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The problem of matching different regions of spacetime in order to construct inhomogeneous

cosmological models is investigated in the context of Lagrangian theories of gravity constructed from

general analytic functions fðRÞ, and from nonanalytic theories with fðRÞ ¼ Rn. In all of the cases studied,

we find that it is impossible to satisfy the required junction conditions without the large-scale behavior

reducing to that expected from Einstein’s equations with a cosmological constant. For theories with

analytic fðRÞ this suggests that the usual treatment of weak-field systems as perturbations about

Minkowski space may not be compatible with late-time acceleration driven by anything other than a

constant term of the form fð0Þ, which acts like a cosmological constant. In the absence of Minkowski

space as a suitable background for weak-field systems, one must then choose and justify some other

solution to perform perturbative analyses around. For theories with fðRÞ ¼ Rn we find that no known

spherically symmetric vacuum solutions can be matched to an expanding Friedmann-Lemaı̂tre-

Robertson-Walker background. This includes the absence of any Einstein-Straus-like embeddings of the

Schwarzschild exterior solution in Friedmann-Lemaı̂tre-Robertson-Walker spacetimes.

DOI: 10.1103/PhysRevD.87.063517 PACS numbers: 98.80.Jk, 04.20.Jb

I. INTRODUCTION

Fourth-order theories of gravity have recently attracted a
considerable amount of attention as they admit Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) solutions that can
accelerate at late times without the presence of any exotic
fluids. It then follows that the apparent need for dark
energy could simply be due to an inappropriate application
of Einstein’s equations to scales beyond those within which
they have been thoroughly tested. This idea is compelling,
but constitutes a radical shift from the standard approach to
cosmology. It must therefore be carefully studied in order to
ensure that the consequences of deviating away from
Einstein’s theory are fully understood. In this paper we
attempt to contribute to this understanding by considering
the construction of inhomogeneous cosmological models
within the framework of fðRÞ theories of gravity.

The gravitational fields around isolated objects, and the
FLRW solutions of fðRÞ theories, have both been exten-
sively studied in the literature (see Refs. [1–5] for reviews).
Here we do not intend to contribute further to the study of
either of these fields, but instead to the ways in which one
can construct cosmological models that contain massive
astrophysical bodies. This will be done by attempting to
match together existing solutions. In particular, we will
attempt to construct ‘‘Swiss cheese’’ models by matching
spherically symmetric vacuum solutions with FLRW solu-
tions, as well as constructing ‘‘lattice models’’ by matching
together large numbers of the spacetimes associated with
regularly spaced astrophysical bodies.

The motivation for this study is to understand both the
effect of cosmological expansion on the gravitational fields
of astrophysical bodies, as well as the large-scale expan-
sion that emerges in a universe with large density contrasts.
These questions have been carefully studied in Einstein’s
theory, where the above constructions have proven to be
useful devices for understanding them. Fourth-order theo-
ries are considerably more complicated than Einstein’s
theory, but by applying the same constructions we should
expect to gain some insights into these questions. These
extra complications include the absence of Birkhoff’s
theorem, so that spherically symmetric vacuum spacetimes
are not unique [6], as well as more complicated junction
conditions [7].
Further motivation for this study comes specifically

from the work of Mignemi andWiltshire [8]. These authors
used a dynamical systems approach to perform a nonper-
turbative study of the static, spherically symmetric solu-
tions of analytic fðRÞ theories. They found that these
solutions are generically not asymptotically flat, and that
boundary conditions could therefore be important in de-
termining the gravitational fields of isolated massive
bodies. Similar results have been found for nonanalytic
fðRÞ theories [9]. These effects are entirely absent if one
assumes asymptotic flatness from the beginning, as is
standard in most approaches to studying weak gravitational
fields [10,11]. The construction of inhomogeneous cosmo-
logical models, as outlined above, provides a way to imple-
ment appropriate boundary conditions, and therefore
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allows the validity of standard weak-field approaches to
be investigated.

