ ¼ M4
pl

4

~Vð�IÞ
f2ð�IÞ !

M4
pl

4


J

�2
J

(15)

(no sum on J), unlike the quartic behavior of the potential
in the large-field limit in the Jordan frame. (The flatness of
the effective potential for large field values was one inspi-
ration for Higgs inflation [39].) Inflation in such models
occurs in a regime of field values such that �Jð’JÞ2 � M2

pl

for at least one component, J. As emphasized in
Ref. [39], for large nonminimal couplings, �J � 1, all of
inflation, therefore, may occur for field values that satisfy

PRIMORDIAL BISPECTRUM FROM MULTIFIELD . . . PHYSICAL REVIEW D 87, 064004 (2013)

064004-3



j’Jj<Mpl, unlike the situation for ordinary chaotic infla-

tion with polynomial potentials and minimal couplings.
Although the effective potential in the Einstein frame

will asymptote to a constant value in any given direction of
field space, the constants will not, in general, be equal to
each other. Thus at finite values of the fields, the potential
will generically develop features, such as ridges or bumps,
that are absent from the Jordan-frame potential. Because
the asymptotic values of Vð�IÞ in any particular direction
are proportional to 1=�2

J, the steepness of the ridges de-
pends sharply on the ratios of the nonminimal coupling
constants. If some explicit symmetry, such as the SUð2Þ
electroweak gauge symmetry obeyed by the Higgs multi-
plet in Higgs inflation [39], forces all the couplings to
be equal—�I ¼ �, m2

I ¼ m2 and 
I ¼ gIJ ¼ 
 for all
I, J—then the ridges in the Einstein-frame potential dis-
appear, and the potential asymptotes to the same constant
value in each direction of field space. We study the
dynamics of such special cases in Ref. [41]. For the
remainder of this paper, we consider models in which
the constants are of similar magnitude but not exactly equal
to each other.

For definiteness, consider a two-field model with a
potential in the Jordan frame of the form

~Vð�;�Þ¼1

2
m2

��
2þ1

2
m2

��
2þ1

2
g�2�2þ
�

4
�4þ
�

4
�4

(16)

and nonminimal coupling function given by

fð�;�Þ ¼ 1

2
½M2

pl þ ���
2 þ ���

2�: (17)

In the Einstein frame the potential becomes

Vð�;�Þ

¼M4
pl

4

ð2m2
��

2þ2m2
��

2þ2g�2�2þ
��
4þ
��

4Þ
½M2

plþ���
2þ���

2�2 :

(18)

See Fig. 1.
In addition to the ridges shown in Fig. 1, other features

of the Einstein-frame potential can arise depending on the
Jordan-frame couplings. For example, the tops of the
ridges can develop small indentations, such that the top
of a ridge along �� 0 becomes a local minimum rather
than a local maximum. In that case, field trajectories that
begin near the top of a ridge tend to focus rather than
diverge, keeping the amplitude of non-Gaussianities very
small. For the two-field potential of Eq. (18), we find [42]

ð@2�VÞj�¼0 ¼ 1

½M2
pl þ ���

2�3 ½ðg�� � 
���Þ�4

þ ð��m
2
� � 2��m

2
� þ gM2

plÞ�2 þm2
�M

2
pl�:
(19)

For realistic values of the masses that satisfy m2
�, m

2
� �

M2
pl, and at early times when ���

2 � M2
pl, the top of the

ridge along the �� 0 direction will remain a local maxi-
mum if

g�� < 
���: (20)

When the couplings satisfy Eq. (20), the shape of the
potential in the vicinity of its ridges is similar to that of

the product potential, V ¼ m2e�
�2
�2, which has been

studied in detail in Refs. [30,32]. Trajectories of the fields
that begin near each other close to the top of a ridge will
diverge as the system evolves; that divergence in trajecto-
ries can produce a sizeable amplitude for the bispectrum,
as we will see below.
Even potentials with modest ratios of the nonminimal

couplings can produce trajectories that diverge sharply, as
shown in Fig. 2. As we will see in Sec. V, trajectory 2 of
Fig. 2 (solid red line) yields a sizeable amplitude for the
bispectrum that is consistent with present bounds, whereas
trajectories 1 and 3 produce negligible non-Gaussianities.
We will return to the three trajectories of Fig. 2 throughout
the paper, as illustrations of the types of field dynamics that
yield interesting possibilities for the power spectrum.
Unlike the product potential studied in Refs. [30,32], the

potential of Eq. (18) contains valleys in which the system
will still inflate. For trajectories 1 (orange dotted line) and
2 (red solid line) in Fig. 2, for example, the system begins
near �� 0 and rolls off the ridge; because 
�=�

2
� � 0, the

valleys in the � direction are also false vacua and hence
the system continues to inflate as the fields relax toward the
global minimum at � ¼ � ¼ 0. Near the end of inflation,
when ���

2 þ ���
2 <M2

pl, the fields oscillate around the

FIG. 1 (color online). The Einstein-frame effective potential,
Eq. (18), for a two-field model. The potential shown here
corresponds to the couplings ��=�� ¼ 0:8, 
�=
� ¼ 0:3,

g=
� ¼ 0:1 and m2
� ¼ m2

� ¼ 10�2
�M
2
pl.
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global minimum of the potential, which can drive a period
of preheating. See Fig. 3.

Evolution of the fields like that shown in Fig. 3 is generic
for this class of models when the fields begin near the top
of a ridge, and can produce interesting phenomenological
features in addition to observable bispectra. For example,
the oscillations of � around � ¼ 0 when the system first
rolls off the ridge could produce an observable time-
dependence of the scale factor during inflation, as analyzed
in Ref. [43]. The added period of inflation from the false
vacuum of the � valley could lead to scale-dependent
features in the power spectrum associated with double
inflation [44].

In the class of models we consider here, neighboring
trajectories may also diverge if we include small but non-
zero bare masses for the fields. For example, in Fig. 4 we
show the evolution of the fields for the same initial con-
ditions as trajectory 3 of Fig. 2—the black, dashed curve
that barely deviates from the middle of the ridge. The
evolution shown in Fig. 2 was for the case m�¼m�¼0.

If, instead, we include nonzero masses, then the curvature
of the effective potential at small field values becomes
different from the zero-mass case. In particular, for posi-
tive, real values of the masses, the ridges develop features
that push the fields off to one side, recreating behavior akin
to what we found in trajectories 1 and 2 of Fig. 2.

Because the field-space manifold is curved, the fields’
trajectories will turn even in the absence of tree-level

couplings from the Jordan-frame potential: the fields’ geo-
desic motion alone is nontrivial. The Ricci scalar for the
field-space manifold in the two-field case is given in
Eq. (A6). In Fig. 5 we plot the fields’ motion in the curved
manifold for the case when ~Vð�;�Þ ¼ Vð�;�Þ ¼ 0. The
curvature of the manifold is negligible at large field values
but grows sharply near �� �� 0.

