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The primordial non-Gaussianity parameters fNL and �NL may be scale dependent. We investigate the

capability of future measurements of the CMB � distortion, which is very sensitive to small scales, and of

the large-scale halo bias to test the running of local non-Gaussianity. We show that, for an experiment such

as PIXIE, a measurement of the�-temperature correlation can pin down the spectral indices nfNL and n�NL
to values of the order of 0.3 if fNL ¼ 20 and �NL ¼ 5000. A similar value can be achieved with an all-sky

survey extending to redshift z� 1. In the particular case in which the two spectral indices are equal, as

predicted in models where the cosmological perturbations are generated by a single field other than the

inflaton, the 1� error on the scale dependence of the nonlinearity parameters goes down to 0.2.
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I. INTRODUCTION

Detecting a possible primordial source of non-
Gaussianity (NG) in the cosmological perturbations is
one of the main targets of current and future experiments
measuring the properties of the cosmic microwave back-
ground (CMB) anisotropies and the large-scale structure of
the Universe. Indeed, measuring a certain level of NG in
the three- (bispectrum) and four-point (trispectrum) corre-
lator of the perturbations opens up a unique window into
the physics of inflation, which is believed to be the period
during which such fluctuations are quantum-mechanically
generated [1]. The current constraints on NG come from
the measurement of the CMB anisotropy bispectrum [2]
and from the properties of the clustering of galaxies, which
have been identified to be a powerful probe of NG thanks to
the fact that NG introduces a scale-dependent bias between
the power spectra of halos and dark matter [3,4].

Most of the attention in the literature has been devoted to
the so-called ‘‘local’’ model of NG, where NG is defined in
terms of the primordial gravitational potential �ð ~xÞ as

�ð ~xÞ ¼ �Gð ~xÞ þ fNL½�2
Gð ~xÞ � h�2

Gð ~xÞi�: (1)

The corresponding bispectrum and trispectrum are given
by

B�ðk1; k2; k3Þ ¼ 2fNL½P�ðk1ÞP�ðk2Þ þ 2 cyc:�; (2)

T�ðk1; k2; k3; k4Þ
¼ 25

9
�NL½P�ðk1ÞP�ðk2ÞP�ðk13Þ þ 11 cyc:�; (3)

where P�ðkÞ is the power spectrum of the gravitational

potential. This type of NG is generated in multifield infla-
tionary models where the cosmological perturbation is
sourced by light scalar fields other than the inflaton. The
corresponding perturbations are both scale invariant and
special conformally invariant [5,6]. The parameter fNL is

currently constrained to be in the range ð32� 21Þ by
WMAP [2] and ð28� 23Þ by large-scale structure [7],
while the parameter �NL needs to be in the range ð�0:6<
�NL=10

4 < 3:3Þ as inferred from the WMAP five-year data
[8]. Measuring the amplitudes of both the bispectrum and
the trispectrum is extremely interesting as, if only one
degree of freedom is responsible for the perturbations,
then there is a well-defined relation between the NG
parameters, �NL ¼ ð65 fNLÞ2. By contrast, if more than one

field is responsible for the cosmological perturbations
generated through the inflationary dynamics, then there
exists an inequality, �NL > ð65 fNLÞ2 [6,9,10]. The extent

to which future measurements of the scale dependence of
halo bias can test multifield inequality has been the subject
of Ref. [11].
Even though the definitions in Eqs. (2) and (3) are

widely used to model NG in the primordial perturbations,
they are just the first step one can take on this matter. One
more general definition of the bispectrum and trispectrum
could include a scale dependence in the nonlinearity
parameters fNL and �NL. This step is well motivated by
the theoretical predictions of some models [12–16]. The
running with physical scale of the NG parameters fNL and
�NL has been the subject of intense recent research [17–24].
To account for the running of fNL in its full generality,

one can adopt, for example, the parametrization used in
Ref. [25] (see also Ref. [14]):

B�ðk1; k2; k3Þ
¼ 2½�fNLðk3Þ�mðk1Þ�mðk2ÞP�ðk1ÞP�ðk2Þ þ cyc:�; (4)

where

�fNL;mðkÞ ¼ �fNL;mðk0Þ
�
k

k0

�
nfNL ;m

: (5)