At present, much of the current literature assumes that in
fðRÞ theories the evolution of the FLRW ‘‘background’’
cosmology proceeds independently of the growth of struc-
ture within it. The motivation for this within Einstein’s
theory comes, in large part, from the studies of inhomoge-
neous cosmologies, such as those discussed above. It
also comes, however, from the correspondence between
Newtonian cosmology and the FLRW solutions of
Einstein’s equations during dust domination: The rate at
which nearby astrophysical bodies fall away from each
other can be considered as being due to a Newtonian force
(up to the usual accuracy this implies), or due to the
expansion of the Universe. Both are reasonable descrip-
tions on small enough scales. If one attempts to use fðRÞ as
an explanation of dark energy, however, then one wants the
cosmological expansion to be different to that of a dust
dominated universe. The usual interpretation of the motion
of nearby astrophysical bodies as being describable (up to
some accuracy) within Newtonian theory is therefore lost,
and the intuition we have gained on this subject from
studying the solutions of Einstein’s equations must be
reevaluated.

A thorough investigation of this problem is a very diffi-
cult proposition, as in order to evaluate the existence or not
of a weak-field limit, and the emergence of FLRW-like
behavior on large scales, one cannot begin by assuming the
existence of either of these things. Any realistic investiga-
tion, however, needs to make some assumptions, and here
we will begin by assuming that the gravitational fields
around astrophysical bodies can be described by known
solutions (either weak-field or exact). We will then proceed
to see which FLRW solutions these can be matched with,
or which FLRW behaviors emerge, given this assumption.
This approach will not allow all of the questions posed
above to be answered fully, but will allow us to show that
some situations that are possible in Einstein’s theory are
not possible in all fðRÞ theories.

In Sec. II we introduce fðRÞ theories of gravity, and in
Sec. III we discuss what we mean by ‘‘the weak-field limit.’’
This includes taking Minkowski space to be the solution
around which weak-field expansions are performed. Then in
Sec. IV we discuss the junction conditions that need to be
satisfied when matching together different solutions in fðRÞ
theories. In Sec. V we attempt to make a Swiss-cheese-like
construction in which we match the usual weak-field solu-
tions to FLRW solutions in theories with analytic fðRÞ.
Section VI contains an attempt within these same theories
to match together many different weak-field regions to make
a lattice model of the Universe. In both Secs. V and VI it is
found that these constructions are only possible if the large-
scale behavior is similar to that of solutions to Einstein’s
equations with a cosmological constant. In Sec. VII we then
proceed to try and match some known exact solutions,

including here some theories with nonanalytic fðRÞ. We
take three known exact solutions that describe spherically
symmetric vacua in these theories, and try and match each
to FLRW solutions. We find that in no situations can the
junction conditions be satisfied at the boundaries between
regions. Finally, in Sec. VIII we discuss our results.
Throughout this paper we will us Greek letters to denote

spacetime indices, and Latin letters a, b, c etc. to denote
coordinates on a boundary. When it is required, the letters
i, j, k etc. will be reserved for spatial indices.

II. fðRÞ THEORIES OF GRAVITY

The action for fðRÞ theories is given by replacing the
Ricci scalar, R, in the Einstein-Hilbert action by a function
of the Ricci scalar, fðRÞ, so that the gravitational
Lagrangian density is L ¼ fðRÞ.
Including a matter action, and extremizing with respect

to the metric, the field equations for these theories can then
be written as

G�� ¼ Tm
��

f0
þ TR

��; (1)

where

TR
�� ¼ 1

f0

�
1

2
ðf� Rf0Þg�� þr�r�f

0 � g��r�r�f0
�

(2)

is the effective energy-momentum tensor of what we will
call the ‘‘curvature fluid’’, and Tm

�� is the energy-

momentum tensor of the standard matter fields. Primes
denote differentiation with respect to R.
That the field equations (1) are fourth order in deriva-

tives of the metric can be seen from the existence of the
r�r�f

0 term in (2), a result which also follows directly

from Lovelock’s theorem. This is generally thought of as
an undesirable feature in a Lagrangian based theory as it
can lead to Ostrogradski instabilities in the solutions of the
field equations. The fðRÞ theories, however, are a special
case in which this instability can be avoided [12], due to the
existence of an equivalence with scalar-tensor theories. In
the special case fðRÞ ¼ R it can be seen that the fourth-
order terms vanish, and Einstein’s equations are recovered.
The field equations (1) are automatically generally co-

variant and Lorentz invariant as they are derived from a
Lagrangian that is a function of R only, and R is a generally
covariant and locally Lorentz invariant scalar quantity.
These same symmetries also guarantee that the left-hand
side of (1) is covariantly conserved. The fðRÞ theories
therefore exhibit many of the key features of general
relativity, while generalizing Einstein’s equations to allow
new behavior. This freedom has been shown to allow
improved renormalization of the gravitational interaction
[13], as well as early universe inflation [14], and a possible
explanation of dark energy.
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III. THE WEAK-FIELD LIMIT