FIG. 3 (color online). The evolution of the Hubble parameter
(black dashed line) and the background fields, �ð�Þ (red solid
line) and �ð�Þ (blue dotted line), for trajectory 2 of Fig. 2. (We
use the same units as in Fig. 2, and have plotted 100H so its scale
is commensurate with the magnitude of the fields.) For these
couplings and initial conditions the fields fall off the ridge in the
potential at � ¼ 2373 or N ¼ 66:6 efolds, after which the system
inflates for another 4.9 efolds until �end ¼ 2676, yielding
Ntotal ¼ 71:5 efolds.

FIG. 4 (color online). Models with nonzero masses include
additional features in the Einstein-frame potential which can also
cause neighboring field trajectories to diverge. In this case, we
superimpose the evolution of the fields � and � on the Einstein-
frame potential. The parameters shown here are identical
to those in Fig. 2 but with m2

� ¼ 0:075
�M
2
pl and m2

� ¼
0:0025
�M

2
pl rather than 0. The initial conditions match those

of trajectory 3 of Fig. 2: �ð�0Þ ¼ 3:1 and �ð�0Þ ¼ 1:1� 10�4 in
units of Mpl.

FIG. 2 (color online). Parametric plot of the fields’ evolution
superimposed on the Einstein-frame potential. Trajectories
for the fields � and � that begin near the top of a ridge will
diverge. In this case, the couplings of the potential are �� ¼ 10,

�� ¼ 10:02, 
�=
� ¼ 0:5, g=
� ¼ 1, and m� ¼ m� ¼ 0.

(We use a dimensionless time variable, � � ffiffiffiffiffiffiffi

�

p
Mplt, so

that the Jordan-frame couplings are measured in units of 
�.)

The trajectories shown here each have the initial condition
�ð�0Þ ¼ 3:1 (in units of Mpl) and different values of �ð�0Þ:
�ð�0Þ ¼ 1:1 � 10�2 (‘‘trajectory 1,’’ yellow dotted line);
�ð�0Þ ¼ 1:1� 10�3 (‘‘trajectory 2,’’ red solid line); and �ð�0Þ ¼
1:1� 10�4 (‘‘trajectory 3,’’ black dashed line).
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Given the nonvanishing curvature of the field-space
manifold, we must study the evolution of the fields and
their perturbations with a covariant formalism, to which we
now turn.

III. COVARIANT FORMALISM

A gauge-invariant formalism for studying perturba-
tions in multifield models in the Jordan frame was
developed in Refs. [45,46]. In this paper we work in
the Einstein frame, following the approach established in
Refs. [7–10,27–36,47,48]. Our approach is especially
indebted to the geometric formulation of Ref. [32]. In
Ref. [32], the authors introduce a particular tetrad con-
struction with which to label the field-space manifold
locally, which they dub the ‘‘kinematical basis.’’ The
adoption of the kinematical basis simplifies certain expres-
sions and highlights features of physical interest in the
primordial power spectrum, but it does so at the expense
of obscuring the relationship between observable quanti-
ties and the fields that appear in the original Lagrangian, in
terms of which any given model is specified. Rather than
adopt the kinematical basis here, we develop a covariant
approach in terms of a single coordinate chart that covers
the entire field manifold. This offers greater insight into the
global structure of the manifold, as illustrated in Fig. 5. We
also keep coordinate labels explicit, which facilitates
application of our formalism to the original basis of fields,
�I, that appears in the governing Lagrangian. Also unlike
[32], we work in terms of cosmic time, t, rather than the
number of efolds during inflation, N, because we are
interested in applying our formalism (in later work) to
eras such as preheating, for which N is a poor dynamical

parameter. Because of these formal distinctions from
Ref. [32], we briefly introduce our general formalism in
this section.
We expand each scalar field to first order around its

classical background value, as in Eq. (10). The background
fields,’IðtÞ, parametrize classical paths through the curved
field-space manifold, and hence can be used as coordinate
descriptions of the trajectories. Just like spacetime coor-
dinates in general relativity, x�, the array ’I is not a vector
in the field-space manifold [49]. Infinitesimal displace-
ments, d’I, do behave as proper vectors, and hence so
do derivatives of ’I with respect to an affine parameter
such as t.
For any vector in the field space, AI, we define a cova-

riant derivative with respect to the field-space metric as
usual by

DJA
I ¼ @JA

I þ �I
JKA

K: (21)

Following Refs. [8,27,32], we also introduce a covariant
derivative with respect to cosmic time via the relation

DtA
I � _’JDJA

I ¼ _AI þ �I
JKA

J _’K; (22)

where overdots denote derivatives with respect to t. The
construction of Eq. (22) is essentially a directional deriva-
tive along the trajectory.
For models with nontrivial field-space manifolds, the

tangent space to the manifold at one time will not coincide
with the tangent space at some later time. Hence the
authors of Refs. [34,35] introduce a covariant means of
handling field fluctuations, which we adopt here. As speci-
fied in Eq. (10), the value of the physical field at a given
location in spacetime, �Iðx�Þ, consists of the homogenous
background value, ’IðtÞ, and some gauge-dependent fluc-
tuation, ��Iðx�Þ. The fluctuation ��I represents a finite
coordinate displacement from the classical trajectory, and
hence does not transform covariantly. This motivates a
construction of a vector QI to represent the field fluctua-
tions in a covariant manner. The two field values, �I and
’I, may be connected by a geodesic in the field-space
manifold parametrized by some parameter 
, such that
�Ið
 ¼ 0Þ ¼ ’I and �Ið
 ¼ 1Þ ¼ ’I þ ��I. These
boundary conditions allow us to identify a unique vector,
QI, that connects the two field values, such that
D
�

Ij
¼0 ¼ QI. One may then expand ��I in a power
series in QI [34,35],

��I¼QI� 1

2!
�I

JKQ
JQK

þ 1

3!
ð�I

LM�
M
JK��I

JK;LÞQJQKQLþ��� ; (23)

where the Christoffel symbols are evaluated at back-
ground order in the fields, �I

JK ¼ �I
JKð’LÞ. To first

order in fluctuations ��I ! QI, and hence at linear
order we may treat the two quantities interchangeably.
When we consider higher-order combinations of the field

FIG. 5 (color online). Parametric plot of the evolution of the
fields� and � superimposed on the Ricci curvature scalar for the
field-space manifold, R, in the absence of a Jordan-frame
potential. The fields’ geodesic motion is nontrivial because of
the nonvanishing curvature. Shown here is the case �� ¼ 10,

�� ¼ 10:02, �ð�0Þ ¼ 0:75, �ð�0Þ ¼ 0:01, �0ð�0Þ ¼ �0:01, and

�0ð�0Þ ¼ 0:005.
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fluctuations below, however, such as the contribution of the
three-point function of field fluctuations to the bispectrum,
we must work in terms of the vector QI rather than ��I.