Here, �fNLðkÞ parametrizes the (self-)interactions of the

fields, and �mðkÞ the ratio of the contribution of each field.
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From this general parametrization, we can also easily
extend the one for the trispectrum:

T�ðk1; k2; k3; k4Þ ¼ 25

9
½��NLðk3; k4Þ�mðk1Þ�mðk2Þ�mðk13Þ

� P�ðk1ÞP�ðk2ÞP�ðk13Þ þ cyc:�; (6)

where

��NLðki; kjÞ ¼ ��NLðk0Þ
�
kikj

k20

�
n�NL

: (7)

In the single-field limit, ��NLðki; kjÞ ¼ 36
25�fNLðkiÞ�fNLðkjÞ

and �mðkÞ ¼ 1. According to this parametrization, in the
case of a multifield inflation, we have three free parame-
ters, nfNL , nm and n�NL , which describe the scale depen-

dence of the nonlinearity parameters fNL and �NL and of
the dimensionless power spectra. In order to decrease the
complexity of the analysis, from now on we make the
assumption that nm is significantly much smaller than
unity. By doing so, we are left with the following parame-
trization of the nonlinear parameters:

fNLðkÞ ¼ f�NL
�
k

k�

�
nfNL

(8)

and

�NLðki; kjÞ ¼ ��NL
�
kikj

k2�

�
n�NL

: (9)

CMB information alone, in the event of a significant de-
tection of the NG component, corresponding to fNL ¼ 50
for the local model, is able to determine nfNL with a 1�

uncertainty of about 0.1 for the Planck mission [17].
A local bias analysis performed in the same Ref. [17]
showed that high-redshift surveys (z > 1) covering a large
fraction of the sky, corresponding to a volume of about
100h�3 Gpc3, might provide a 1� error on the running fNL
parameter of the order of 0:4ð50=fNLÞ. On the other hand,
using the WMAP temperature maps, a constraint on the
running of the scale-dependent parameter fNL has been
recently obtained in Ref. [26]: nfNL ¼ 0:30ðþ1:9Þð�1:2Þ at
95% confidence, marginalized over the amplitude f�NL. To
the best of our knowledge, no forecasts for the running of
the trispectrum parameter �NL exist in the literature. In
fact, in the case in which the perturbations are sourced by a
single field, a well-defined relation between the running
spectral indices holds:

nfNL ¼ n�NL ; (10)

and the indices are therefore not independent. In this paper,
we will assume that fNL and �NL, and therefore their
spectral indices too, are not related to each other, thus

leaving open the possibility that the perturbations originate
from a multifield scenario.
The goal of this paper is to provide some useful forecasts

on the spectral indices nfNL and n�NL from the possible

physical imprints that NG can leave on the CMB � dis-
tortion and the halo bias. Measurements of the �-type
distortion of the CMB spectrum provide the unique oppor-
tunity to probe these scales over the unexplored range from
50 to 104 Mpc�1, and it has been recently pointed out that
correlations between � distortion and temperature anisot-
ropies can be used to test Gaussianity at these very small
scales. In particular, the �-temperature cross correlation is
proportional to the very squeezed limit of the local primor-
dial bispectrum, and hence measures fNL, while the�-� is
proportional to the primordial trispectrum and measures
�NL [27] (see also Ref. [28]). Since the � distortion is
localized at small scales, we expect it to be very sensitive to
the possible running of the NG parameters fNL and �NL.
This will be studied in Sec. II. In Sec. III, we will study the
effect of running NG parameters on the halo bias, taking
into account the running of the trispectrum amplitude as
well. Our conclusions will be presented in Sec. IV. In all
illustrations, the cosmology is a flat �CDM universe with
normalization �8 ¼ 0:803, Hubble constant h0 ¼ 0:701
and matter content �m ¼ 0:279.