We introduce the gauge-invariant Mukhanov-Sasaki var-
iables for the perturbations [11,12,38],

QI � QI þ _’I

H
c : (24)

Because both QI and _’I are vectors in the field-space
manifold, QI is also a vector. The Mukhanov-Sasaki vari-
ables, QI, should not be confused with the vector of field
fluctuations,QI. TheQI are gauge invariant with respect to
spacetime gauge transformations up to first order in the
perturbations, and are constructed from a linear combina-
tion of field fluctuations and metric perturbations. The
quantity QI does not incorporate metric perturbations;
it is constructed from the (gauge-dependent) field fluctua-
tions and background-order quantities such as the field-
space Christoffel symbols. At lowest order in perturbations,
QI ! QI in the spatially flat gauge.

Using Eq. (24), we may separate Eq. (9) into background
and first-order expressions,

Dt _’
I þ 3H _’I þ GIKV;K ¼ 0; (25)

and

D2
t Q

Iþ3HDtQ
I

þ
�
k2

a2
�I

JþMI
J�

1

M2
pla

3
Dt

�
a3

H
_’I _’J

��
QJ¼0: (26)

The mass-squared matrix appearing in Eq. (26) is given by

MI
J � GIKðDJDKVÞ �RI

LMJ _’L _’M; (27)

where RI
LMJ is the Riemann tensor for the field-space

manifold. All expressions in Eqs. (25)–(27) involving GIJ,
�I

JK, R
I
LMJ, and V are evaluated at background order in

the fields, ’I.
The system simplifies further if we distinguish between

the adiabatic and entropic directions in field space [7]. The
length of the velocity vector for the background fields is
given by

j _’Ij � _
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GIJ _’I _’J

q
: (28)

Introducing the unit vector,


̂ I � _’I

_

; (29)

the background equations, Eqs. (12) and (25), simplify to

H2 ¼ 1

3M2
pl

�
1

2
_
2 þ V

�
; _H ¼ � 1

2M2
pl

_
2 (30)

and

€
þ 3H _
þ V;
 ¼ 0; (31)

where we have defined

V;
 � 
̂IV;I: (32)

The background dynamics of Eqs. (30) and (31) take the
form of a single-field model with canonical kinetic term,
with the exception that Vð’IÞ in Eqs. (30) and (31) depends
on all N independent fields, ’I.
The directions in field space orthogonal to 
̂I are

spanned by

ŝIJ � GIJ � 
̂I
̂J: (33)

The quantities 
̂I and ŝIJ obey the useful relations


̂I
̂
I ¼ 1; ŝIJŝIJ ¼ N � 1;

ŝIAŝ
A
J ¼ ŝIJ; 
̂Iŝ

IJ ¼ 0 for all J:
(34)

Therefore, we may use 
̂I and ŝIJ as projection operators to
decompose any vector in field space into components along
the direction 
̂I and perpendicular to 
̂I as

AI ¼ 
̂I
̂JA
J þ ŝIJA

J: (35)

In particular, _SI � ŝIJ _’J vanishes identically, _SI ¼ 0.
Thus all of the dynamics of the background fields are
captured by the behavior of _
 and 
̂I.
Given the simple structure of the background evolution,

Eqs. (30) and (31), we introduce slow-roll parameters akin
to the single-field case. We define

� � � _H

H2
¼ 3 _
2

ð _
2 þ 2VÞ (36)

and

�

 � M2
pl

M



V
; (37)

where we have defined

M
J � 
̂IMI
J ¼ 
̂KðDKDJVÞ;

M

 � 
̂I
̂
JMI

J ¼ 
̂K
̂JðDKDJVÞ:
(38)

The term in MI
J involving RI

LMJ vanishes when con-
tracted with 
̂I or 
̂

J due to the first Bianchi identity (since
the relevant term is already contracted with 
̂L
̂M), and
hence M

 is independent of RI

LMJ. For trajectory 2 of
Fig. 2 (solid red line), we see that slow-roll is temporarily
violated when the fields roll off the ridge of the potential.
See Fig. 6.
A central quantity of interest is the turn rate [32], which

we denote !I. The turn rate is given by the (covariant) rate
of change of the unit vector, 
̂I,

!I � Dt
̂
I ¼ � 1

_

V;Kŝ

IK; (39)

where the last expression follows upon using the equations
of motion, Eqs. (25) and (31). Because !I / ŝIK, we have

!I
̂I ¼ 0: (40)
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Using Eqs. (33) and (39), we also find

Dtŝ
IJ ¼ �
̂I!J �!I
̂J: (41)

For evolution of the fields like that shown in Fig. 2, the turn
rate peaks when the fields roll off the ridge; see Fig. 7.

We may decompose the perturbations along directions
parallel to and perpendicular to 
̂I,

Q
 � 
̂IQ
I; �sI � ŝIJQ

J: (42)

Note that �sI may be defined either in terms of the field
fluctuations or the Mukhanov-Sasaki variables, since
ŝIJ��

J ¼ ŝIJQ
J. Though �sI is a vector in field space

with N components, only N � 1 of these components

are linearly independent. We will isolate particular compo-
nents of interest in Sec. IV.
Taking a Fourier transform, such that for any function

Fðt; xiÞ we have a2ðtÞ@i@iFðt; xiÞ ¼ �k2FkðtÞ where k is
the comoving wave number, Eq. (26) separates into two
equations of motion (we suppress the label k on Fourier
modes),

€Q
þ3H _Q
þ
�
k2

a2
þM

�!2� 1

M2
pla

3

d

dt

�
a3 _
2

H

��
Q


¼2
d

dt
ð!J�s

JÞ�2

�
V;


_

þ _H

H

�
ð!J�s

JÞ (43)

and

D2
t �s

I þ ½3H�I
J þ 2
̂I!J�Dt�s

I

þ
�
k2

a2
�I

J þMI
J � 2
̂I

�
M
J þ €


_

!J

��
�sJ

¼ �2!I

�
_Q
 þ _H

H
Q
 � €


_

Q


�
: (44)

Although the effective mass of the adiabatic perturbations,
m2

eff ¼ M

 �!2, is independent of RI
LMJ, the curva-

ture of the field-space manifold introduces couplings
among components of the entropy perturbations, �sI, by
means of theMI

J term in Eq. (44). The quantities Q
 and
(!J�s

J) are scalars in field space, so the covariant time
derivatives in Eq. (43) reduce to ordinary time derivatives.
From Eqs. (43) and (44), it is clear that the adiabatic and

entropy perturbations decouple if the turn rate vanishes,
!I ¼ 0. Moreover, Eq. (43) for Q
 is identical in form to
that of a single-field model (with m2

eff ¼ M

 �!2), but

with a nonzero source term that depends on the combina-
tion !J�s

J. Even in the presence of significant entropy
perturbations, �sI, the power spectrum for adiabatic per-
turbations will be devoid of features such as non-
Gaussianities unless the turn rate is nonzero, !I � 0.

IV. ADIABATIC AND ENTROPY PERTURBATIONS

In Sec. III we identified the vector of entropy perturba-
tions, �sI, which includes N � 1 physically independent
degrees of freedom. As we will see in this section, these
N � 1 physical components may be further clarified by
introducing a particular set of unit vectors and projection
operators in addition to 
̂I and ŝIJ. With them we may
identify components of �sI of particular physical interest.
We denote the gauge-invariant curvature perturbation as

Rc, not to be confused with the Ricci scalar for the field-
space manifold, R. The perturbation Rc is defined as
[11,12,38]

Rc � c � H

ð�þ pÞ�q; (45)

where � and p are the background-order energy density
and pressure for the fluid filling the FRW spacetime, and

FIG. 7 (color online). The turn rate, ! ¼ j!Ij, for the three
trajectories of Fig. 2: trajectory 1 (orange dotted line); trajectory
2 (red solid line); and trajectory 3 (black dashed line). The rapid
oscillations in ! correspond to oscillations of � in the lower
false vacuum of the � valley. For trajectory 1, ! peaks at N	 ¼
34:5 efolds before the end of inflation; for trajectory 2, ! peaks
at N	 ¼ 4:9 efolds before the end of inflation; and for trajectory
3, ! remains much smaller than 1 for the duration of inflation.

FIG. 6 (color online). The slow-roll parameters � (blue dashed
line) and j�

j (solid red line) versus N	 for trajectory 2 of
Fig. 2, where N	 is the number of efolds before the end of
inflation. Note that j�

j temporarily grows significantly larger
than 1 after the fields fall off the ridge in the potential at around
N	 � 5.
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�q is the energy-density flux of the perturbed fluid,
T0

i � @i�q. Given Eq. (8), we find

� ¼ 1

2
_
2 þ V; p ¼ 1

2
_
2 � V;

�q ¼ �GIJ _’I��J ¼ � _

̂J��
J;

(46)

and hence, upon using Eqs. (24) and (42),

Rc ¼ c þH

_


̂J��

J ¼ H

_

Q
: (47)

We thus find that Rc / Q
, and that the right-hand side

of Eq. (44) is proportional to _Rc. Recall that these
expressions hold to first order in fluctuations, for which
��I ! QI.

In the presence of entropy perturbations, the gauge-
invariant curvature perturbation need not remain con-

served, _Rc � 0. In particular, the nonadiabatic pressure
perturbation is given by [11,12]

�pnad��p� _p

_�
��¼� 2V;


3H _

��mþ2 _
ð!J�s

JÞ; (48)

where ��m � ��� 3H�q is the gauge-invariant comov-
ing density perturbation. The perturbed Einstein field
equations (to linear order) require [11,12]

��m ¼ �2M2
pl

k2

a2
�; (49)

where � is the gauge-invariant Bardeen potential
[11,12,38]

� � c þ a2H

�
_E� B

a

�
: (50)

Therefore in the long-wavelength limit, for k � aH, the
only source of nonadiabatic pressure comes from the en-
tropy perturbations, �sI. Using the usual relations [11,12]
among the gauge-invariant quantities Rc and � � �c þ
ðH= _�Þ��, we find

_Rc ¼ H
_H

k2

a2
�þ 2H

_

ð!J�s

JÞ: (51)

Thus even for modes with k � aH, Rc will not be con-
served in the presence of entropy perturbations if the turn
rate is nonzero, !I � 0.

Equations (43) and (51) indicate that a particular com-
ponent of the vector �sI is of special physical relevance:
the combination (!J�s

J) serves as the source for Q
 and

hence for _Rc. Akin to the kinematical basis of Ref. [32],
we may therefore introduce a new unit vector that points in
the direction of the turn rate, !I, together with a new
projection operator that picks out the subspace perpendicu-
lar to both 
̂I and !I:

ŝ I � !I

!
; �IJ � GIJ � 
̂I
̂J � ŝI ŝJ; (52)

where ! ¼ j!Ij is the magnitude of the turn-rate vector.
Using the relations in Eq. (34), the definitions in Eq. (52)
imply

ŝIJ ¼ ŝIŝJ þ �IJ; �IJ�IJ ¼ N � 2;

ŝIJŝJ ¼ ŝI; 
̂Iŝ
I ¼ 
̂I�

IJ ¼ ŝI�
IJ ¼ 0 for all J:

(53)

We then find

Dtŝ
I ¼ �!
̂I ��I; Dt�

IJ ¼ ŝI�J þ�IŝJ; (54)

where

�I � 1

!
M
K�

IK; (55)

and hence, from Eq. (53),


̂I�
I ¼ ŝI�

I ¼ 0: (56)

The vector of entropy perturbations, �sI, may then be
written as

�sI ¼ ŝIQs þ BI; (57)

where

Qs � ŝJQ
J; BI � �I

JQ
J: (58)

The quantity that sources Q
 and Rc is now easily
identified as the scalar, !J�s

J ¼ !Qs, which corresponds
to just one component of the vector �sI.
Making use of Eqs. (30), (47), and (51), the equation of

motion for �sI in Eq. (44) separates into

€Qs þ 3H _Qs þ
�
k2

a2
þMss þ 3!2 ��2

�
Qs

¼ 4M2
pl

!

_


k2

a2
��Dtð�JB

JÞ ��JDtB
J

�MsJB
J � 3Hð�JB

JÞ (59)

and

D2
t B

Iþ½3H�I
Jþ2ð
̂I!J� ŝI�JÞ�DtB

J

þ
�
k2

a2
�I

Jþ�IAMAJ�
̂IM
J� ŝIð3H�JþDt�JÞ
�
BJ

¼2�I _Qs��IAMAsQsþð3H�IþDt�
IÞQs: (60)

In analogy to (38), we have introduced the projections

MsJ � ŝIMI
J; Mss � ŝI ŝ

JMI
J: (61)

Note, however, that unlike M
J, the term in MI
J propor-

tional to RI
LMJ does not vanish upon contracting with ŝI

or ŝJ. Hence the Riemann-tensor term in MI
J induces

interactions among the components of �sI.
For models withN 
 3 scalar fields, we may introduce

additional unit vectors and projection operators with which
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to characterize components of BI. The next in the series are
given by

û I � �I

�
; qIJ � �IJ � ûIûJ: (62)

Repeating steps as before, we find

Dtû
I ¼ �ŝI þ �I; Dtq

IJ ¼ �ûI�J � �IûJ; (63)

where

�I � 1

�

�
MsK þ _


!

̂A
̂LðDAML

KÞ
�
qIK: (64)

We then have

BI ¼ ûIQu þ CI (65)

in terms of

Qu � ûJQ
J; CI � qIJQ

J: (66)

This decomposition reproduces the structure in the kine-
matical basis [32] but can be applied in any coordinate
basis for the field-space manifold:Q
 is sourced byQs;Qs

is sourced by Q
 and Qu [though we have used Eq. (51) to
substitute the dependence on _Q
 for the r2� term in
Eq. (59)]; Qu is sourced by Qs and Qv � �JQ

J=j�Ij, and
so on.