II. CMB � DISTORTION

The goal of this section is to compute the effect of
running NG on the CMB � distortion. The latter is caused
by the energy injection originated by the dissipation of
acoustic waves through the Silk damping as they reenter
the horizon and start oscillating. An interesting property is
that this effect is related to primordial perturbation scales
of 50 & kMpc & 104, which are not accessible from CMB
anisotropies observations.
At early times (z � z�;i � 2� 106), the content of the

Universe can be described as a photon-baryon fluid in
thermal equilibrium with a blackbody spectrum. This equi-
librium is achieved mainly through elastic and double
Compton scattering. However, at later times (z�;f � 5�
104 & z & z�;i), double Compton scattering is no longer

efficient, whereas single Compton scattering still provides
equilibrium. The photon number density is, however, fro-
zen, and only the frequency of the photons can be changed.
It can be shown that any energy injection in the photon-
baryon fluid will distort the spectrum by the creation of a
chemical potential �. The photon number density per

frequency interval is then nð�Þ ¼ ðexþ�ðxÞ � 1Þ�1, where
x � h�=ðkBTÞ. The parameter � due to damping of acous-
tic waves can then be expressed in terms of the primordial
power spectrum [29]. Using the Bose-Einstein distribution
plus the fact that the total number of photons is constant,
for an amount of energy (density) released into the plasma
�E=E, one finds that � ’ 1:4�E=E, where
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�E

E
’ 1

4
h�2

�ð ~xÞijz�;i
z�;f

(11)

and h�2
�ð ~xÞi represents the photon energy density fluctua-

tion averaged over one period of the acoustic oscillations.
As the modes of interest reenter the horizon during the
radiation phase, one finally finds

�ð ~xÞ ’ 4:6
Z d3k1d

3k2
ð2	Þ6 
 ~k1


 ~k2
ei

~kþ	 ~xW
� ~kþ
ks

�
� hcos ðk1rÞ cos ðk2rÞip½e�ðk21þk22Þ=k2D; �z�;i

z�;f
; (12)

where 
ð ~xÞ ¼ 5�ð ~xÞ=3 describes curvature perturbations;
~k� � ~k1 � ~k2; and in order to account for the fact that the
distortion arises from a thermalization process, one uses a
top-hat filter in real space Wð ~xÞ, which smears the dissi-
pated energy over a volume of radius k�1

D;f & k�1
s , where

kDðzÞ is the diffusion momentum scale

kDðzÞ ’ 4:1� 10�6ð1þ zÞ3=2 Mpc�1: (13)

We proceed by computing the correlations between �
distortion and temperature anisotropy, as well as ��
self-correlation as done in Ref. [27], but allowing for a
running of fNL and �NL given by Eqs. (8) and (9). The
curvature perturbation bispectrum in the squeezed limit
(k3 
 k1 � k2) is expressed as

h
 ~k1

 ~k2


 ~k3
i ¼ ð2	Þ3�3ð ~k1 þ ~k2 þ ~k3Þ 125 fNLðk�=2Þ

� Pðk�=2ÞPðkþÞ: (14)

The temperature-� correlation therefore reads1

C�T
‘ ¼ �6:1	

9

25
f�NLb

�4

 ðkpÞ

‘ð‘þ 1Þ ln
�
kD;i

kD;f

�

’ �2:2� 10�16f�NL
b

‘ð‘þ 1Þ ; (15)

where the primordial curvature spectrum is defined by

h
 ~k1

 ~k2

i ¼ ð2	Þ3�3ð ~k1 þ ~kÞ2	2�2

 ðk1Þ=k31 with �2


 ðkpÞ ¼
2:4� 10�9 at the pivot scale kp � 0:002 Mpc�1 [2]. The

parameter b is defined by

b

‘ð‘þ 1Þ �
2

ln
�
kD;i

kD;f

� Z d ln kþj‘ðkþr‘Þ2W
�
kþ
ks

�

�
Z

d ln k�
�
k�
2k�

�
nfNL �

2

 ðk�=2Þ�2


 ðkþÞ
�4


 ðkpÞ
� ½e�k2�=ð2k2DðzÞÞ�z�;i

z�;f
: (16)