For our present purposes the two-field model will suf-
fice. The perturbations then consist of two scalar degrees
of freedom, Q
 and Qs, which obey Eqs. (43) and (59)
(with BI ¼ �I ¼ 0), respectively. The effective mass-
squared of the entropy perturbations becomes

�2
s � Mss þ 3!2: (67)

If the entropy perturbations are heavy during slow-roll,
with �s > 3H=2, then the amplitude of long-wavelength

modes, with k � aH, will fall exponentially: Qs �
a�3=2ðtÞ during quasi–de Sitter expansion. For trajectories
that begin near the top of a ridge, on the other hand, the
entropy modes will remain light or even tachyonic at early
times, since�2

s is related to the curvature of the potential in
the direction orthogonal to the background fields’ trajec-
tory. Once the background fields roll off the ridge, the
entropy mass immediately grows very large, suppressing
further growth in the amplitude of Qs. See Fig. 8.

The perturbations in the adiabatic direction are propor-
tional to the gauge-invariant curvature perturbation, as
derived in Eq. (47). Following the usual convention [33],
we may define a normalized entropy perturbation as

S � H

_

Qs: (68)

In the long-wavelength limit, the coupled perturbations
obey general relations of the form [33]

_Rc ¼ �HS þO
�

k2

a2H2

�
; _S ¼ 	HS þO

�
k2

a2H2

�
;

(69)

in terms of which we may write the transfer functions as

TRSðt	; tÞ ¼
Z t

t	
dt0�ðt0ÞHðt0ÞTSSðt	; t0Þ;

TSSðt	; tÞ ¼ exp

�Z t

t	
dt0	ðt0ÞHðt0Þ

�
:

(70)

The transfer functions relate the gauge-invariant perturba-
tions at one time, t	, to their values at some later time, t. We
take t	 to be the time when a fiducial scale of interest first
crossed outside the Hubble radius during inflation, defined
by a2ðt	ÞH2ðt	Þ ¼ k2	. In the two-field case, bothRc and S
are scalars in field space, and hence �,	, TRS , and TSS are
also scalars. Thus there is no time-ordering ambiguity in
the integral for TSS in Eq. (70).
In the two-field case, Eq. (51) becomes

_R ¼ 2!S þO
�

k2

a2H2

�
: (71)

Comparing with Eq. (69), we find

�ðtÞ ¼ 2!ðtÞ
HðtÞ : (72)

The variation of the gauge-invariant curvature perturbation

is proportional to the turn rate. For _S we take the long-
wavelength and slow-roll limits of Eq. (59):

_Qs ’ ��2
s

3H
Qs: (73)

FIG. 8 (color online). The effective mass-squared of the
entropy perturbations relative to the Hubble scale, ð�s=HÞ2,
for the trajectories shown in Fig. 2: trajectory 1 (orange dotted
line); trajectory 2 (red solid line); and trajectory 3 (black dashed
line). For all three trajectories, �2

s < 0 while the fields remain
near the top of the ridge, since �2

s is related to the curvature of
the potential in the direction orthogonal to the background fields’
evolution. The effective mass grows much larger than H as soon
as the fields roll off the ridge of the potential.
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Equation (69) then yields

	 ¼ � �2
s

3H2
� �þ €


H _

: (74)

Taking the slow-roll limit of Eq. (31) for _
, we have

3H _
 ’ �
̂IV;I: (75)

Taking a covariant time derivative of both sides, using the
definition of !I in Eq. (39), and introducing the slow-roll
parameter

�ss � M2
pl

Mss

V
; (76)

we arrive at

	 ¼ �2�� �ss þ �

 � 4

3

!2

H2
; (77)

where�

 is defined in Eq. (37). For trajectories that begin
near the top of a ridge, �ss will be negative at early times
(like �2

s), which can yield 	> 0. In that case, TSSðt	; tÞ
will grow. If one also has a nonzero turn rate, !—and
hence, from Eq. (72), a nonzero � within the integrand for
TRSðt	; tÞ—then the growing entropy modes will source
the adiabatic mode.

The power spectrum for the gauge-invariant curvature
perturbation is defined by [11,12]

hRcðk1ÞRcðk2Þi ¼ ð2�Þ3�ð3Þðk1 þ k2ÞPRðk1Þ; (78)

where the angular brackets denote a spatial average and
PRðkÞ ¼ jRcj2. The dimensionless power spectrum is
then given by

PRðkÞ ¼ k3

2�2
jRcj2; (79)

and the spectral index is defined as

ns � 1þ @ lnPR

@ ln k
: (80)

Using the transfer functions, we may relate the power
spectrum at time t	 to its value at some later time, t, as

PRðkÞ ¼ PRðk	Þ½1þ T2
RSðt	; tÞ�; (81)

where k corresponds to a scale that crossed the Hubble
radius at some time t > t	. The scale dependence of the
transfer functions becomes [12,13,32,33],

1

H

@TRS

@t	
¼ ��� 	TRS ;

1

H

@TSS

@t	
¼ �	TSS ; (82)

and hence the spectral index for the power spectrum of the
adiabatic fluctuations becomes

ns ¼ nsðt	Þ þ 1

H

�
@TRS

@t	

�
sin ð2�Þ; (83)

where

cos� � TRSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

RS

q : (84)

Given Eq. (43) in the limit !J�s
J ¼ !Qs � 1, the spec-

tral index evaluated at t	 matches the usual single-field
result to lowest order in slow-roll parameters [11,12,50],

nsðt	Þ ¼ 1� 6�ðt	Þ þ 2�

ðt	Þ: (85)

Scales of cosmological interest first crossed the Hubble
radius between 40 and 60 efolds before the end of inflation.
In each of the scenarios of Fig. 2, the fields remained near
the top of the ridge in the potential until fewer than 40
efolds before the end of inflation. As indicated in Fig. 9,
TRS remains small between N	 ¼ 60 and 40 for each of
the three trajectories, with little sourcing of the adiabatic
perturbations by the entropy perturbations. This behavior
of TRS is consistent with the behavior of ! ¼ �H=2 as
shown in Fig. 7: ! (and hence �) remains small until the
fields roll off the ridge in the potential. Only in the case of
trajectory 1, which began least high on the ridge among
the trajectories and hence fell down the ridge soonest (at
N	 ¼ 34:5 efolds before the end of inflation), does TRS
become appreciable by N	 ¼ 40. In particular, we find
TRSðN40Þ ¼ 0:530 for trajectory 1; TRSðN40Þ ¼ 0:011
for trajectory 2; and TRSðN40Þ ¼ 0:001 for trajectory 3.
Fixing the fiducial scale k	 to be that which first crossed

the Hubble radius N	 ¼ 60 efolds before the end of
inflation, we find nsðt	Þ ¼ 0:967 for each of the three
trajectories of Fig. 2, in excellent agreement with the

FIG. 9 (color online). The transfer function TRS for the three
trajectories of Fig. 2: trajectory 1 (orange dotted line); trajectory
2 (red solid line); and trajectory 3 (black dashed line).
Trajectories 2 and 3, which begin nearer the top of the ridge
in the potential than trajectory 1, evolve as essentially single-
field models during early times, before the fields roll off the
ridge.
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observed value ns ¼ 0:971� 0:010 [3]. Corrections to ns
from the scale dependence of TRS remain negligible as
long as TRS remains small between N	 ¼ 60 and 40.
Consequently, we find negligible tilt in the spectral index
across the entire observational window for trajectories 2
and 3, whereas the spectral index for trajectory 1 departs
appreciably from nsðt	Þ for scales that crossed the Hubble
radius near N	 ¼ 40. See Fig. 10.

V. PRIMORDIAL BISPECTRUM

In the usual calculation of primordial bispectra, one
often assumes that the field fluctuations behave as nearly
Gaussian around the time t	, in which case the three-point
function for the field fluctuations should be negligible.
Using the QI construction of Eq. (23), the authors of
Refs. [34,35] calculated the action up to third order in
perturbations and found several new contributions to the
three-point function for field fluctuations, mediated by the
Riemann tensor for the field space,RI

JKL. The presence of
the new terms is not surprising; we have seen that RI

JKL

induces new interactions among the perturbations even at
linear order, by means of the mass-squared matrix,MI

J in
Eq. (27). Evaluated at time t	, the three-point function for
QI calculated in Ref. [35] takes the form

hQIðk1ÞQJðk2ÞQKðk3Þi	
¼ ð2�Þ3�ð3Þðk1 þ k2 þ k3Þ

� H4	
k31k

3
2k

3
3

½AIJK	 þBIJK	 þ CIJK	 þDIJK	 �: (86)

Upon using the definition of 
̂I in Eq. (29), the background
equation of Eq. (30) to relate _H to _
2, and the definition of
� in Eq. (36), the terms on the right-hand side of Eq. (86)
may be written [35,51]

AIJK	 ¼
ffiffiffiffiffiffi
2�

p
Mpl


̂IGJKfAðk1;k2;k3Þ þ cyclic permutations;

BIJK	 ¼ 4Mpl

ffiffiffiffiffiffi
2�

p

3

̂ARIðJKÞAfBðk1;k2;k3Þ þ cyclic permutations;

CIJK	 ¼ 2M2
pl�

3

̂A
̂BRðIjABjJ;KÞfCðk1;k2;k3Þ þ cyclic permutations;

DIJK	 ¼ � 8M2
pl�

3

̂A
̂BRIðJKÞA;BfDðk1;k2;k3Þ þ cyclic permutations;

(87)

where RIABJ;K ¼ GKMDMRIABJ, and fI ðkiÞ are shape
functions in Fourier space that depend on the particular
configuration of triangles formed by the wave vectors ki.
Comparable to the findings in Refs. [28,29], each of the
contributions to the three-point function for the field
fluctuations is suppressed by a power of the slow-roll
parameter, � � 1.

The quantity of most interest to us is not the three-point
function for the field fluctuations but the bispectrum for the
gauge-invariant curvature perturbation, � , which may be
parametrized as

h�ðk1Þ�ðk2Þ�ðk3Þi
� ð2�Þ3�ð3Þðk1 þ k2 þ k3ÞB� ðk1;k2;k3Þ: (88)

Recall that the two gauge-invariant curvature perturba-
tions, Rc and � , coincide in the long-wavelength limit
when working to first order in metric perturbations
[11,12]. In terms of QI, the �N expansion [53–56] for �
on super-Hubble scales becomes [35]

�ðx�Þ ¼ ðDINÞQIðx�Þ þ 1

2
ðDIDJNÞQIðx�ÞQJðx�Þ

þ � � � ; (89)

where N ¼ ln jaðtendÞHðtendÞ=k	j is the number of efolds
after a given scale k	 first crossed the Hubble radius until
the end of inflation. At t	, Eqs. (86) and (89) yield

FIG. 10 (color online). The spectral index, ns, versus N	 for
the three trajectories of Fig. 2: trajectory 1 (orange dotted line);
trajectory 2 (red solid line); and trajectory 3 (black dashed line).
The spectral indices for trajectories 2 and 3 coincide and show
no tilt from the value nsðN60Þ ¼ 0:967.
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h�ðk1Þ�ðk2Þ�ðk3Þi	
¼ N;IN;JN;KhQIðk1ÞQJðk2ÞQKðk3Þi	

þ 1

2
ðDIDJNÞN;KN;L

�
Z d3q

ð2�Þ3 hQ
Iðk1 � qÞQKðk2Þi	hQJðqÞQLðk3Þi	

þ cyclic perms: (90)

The bottom two lines on the right-hand side give rise to
the usual form of fNL, made suitably covariant to reflect
GIJ � �IJ. Adopting the conventional normalization, this
term contributes [12–16]:

h�ðk1Þ�ðk2Þ�ðk3ÞifNL

¼ ð2�Þ3�ð3Þðk1 þ k2 þ k3Þ H4	
k31k

3
2k

3
3

�
�
� 6

5
fNLðN;IN

;IÞ2
�
½k31 þ k32 þ k33�; (91)

where

fNL ¼ � 5

6

N;AN;BDADBN

ðN;IN
;IÞ2 : (92)

The term on the first line of Eq. (90), proportional to the
nonzero three-point function for the field fluctuations,
yields new contributions to the bispectrum. However, the
three-point function hQIQJQKi	 is contracted with the
symmetric object, N;IN;JN;K. Hence we must consider this

term with care.
In general, the field-space indices, I, J, K, and the

momentum-space indices, ki, must be permuted as
pairs: ðI;k1Þ, ðJ;k2Þ, ðK;k3Þ. This is because the combi-
nations arise from contracting the external legs of
the various propagators, such as hQIðk1ÞQJðk2Þi and
hQJðk2ÞQKðk3Þi, with the internal legs of each three-point
vertex [35,57]. Let us first consider the special case of an
equilateral arrangement in momentum space, in which
k1 ¼ k2 ¼ k3 ¼ k	. Then the term proportional to AIJK

contributes

h�ðk1Þ�ðk2Þ�ðk3ÞiA
¼ ð2�Þ3�ð3Þðk1 þ k2 þ k3Þ H

4	
4k9	

ffiffiffiffiffiffi
2�

p
Mpl

ðN;IN;JN;KÞ

� ½
̂IGJK þ 
̂JGKI þ 
̂KGIJ�fAðkÞ

¼ ð2�Þ3�ð3Þðk1 þ k2 þ k3Þ H
4	

4k9	

3
ffiffiffiffiffiffi
2�

p
Mpl

� ½ð
̂IN;IÞðN;AN
;AÞ�fAðkÞ; (93)

where fAðkÞ depends only on k. Taking the equilateral
limit of the relevant expression in Eq. (3.17) of Ref. [35],
we find fAðkÞ ! �5k3	=4. Using Eqs. (22), (29), (30), and
(36), we also have


̂IN;I ¼ 1

_

_’IDIN ¼ 1

_

DtN ¼ H

_

¼ 1

MplH
ffiffiffiffiffiffi
2�

p ; (94)

and hence

h�ðk1Þ�ðk2Þ�ðk3ÞiA ¼ ð2�Þ3�ð3Þðk1 þ k2 þ k3Þ H
4	

4k9	

�
�

3

M2
pl

ðN;AN
;AÞ
�
fAðkÞ: (95)