The � distortion is created during the period between
z�;i ¼ 2� 106 and z�;f ¼ 5� 104, which implies kD;i ’
11600 Mpc�1 and kD;f ’ 46 Mpc�1. For a weak scale

dependence �2

 ðkÞ ¼ �2


 ðkpÞðk=kpÞns�1, we obtain

b ’ 1

ln
�
kD;i

kD;f

� 1

ns þ nfNL � 1

�
1ffiffiffi
2

p
kp

�
ns�1

�
�

1ffiffiffi
2

p
k�

�
nfNL ½kDðzÞnsþnfNL�1�z�;i

z�;f
: (17)

If we take the same pivot for fNL as for the primordial
spectrum, k� ¼ kp, the equation above becomes the same

expression as for a constant fNL ¼ f�NL but with a shifted
spectral index ns replaced by ðns þ nfNLÞ. This shows

explicitly that we recover the scale-invariant result for
nfNL ¼ 0, and we have b ’ 1þ 10ðns þ nfNL � 1Þ for

ðns þ nfNL � 1Þ ’ 0.

Using the trispectrum in the collapsed limit ( ~k12 � 0),

h
 ~k1

 ~k2


 ~k3

 ~k4

i ¼ ð2	Þ3�3ð ~k1 þ ~k2 þ ~k3 þ ~k4Þ
� 4�NLðk�=2; k3ÞPðk�=2ÞPðkþÞPðk3Þ;

(18)

we obtain the NG contribution to the �-distortion self-
correlation:

C
��
‘ ¼ 42	��NL ~b

�6

 ðkpÞ

‘ð‘þ 1Þ ln
2

�
kD;i

kD;f

�

’ 5:6� 10�23��NL
~b

‘ð‘þ 1Þ ; (19)

where

~b � 2lðlþ 1Þ
ln 2ðkD;i

kD;f
Þ
Z

d ln kþd ln k�d ln k3j‘ðkþr‘Þ2W
�
kþ
ks

�

�
�
k�k3
2k2�

�
n�NL �

2

 ðk�=2Þ�2


 ðkþÞ�2

 ðk3Þ

�6

 ðkpÞ

� ½e�k2�=ð2k2DÞ�z�;i
z�;f

½e�2k3=ð2k2DÞ�z�;i
z�;f

’ 1

ln 2ðkD;i

kD;f
Þ
�

1

n�NL þ ns � 1

�
2
�

1ffiffiffi
2

p
kp

�
2ðns�1Þ� 1ffiffiffi

2
p

k�

�
2n�NL

� ð½kDðzÞn�NLþns�1�z�;i
z�;f

Þ2: (20)

This is just b2 with the index nfNL replaced by n�NL , and it

corresponds to the result of a constant �NL ¼ ��NL with ns

1To compute the temperature anisotropies, we adopt the same
approximation as in Ref. [27]; that is, the Sachs-Wolfe approxi-
mation. Based on the findings in Ref. [28], where the full
radiation transfer function was adopted, we expect an overall
decrease of the signal-to-noise ratio of the order of 40%. Later in
the text, we also point out that the change of the pivot scale
amounts to corrections of the order of 30%.
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replaced by ðns þ n�NLÞ. We recover the scale-invariant

result for n�NL ¼ 0. The behavior of the parameters b and
~b is shown in Fig. 1.

Having computed the key parameters b and ~b, we pro-
ceed by estimating the signal-to-noise ratio to estimate the
values of nfNL and n�NL measurable from the � distortion,

assuming that the amplitudes f�NL and ��NL are known from
other experiments. In general, the signal-to-noise ratio for
variables �i is defined in terms of the Fisher matrix as [30]

S

N
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iFij�j

q
: (21)

In the case of only one variable, it reduces to S=N ¼
�

ffiffiffiffi
F

p ¼ �=��. In our case, to measure the spectral index
nfNL we can adopt the Fisher matrix

F ¼ X
‘�2

1

�2
C
�T

‘

�
@C

�T
‘

@nfNL

�
2
; (22)

while for the spectral index n�NL we adopt the Fisher matrix

F ¼ X
‘�2

1

�2
C
��

‘

�
@C

��
‘

@n�NL

�
2
: (23)

The noise for � distortion can be modeled, assuming a
Gaussian beam experiment [31], by