The term arising from BIJK contributes

h�ðk1Þ�ðk2Þ�ðk3ÞiB

¼ ð2�Þ3�ð3Þðk1 þ k2 þ k3Þ H
4	

4k9	

4Mpl

ffiffiffiffiffiffi
2�

p

3

� 
̂AN;IN;JN;K½RIJKA þRIKJA þ cyclic�fBðkÞ:
(96)

But from the symmetry properties of the Riemann tensor
we have RIJKA ¼ RKAIJ ¼ �RAKIJ, and from the first
Bianchi identity,

RA½KIJ� ¼ 0: (97)

The antisymmetry of the Riemann tensor in its last three
indices means that any contraction of the form

OIJKRAKIJ ¼ 0 (98)

for objects OIJK that are symmetric in the indices I, J, K.
In our case, we have OIJK ¼ N;IN;JN;K and thus every

term in the square brackets of Eq. (96), including the cyclic
permutations, may be put in the form of Eq. (98). We
therefore find

h�ðk1Þ�ðk2Þ�ðk3ÞiB ¼ 0; (99)

identically in the equilateral limit.
The term arising from CIJK contributes

h�ðk1Þ�ðk2Þ�ðk3ÞiC

¼ ð2�Þ3�ð3Þðk1 þ k2 þ k3Þ H
4

4k9	

2M2
pl�

3

� 
̂A
̂BN;IN;JN;KRðIjABjJ;KÞfCðkÞ: (100)

In the equilateral limit, we find fCðk	Þ ’ 15k3	, based on
the limit of the appropriate expression in Eq. (3.17) of
Ref. [35]. We may identify the nonzero terms in
Eq. (100) using the Bianchi identities. The first Bianchi
identity is given in Eq. (97), and the second Bianchi
identity may be written

RAB½CD;E� ¼ 0: (101)

Using the (anti)symmetry properties of the Riemann tensor
and Eqs. (97) and (101), together with the fact that the
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combinations OIJK � N;IN;JN;K and �AB � 
̂A
̂B are

symmetric in their indices, we find the only nonzero term
within Eq. (100) to be

h�ðk1Þ�ðk2Þ�ðk3ÞiC

¼ ð2�Þ3�ð3Þðk1 þ k2 þ k3Þ H
4

4k9	

2M2
pl�

3

� 
̂A
̂BN;IN;JN;KRIABJ;KfCðkÞ: (102)

The final term to consider arises from DIJK. In particu-
lar, in the equilaterial limit we have

h�ðk1Þ�ðk2Þ�ðk3ÞiD

¼ð2�Þ3�ð3Þðk1þk2þk3ÞH
4

4k9	
�4M2

pl�

3

 !

� 
̂A
̂BN;IN;JN;K½RIJKA;BþRIKJA;Bþcyclic�fDðkÞ:
(103)

Again we may use RIJKA ¼ RKAIJ ¼ �RAKIJ and
Eq. (97) to put the first term in square brackets in
Eq. (103) in the form

O IJKRAKIJ;B ¼ 0 (104)

for OIJK symmetric. The same occurs for the second term
in square brackets in Eq. (103) and for all cyclic permuta-
tions of I, J, K. Hence we find

h�ðk1Þ�ðk2Þ�ðk3ÞiD ¼ 0; (105)

identically in the equilateral limit.
The new nonvanishing terms in Eqs. (95) and (102)

remain considerably smaller than the fNL term of
Eq. (91) for the family of models of interest. The term
stemming from AIJK in Eq. (95) is proportional to
ðN;AN

;AÞ, whereas the fNL term is multiplied by the square

of that term. For models of interest here, in which the
potential includes ridges, the gradient term is significant.
For each of the three trajectories of Fig. 2, for example,
ðN;AN

;AÞ ¼ Oð103Þ across the full range N	 ¼ 60 to

N	 ¼ 40. The gradient increases as the ratio of ��=��

increases, and hence the fNL term will dominate the term
coming from AIJK whenever jfNLj> 10�3.

For the term involving RIABJ;K in Eq. (102), we may
take advantage of the fact that for two-field models the
Riemann tensor for the field space may be written

RABCD ¼ Kð�IÞ½GACGBD �GADGBC�; (106)

where Kð�IÞ is the Gaussian curvature. In two dimen-
sions, Kð�IÞ ¼ 1

2Rð�IÞ, where R is the Ricci scalar.

Since DKGAB ¼ GAB;K ¼ 0 and Kð�IÞ is a scalar in the

field space, the covariant derivative of the Riemann tensor

is simply proportional to the ordinary (partial) derivative of
the Gaussian curvature, K. In particular, we find


̂ A
̂BN;IN;JN;KRIABJ;K ¼ �ðŝIJN;IN;JÞðN;KK;KÞ;
(107)

where ŝIJ � GIJ � 
̂I
̂J is the projection operator for
directions orthogonal to the adiabatic direction. We calcu-
lateK in Eq. (A6). At early times, as the system undergoes
slow-roll inflation, we have ���

2 þ ���
2 � M2

pl. For the

trajectories as in Fig. 2, moreover, the system evolves
along a ridge such that ���

2 � ���
2. In that case, we find

K’ 1

108�2
�M

2
pl

½1þ6ð��þ��Þþ36��ð�����Þ���0;�0;

(108)

and hence K;I � 0. Thus, in addition to being suppressed
by the slow-roll factor, �, the contribution to the primordial
bispectrum from the RIABJ;K term is negligible in typical
scenarios of interest, because of the weak variation of the
Gaussian curvature of the field-space manifold around the
times N	 ¼ 60 to N	 ¼ 40 efolds before the end of infla-
tion. This matches the behavior shown in Fig. 5: the field-
space manifold is nearly flat until one reaches the vicinity
of �, �� 0, near the end of inflation.
Though these results were derived in the equilateral

limit, for which k1 ¼ k2 ¼ k3 ¼ k	, we expect the same
general pattern to apply more generally, for example, to the
squeezed local configuration in which k1 ’ k2 ¼ k	 and
k3 ’ 0. As one departs from the equilateral limit the exact
cancellations of Eqs. (99) and (105) no longer hold, though
each of the components of the field-space Riemann tensor
and its gradients remains small between N	 ¼ 60 to N	 ¼
40 efolds before the end of inflation for models of the class
we have been studying here. Meanwhile, the k-dependent
functions, fI ðkiÞ in Eq. (87), remain of comparable
magnitude to the k-dependent contribution in Eq. (91)
[35]—each contributes as ½Oð1Þ �Oð10Þ� � k3—while
the coefficients of the additional terms arising from
AIJK, BIJK, CIJK, and DIJK are further suppressed by
factors of �. For models of the class we have been studying
here, we therefore expect the (covariant version of the)
usual fNL term to dominate the primordial bispectrum.
Moreover, given the weak dependence of the Gaussian
curvature Kð�IÞ with �I between N	 ¼ 60 and N	 ¼
40, we do not expect any significant contributions to the
running of fNL with scale to come from the curvature of the
field-space manifold, given the analysis in Ref. [36].
We calculate the magnitude of fNL numerically, follow-

ing the definition in Eq. (92). The discrete derivative of N
along the � direction is constructed as