C
��;N
‘ ’ w�1

� e‘
2=‘2max ; (24)

where ‘max is the maximum multipole fixed by the experi-
ment’s beam size and w� is the sensitivity to �. For the

PIXIE experiment [32], ‘max ¼ 84 and w�1=2
� ¼ ffiffiffiffiffiffiffi

4	
p �

10�8. We also approximate the variance of the C‘’s by

�2
C�T

‘

¼ hðC�T
‘ Þ2i � hC�T

‘ i2

¼ 1

2‘þ 1
ððC��

‘ þ C
��;N
‘ ÞðCTT

‘ þ CTT;N
‘ Þ þ ðC�T

‘ Þ2Þ

’ 1

2‘þ 1
CTT
‘ C

��;N
‘ (25)

and

�2
C��

‘

’ 2

2‘þ 1
ðC��;N

‘ Þ2; (26)

where we have used the fact that2

CTT
‘ � CTT;N

‘ ; C
��;N
‘ � C

��
‘ and

CTT
‘ C

��;N
‘ � ðC�T

‘ Þ2: (27)

The signal-to-noise ratio for nfNL at fixed f
�
NL is given by�

S

N

�
nfNL

¼ nfNL=�nfNL
ðnfNLÞ

¼ nfNL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w� ln

�
lmax

2

�s
11

ffiffiffiffi
	

p
�3


 ðkpÞf�NL
�

1ffiffiffi
2

p
k�

�
nfNL

�
�

1ffiffiffi
2

p
kp

�
ns�1

�
1

nfNL þ ns � 1

�

�
��
ln

�
1ffiffiffi
2

p
k�

�
� 1

nfNL þ ns � 1

�
½knfNLþns�1

D �z�;i
z�;f

þ ½ln ðkDÞknfNLþns�1

D �z�;i
z�;f

�
; (28)

whereas the signal-to-noise ratio for n�NL at fixed ��NL is

�
S

N

�
n�NL

¼ n�NL30	w��
6

 ðkpÞ��NLln 2

�
kD;i

kD;f

�0@ln � 1ffiffiffi
2

p
k�

�

� 1

n�NL þ ns � 1
þ ½ln ðkDÞkn�NLþns�1

D �z�;i
z�;f

½kn�NLþns�1

D �z�;i
z�;f

1
A

� ~bðn�NL ; k�Þ: (29)

FIG. 1 (color online). Value of the parameters bðnfNL Þ and
~bðn�NL Þ for two different pivot scales, k� and ns ¼ 0:96. The

dashed line shows the maximal value of nfNL (and n�NL ), for

which the approximation of Eq. (25) is correct.

2Using the explicit expressions above, we find that this condi-
tion is verified, provided that ðf�NLbÞ2, ��NL ~b < 107‘2.We consider
the pivots k� ¼ 0:002 Mpc�1 and k� ¼ 0:064h Mpc�1 ’
0:045 Mpc�1. The former corresponds to the pivot kp of the
primordial spectrum and the latter to the best pivot value from
Ref. [26]. For ��NL � ðf�NLÞ2 � 104 and ‘� 102, we find that the
approximation of Eq. (25) is valid for nfNL , n�NL & ð0:65–0:85Þ
depending on the pivot k�; see Fig. 1, which presents the values of
b and ~b as function of the indices nfNL and n�NL for the two pivots.
One should be aware that in the multiple field case, ��NL is larger
than ðð6=5Þf�NLÞ2, so the approximation becomes worse. In
general, it seems reasonable to trust our estimation up to nfNL ,
n�NL ’ 0:5.
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The left plot of Fig. 2 shows nfNLðf�NLÞ at ðS=NÞnfNL ¼ 1.

An amplitude f�NL & 102 enables us to detect nfNL * 0:3,

at least with the PIXIE experiment. Notice also that the
dependence on the choice of k� is relatively low. The right
plot of Fig. 2 shows n�NLð��NLÞ at ðS=NÞn�NL ¼ 1. Values of

��NL & 105 enable us to detect n�NL * 0:3, again with the

PIXIE experiment.
In the single-field case, we can use either the

temperature-� distortion correlation C�T or the
�-distortion self-correlation C�� to measure nfNL . As

shown in Fig. 3, C�T allows us to detect lower values
of nfNL .

III. HALO BIAS

Let us now turn to the effect of running NG parameters
on the halo bias [17,20–22,25,33]. The halo bias power
spectrum with Gaussian initial conditions can be simply
expressed at lowest order in terms of a linear (Eulerian)
bias parameter

PhðkÞ ¼ ðbE1 Þ2PmðkÞ; (30)

where PmðkÞ is the dark matter power spectrum. The effect
of primordial non-Gaussianity on the halo bias can
be accurately predicted from a peak-background split
[33–37]. As shown in Ref. [33], the non-Gaussian contri-
bution to the linear bias induced by a nonzero primordial
N-point function is

�b1ðkÞ ¼ 4

ðN � 1Þ!
F ðNÞ

s ðk; zÞ
Msðk; zÞ

�
bN�2�c

þ bN�3

�
N � 3þ d lnF ðNÞ

s ðk; zÞ
d ln�s

��
; (31)

where bN are Lagrangian bias parameters, �c � 1:68 is the
critical threshold for (spherical) collapse, and �s is the
root-mean-square (rms) variance of the density field at
redshift z smoothed on the (small) scale Rs of a halo.
While this expression assumes a universal mass function,
it can be generalized to take into account deviations from
universality in actual halo mass functions [37].

FIG. 2 (color online). Left: The spectral index nfNL as a function of f�NL at ðS=NÞnfNL ¼ 1. Right: The spectral index n�NL as a
function of ��NL at ðS=NÞn�NL ¼ 1. Both plots are made for two different pivot scales k�, using kp ¼ 0:002 Mpc�1 and ns ¼ 0:96 for

PIXIE.

FIG. 3 (color online). Using the temperature-�-distortion cor-
relation C�T allows to detect lower values of nfNL than using the

�-distortion self-correlation C�� in the single field case. The
spectral index nfNL at ðS=NÞnfNL is shown for two different pivot

scales k�, using kp ¼ 0:002Mpc�1 and ns ¼ 0:96 for PIXIE.
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The linear matter density contrast �~kðzÞ is related to the

curvature perturbation � ~k during matter domination via

the Poisson equation. The latter can be expressed as the
Fourier space relation �~kðzÞ ¼ Mðk; zÞ� ~k, where

Mðk; zÞ � 2

3

DðzÞ
�mH

2
0

TðkÞk2: (32)

Here, TðkÞ is the matter transfer function, �m and H0 are
the matter density in critical units and the Hubble rate
today, andDðzÞ is the linear growth rate.Ms is a shorthand
for Mðk; zÞWðkRsÞ, where WðkRsÞ is a spherically sym-
metric window function (we adopt a top-hat filter through-
out this paper). Furthermore,

F ðNÞ
s ðk; zÞ ¼ 1

4�2
sP�ðkÞ

�YN�2

i¼1

Z d3k1
ð2	Þ3 Msðki; zÞ

�
Msðq; zÞ

� �ðNÞ
� ð ~k1; . . . ; ~kN�2; ~q; ~kÞ (33)

is a projection factor whose k dependence is dictated by the

exact shape of the N-point function �ðNÞ
� of the gravita-

tional potential. For the local constant-fNL model, the

factor F ð3Þ
s is equal to fNL in the low-k limit (squeezed

limit), so that the logarithmic derivative of F ðNÞ
s with

respect to the rms variance �s of the small-scale density
field vanishes on large scales. However, this does not hold
for scale-dependent primordial non-Gaussianity. In this
case, we use Eqs. (4) and (6) for the bispectrum and

trispectrum to evaluate the derivative of F ðNÞ
s with respect

to �s.
For generic primordial three- and four-point functions,

the non-Gaussian halo power spectrum reads

PhðkÞ ¼
�
ðbE1 Þ2 þ 4bE1b1�c

F ðnfNL ;MÞ
MRðkÞ

þ 25

27
bE1

�
b2�c�

2
R þ b1

�
1þ d lnT 1

d ln�R

��

�T 1ðn�NL ;MÞ
MRðkÞ þ 25

9
b21�

2
c

T 2ðn�NL ;MÞ
M2

RðkÞ
�
PmðkÞ;