N;� ¼ Nð�þ ��;�Þ � Nð����;�Þ
2��

; (109)
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where Nð�;�Þ is the number of efolds between t	 and tend,
where tend is determined by the physical criterion that
€a ¼ 0 (equivalent to � ¼ 1). For each quantity, such as
Nð�þ ��;�Þ, we re-solve the exact background equa-
tions of motion numerically and measure how the small
variation in field values at t	 affects the number of efolds of
inflation between t	 and the time at which €a ¼ 0. The
discrete derivatives along the other field directions and
the second derivatives are constructed in a corresponding
manner. Covariant derivatives are calculated using the
discrete derivatives defined here and the field-space
Christoffel symbols evaluated at background order. For
the trajectories of interest, the fields violate slow-roll late
in their evolution (after they have fallen off the ridge of the
potential), but they remain slowly rolling around the time
t	; if they did not, as we saw in Sec. IV, then the predictions
for the spectral index, nsðt	Þ would no longer match
observations. We therefore do not consider separate varia-
tions of the field velocities at the time t	, since in the
vicinity of t	 they are related to the field values. Because
the second derivatives of N are very sensitive to the step
sizes �� and ��, we work with 32-digit accuracy, for
which our numerical results converge for finite step sizes in
the range ��, �� ¼ f10�6; 10�5g.

For the three trajectories of Fig. 2, we find the middle
case, trajectory 2, yields a value offNL of particular interest:
jfNLj ¼ 43:3 for fiducial scales k	 that first crossed the
Hubble radius N	 ¼ 60 efolds before the end of inflation.
Note the strong sensitivity of fNL to the fields’ initial
conditions: varying the initial value of �ð�0Þ by
just j��ð�0Þj ¼ 10�3 changes the fields’ evolution
substantially—either causing the fields to roll off the hill
too early (trajectory 1) or not to turn substantially in field
space at all (trajectory 3)—both of which lead to negligible
values for fNL. See Fig. 11.

VI. CONCLUSIONS

We have demonstrated that multifield models with
nonminimal couplings generically produce the conditions
required to generate primordial bispectra of observable
magnitudes. Such models satisfy at least three of the four
criteria identified in previous reviews of primordial non-
Gaussianities [15,17], namely, the presence of multiple
fields with noncanonical kinetic terms whose dynamics
temporarily violate slow-roll evolution.
Two distinct features are relevant in this class of models:

the conformal stretching of the effective potential in the
Einstein frame, which introduces nontrivial curvature
distinct from features in the Jordan-frame potential; and
nontrivial curvature of the induced manifold for the field
space in the Einstein frame. So long as the nonminimal
couplings are not precisely equal to each other, the
Einstein-frame potential will include bumps or ridges
that will tend to cause neighboring trajectories of the fields
to diverge over the course of inflation. Such features of the
potential are generic to this class of models, and hence are
strongly motivated by fundamental physics.
We have found that the curvature of the potential

dominates the effects of interest at early and intermediate
stages of inflation, whereas the curvature of the field-space
manifold becomes important near the end of inflation
(and hence during preheating). The generic nature of the
ridges in the Einstein-frame potential removes one of the
kinds of fine-tuning that have been emphasized in recent
studies of non-Gaussianities in multifield models, namely,
the need to introduce potentials of particular shapes
[16,29,31,32]. (We are presently performing an extensive
sweep of parameter space to investigate how fNL behaves
as one varies the couplings �I, 
I, and mI. This will help
determine regions of parameter space consistent with cur-
rent observations.) On the other hand, much as in
Refs. [16,29,31,32], we find a strong sensitivity of the
magnitude of the bispectrum to the fields’ initial condi-
tions. Thus the production during inflation of bispectra
with magnitude jfNLj �Oð50Þ requires fine-tuning of ini-
tial conditions such that the fields begin at or near the top of
a ridge in the potential.
A subtle question that deserves further study is whether

the formalism and results derived in this paper show any
dependence on frame. Although we have developed a
formalism that is gauge-invariant with respect to spacetime
gauge transformations, and covariant with respect to the
curvature of the field-space manifold, we have applied the
formalism only within the Einstein frame. The authors of
Ref. [46] recently demonstrated that gauge-invariant quan-
tities such as the curvature perturbation, � , can behave
differently in the Jordan and Einstein frames for multifield
models with nonminimal couplings. The question of
possible frame dependence of the analysis presented here
remains under study. Whether quantities such as fNL show
significant evolution during reheating for this family of

FIG. 11 (color online). The non-Gaussianity parameter, jfNLj,
for the three trajectories of Fig. 2: trajectory 1 (orange dotted
line); trajectory 2 (solid red line); and trajectory 3 (black dashed
line). Changing the fields’ initial conditions by a small amount
leads to dramatic changes in the magnitude of the primordial
bispectrum.
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models, as has been emphasized for related models
[31,58], likewise remains a subject of further research.
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APPENDIX: FIELD-SPACE METRIC
AND RELATED QUANTITIES

Given fð�IÞ in Eq. (17) for a two-field model, the field-
space metric in the Einstein frame, Eq. (6), takes the form

G�� ¼
�M2

pl

2f

��
1þ 3�2

��
2

f

�
;

G�� ¼ G�� ¼
�M2

pl

2f

��
3������

f

�
;

G�� ¼
�M2

pl

2f

��
1þ 3�2

��
2

f

�
:

(A1)

The components of the inverse metric are

G�� ¼
�
2f

M2
pl

��
2fþ 6�2

��
2

C

�
;

G�� ¼ G�� ¼ �
�
2f

M2
pl

��
6������

C

�
;

G�� ¼
�
2f

M2
pl

��2fþ 6�2
��

2

C

�
;

(A2)

where we have defined the convenient combination

Cð�;�Þ � M2
pl þ ��ð1þ 6��Þ�2 þ ��ð1þ 6��Þ�2

¼ 2fþ 6�2
��

2 þ 6�2
��

2: (A3)

The Christoffel symbols for our field space take the form

��
�� ¼ ��ð1þ 6��Þ�

C
� ���

f
;

��
�� ¼ ��

�� ¼ ����

2f
;

��
�� ¼ ��ð1þ 6��Þ�

C
;

��
�� ¼ ��ð1þ 6��Þ�

C
;

��
�� ¼ ��

�� ¼ ����

2f
;

��
�� ¼ ��ð1þ 6��Þ�

C
� ���

f
:

(A4)

For two-dimensional manifolds we may always write
the Riemann tensor in the form

RABCD ¼ Kð�IÞ½GACGBD � GADGBC�; (A5)

where Kð�IÞ is the Gaussian curvature. In two dimen-
sions,Kð�IÞ ¼ 1

2Rð�IÞ, whereRð�IÞ is the Ricci scalar.
Given the field-space metric of Eq. (A1), we find

Rð�IÞ¼2Kð�IÞ
¼ 2

3M2
plC

2
½ð1þ6��Þð1þ6��Þð4f2Þ�C2�: (A6)
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