(34)

where, on large scales, the last term in the square brackets
can generate stochasticity between the halo and mass
density fields if �NL is different from ð6fNL=5Þ2 [38–41]).
We have defined the quantities

F ðnfNL ;MÞ ¼ 1

�2
R

Z dq

2	2
q2M2

RðqÞPðqÞfNLðqÞ; (35)

T1ðn�NL ;MÞ ¼ 6

�4
R

Z d3q1d
3q2

ð2	Þ6 MRðq1ÞMRðq2ÞMRðq12Þ

� Pðq1ÞPðq2Þ�NLðq1; q12Þ; (36)

T2ðn�NL ;MÞ ¼ 1

�4
R

Z dq1dq2
ð2	2Þ2 q

2
1q

2
2M

2
Rðq1ÞM2

Rðq1ÞPðq1Þ

� Pðq2Þ�NLðq1; q2Þ: (37)

We have used the definitions in Eqs. (8) and (9) to obtain
these expressions. We have also emphasized the depen-
dence on the parameters nfNL and n�NL , as well as the halo

mass M which, for the top-hat filter, is related to the

smoothing radius R through R ¼ ð3M=4	Þ1=3. The values
of f�NL and ��NL at the pivot wave number k� ¼
0:045 Mpc�1 are assumed to be known. In the particular
case of scale-independent fNL and �NL, i.e., nfNL ¼ n�NL ¼
0, we recover the expressions given in Refs. [38,41].

FIG. 4 (color online). Confidence ellipses obtained by the population of tracers considered with halos with mass larger than
M ¼ 1013M�=h, assuming f�NL ¼ 20 and ��NL ¼ 5� 103 (left) and f�NL ¼ 50 and ��NL ¼ 5� 104 (right).
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In order to assess the ability of forthcoming experiments
to probe the scale dependence of the nonlinearity parame-
ters fNL and �NL through a measurement of the large-scale
bias, we use the Fisher information content on fNL and �NL
(see, e.g., Refs. [17,20–23,25] for application to the scale
dependence of fNL) in the two-point statistics of halos and
dark matter in Fourier space.

Computing the Fisher information requires knowledge
of the covariance matrix of the halo samples:

Chðk;M; zÞ ¼ b2ðk;M; zÞPmðkÞ þ 1

�n
; (38)

where �n is the mean number density of the survey. In order
to constrain nfNL and n�NL , we assume that we have already

measured f�NL and ��NL. Moreover, since we are interested
in investigating the possibility of a detection of the spectral
indices, we take nfNL ¼ n�NL ¼ 0 throughout as fiducial

values. The Fisher matrix is defined as follows:

F ij ¼ Vsurvfsky
Z dkk2

2	2

1

2C2
h

@Ch

@�i

@Ch

@�j
; (39)

where �i are the parameters whose error we wish to fore-
cast, Vsurv is the surveyed volume, and fsky is the fraction of

the sky observed. The integral over the momenta runs from

kmin ¼ 2	=ðVsurvÞ1=3 to kmax ¼ 0:03 Mpc�1=h, above
which the non-Gaussian bias becomes smaller than con-
tributions from second-order bias and nonlinear gravita-
tional evolution. For illustration, we adopt the
specifications of a wide-angle, high-redshift survey such
as BigBOSS or EUCLID: Vsurvfsky ¼ 50 Gpc3=h3 at me-

dian redshift z ¼ 0:7. Furthermore, we ignore redshift
evolution and assume that all the surveyed volume is at
the median redshift.

We compute the uncertainties on nfNL and n�NL from a

single population of tracers consisting of all halos of mass
larger than 1013M�=h. Computing the Lagrangian bias
factors from a Sheth-Tormen mass function [42] leads
to linear and quadratic Lagrangian biases b1 ¼ 0:7
and b2 ¼ �0:4. We take the number density to be
�n ¼ 10�4 Mpc3=h3.
Figure 4 shows the resulting 68%, 95% and 99% con-

fidence contours for the parameters nfNL and n�NL when we

assume two different combinations of f�NL and ��NL. The 1�
errors are displayed in Table I. In the specific case in
which only one degree of freedom is responsible for the
perturbations, we can use the relation �NLðki; kjÞ ¼
36
25 fNLðkiÞfNLðkjÞ, which leaves us with only one parame-

ter, nfNL , describing the scale dependence of the primordial

NG. The 1� error for nfNL as a function of f
�
NL is shown in

Fig. 5. This result can be compared with those of previous
work. For a fiducial value of f�NL ¼ 50 in particular, we
find an error of �nfNL � 0:2 in the case of multifield

models, and�nfNL � 0:1 in the case of single-field models.

For single-field models, this is a factor of Oð3Þ lower than
the forecast error found in Ref. [17] for a survey like
EUCLID. We attribute this difference to the fact that we
have considered the higher-order term Oðf2NLÞ in the halo

bias, and to the parametrization fNLðKÞ ¼ fNLðk�Þ�
ðK1=3=k�ÞnfNL considered in Ref. [17] for the running of
fNL. In this regard, note that K � k1k2k3 gives a contribu-
tion to the scaling of the external momentum, leading to a
suppression (for a positive nfNL) or enhancement (for a

negative nfNL) of the signal with respect to our parametri-

zation in Eq. (8). 3 We have checked that, if we use the
parametrization and restrict ourselves to the OðfNLÞ
contribution to the halo bias, we are able to reproduce their
results. As noted in the Introduction, the parametrization
used in this paper seems to be motivated by various theo-
retical predictions (see, for example, Refs. [14,25]).

TABLE I. 1� errors for the population considered in the two
different sets of f�NL and ��NL in Fig. 4.

f�NL ��NL �nfNL
�n�NL

20 5� 103 0.30 0.23

50 5� 104 0.15 0.08

FIG. 5 (color online). 1� error predictions for nfNL as a func-
tion of f�NL at the pivot point k� ¼ 0:045 Mpc�1 for the popu-

lation considered in the case of single-field models.

3Determining nfNL through � distortion using the parametri-
zation of Ref. [17] also leads to a deterioration of the S=N ratio.
The parameter b is approximated by Eq. (17) with nfNL replaced
by 2nfNL=3. The correlation C�T is decreased by a factor of
about exp ð�cnfNL Þ, with c ’ 3, 4 for k� ¼ 0:002, 0:045 Mpc�1,
respectively, relative to the parametrization in Eq. (8).
Correspondingly, the error �nfNL

is increased by about
3
2 exp ðcnfNL Þ.
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IV. CONCLUSION

Even a tiny level of non-Gaussianity in the cosmo-
logical perturbations can tell us a lot about the dynamics
of the inflationary Universe. In this paper, we have
focused on local non-Gaussianity, which is a generic
prediction of multifield inflationary models where cos-
mological perturbations are sourced by light scalar fields
other than the inflaton. We have considered the possibil-
ity that the nonlinear parameter fNL is scale dependent
and, extending the previous literature, we have also
assumed that �NL may be scale dependent. This is an
unavoidable consequence when only a single field other
than the inflaton generates the perturbation, as the spec-
tral indices nfNL and n�NL are equal. We have considered

two possible probes of a running non-Gaussianity. First,
we have exploited the fact that future measurements of
the CMB � distortion will be very sensitive to small
scales, thereby enhancing the effect of a (blue) tilt of the

NG parameters. Second, we have assessed the ability of
a large-scale galaxy survey to constrain the scale depen-
dence of fNL and �NL imprinted in the non-Gaussian
halo bias. Assuming the detection of a nonvanishing fNL
and �NL, we find for both a CMB experiment like PIXIE
and a large-scale survey like EUCLID that the spectral
indices could be measured with an accuracy of Oð0:3Þ
for fNL ¼ 20 and �NL ¼ 5000. In the case of a measure-
ment of the scale-dependent halo bias, this limit could be
improved by suitably combining the information from
several tracers (e.g., Ref. [43]).
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