Before progressing further, let us begin by specifying
exactly what we mean by the term weak-field limit. We
take this phrase to mean that in extended regions of the
Universe that are small compared to the Hubble scale, but
large compared to the Schwarzschild radius of any com-
pact objects that may exist within it, that the geometry of
spacetime within the region (but outside of the compact
objects) can be well described by small fluctuations around
Minkowski space, such that

g�� ’ ��� þ h��; (3)

where ��� is the metric of Minkowski space, and there

exists a coordinate system in which each of the compo-
nents of h�� is �1 and slowly varying. The description

given by Eq. (3), and the corresponding physics, is what is
meant by the weak-field limit.

There are a number of points in this explanation that
require further clarification. First, what we mean by
‘‘Hubble scale’’ here is the quantity cH�1 when consider-
ing spacelike separations, and H�1 when considering
timelike separations (here H is the Hubble constant, as
measured by observers using the recessional velocity of
nearby objects). For a region to be ‘‘small’’ compared to
the Hubble scale then means that any two points on the
boundary of that region that are spacelike separated should
be� cH�1 apart, and that any two points that are timelike
separated should be � H�1 apart. This definition requires
H to be reasonably uniform throughout each small region,
which we will assume to be true. The criterion that these
regions should be much larger than the Schwarzschild radius
of any compact objects, and that Eq. (3) should not be taken
to describe the regions inside (or near) compact objects, are
simply intended to remove from our consideration the re-
gions near black holes and neutron stars.

Let us now further consider Eq. (3). The crucial point
here is that the geometry of spacetime in the region under
consideration can be taken to be close to that of Minkowski
space. In this case one can decompose the tensor h��

according to how its various parts transform under spatial
rotations in the background Minkowski space. In general,
one can then write h�� as (see Ref. [15])

h��dx
�dx� ¼ 2�c2dt2 � 2Bicdtdx

i

þ 2ðc�ij þHijÞdxidxj:
The divergence of Bi and the trace ofHij can be set to zero

by an appropriate choice of coordinates, and the diver-
genceless part of Bi and the trace-free part of Hij can be

consistently ignored. This leaves

ds2 ’ �ð1� 2�Þc2dt2 þ ð1þ 2c Þ�ijdx
idxj; (4)

where � and c are both� 1 and slowly varying. We refer
to this as ‘‘the Newtonian limit’’ if � behaves like a
Newtonian potential, and satisfies r2� ’ �4�G�.

Finally, we can make the concepts of ‘‘small’’ and
‘‘slow’’ precise by introducing a dimensionless order-of-
smallness parameter, 	. Velocities, vi ¼ dxi=dt, are then
said to be small if v=c�Oð	Þ, and quantities are said to be
‘‘slowly varying’’ if acting on them with a time derivative
adds an extraOð	Þ of smallness when compared to a spatial
derivative (the order of smallness of time derivatives and
velocities are expected to be similar because the evolution
of gravitating systems are typically governed by the motion
of their constituents). From the field equations and equa-
tions of motion it can then be seen that the lowest order
parts of � and c , and the energy density �, are given by

�� c �G�� v2

c2
� 	2:

The field equations and equations of motion within the
region under consideration can then be expanded order-by-
order in 	, with the weak-field limit of Eq. (4) correspond-
ing to the expansion up toOð	2Þ. The ’ sign will be used in
what follows to mean ‘‘equal up to terms of Oð	3Þ and
smaller.’’ This is the same expansion in 	 that is routinely
used in the standard parametrized post-Newtonian ap-
proach to gravitational physics in weak-field systems [16].
One may note the differences between the perturbative

expansion outlined here, and the one that is routinely used
in cosmological perturbation theory about a FLRW back-
ground. This difference is intentional, and indeed neces-
sary, for the study we are performing. Cosmological
perturbation theory is designed to be used on a variety of
scales, all the way up to the scale of the cosmological
horizon. This necessitates using a background that is not
Minkowski space and fields that are not slowly varying, as
trying to model such a situation with a Minkowski back-
ground would involve 3-velocities that are of the same
order of magnitude as the speed of light. Instead, here we
are only interesting in modeling regions that are much
smaller than the horizon size using our perturbative frame-
work, and then building up a cosmological model by
joining together many of these regions. In this case the
order-of-smallness parameter, 	, can thought of (approxi-
mately) as the scale of the small region compared to the
Hubble scale of the eventual cosmological spacetime. In
small regions such as this it is well known that relevant
quantities become slowly varying, and it is this slowness
that is formally incorporated into the perturbative expan-
sion in weak-field systems by allowing time derivatives to
add an extra power of 	 to a quantity.
The weak-field limit of fðRÞ theories of gravity has been

studied extensively in the literature (see, e.g., Refs. [1–5],
and references therein), with the full post-Newtonian limit
of theories with analytic fðRÞ that admit Minkowski space
as a solution being found in Ref. [11]. There the
Lagrangian function is expanded in a Taylor series as

fðRÞ ¼ fð0Þ þ f0ð0ÞRþ 1

2
f00ð0ÞR2 þOðR3Þ; (5)

ABSENCE OF THE USUAL WEAK-FIELD LIMIT, AND . . . PHYSICAL REVIEW D 87, 063517 (2013)

063517-3



where primes denote differentiation with respect to R.
One may note here that the expansion is being performed
as a series around R ¼ 0, in keeping with our assumption
that Minkowski space is a suitable background about
which we can perform an analysis of the weak field. This
limits our consideration to theories in which fð0Þ, f0ð0Þ etc.
are finite numbers, which is certainly not true for all
theories (see, e.g., Ref. [17]). One is, of course, at liberty
to consider expanding around other backgrounds, with
nonzero Ricci curvature, R0 (see, e.g., Ref. [18]). In this
case, however, one must deal with the complexity of solv-
ing the full nonlinear Einstein equations in order to find the
background, which is both difficult and likely to result in
multiple different possibilities. We will consider this fur-
ther for some simple theories in Sec. VII.

To the order required here, and taking Minkowski space
as the background geometry, the metric is given by Eq. (4)
with [11]

� ¼ 1

f00

�
Uþ 1

2
f000R

�
; (6)

c ¼ 1

f00

�
U� 1

2
f000R

�
; (7)

where we have used the abbreviations f00 ¼ f0ð0Þ and f000 ¼
f00ð0Þ, and where U and R satisfy

r2U ¼ �4��þ f0
4

(8)

and

r2R� f00
3f000

R ¼ � 8�

3f000
�þ f0

6f000
; (9)

where f0 ¼ fð0Þ. In these equations, and in what follows,
we have chosen to use geometrized units in which G ¼
1 ¼ c.

Assuming the existence of a weak-field limit, these theo-
ries can be seen to have a Newtonian limit if f00R � U.
Unlike in the PPN treatment, we will not insist that the
solutions of Eqs. (8) and (9) approach zero at asymptotically
large distances, but will instead enforce boundary conditions
using cosmology.

IV. JUNCTION CONDITIONS

In what follows we will be matching together different
regions of spacetime in order to construct inhomogeneous
cosmological models. This requires a set of junction con-
ditions, analogous to the Israel junction conditions from
general relativity [19], and is a problem that has been
considered in fðRÞ theories of gravity by Deruelle et al.
[7]. We will briefly recap the relevant results from their
work here, as it of central importance to our study.

The central requirement in Ref. [7] is that if one allows
delta functions in the matter part of the field equations

(i.e., if one allows matter fields to be localized on the
boundary hypersurface), then delta functions should occur
at most linearly in the parts of the field equations that
involve geometry only. Here we are interested in the case
in which there is no brane located at the boundary. We
therefore require that there should be no delta functions
in the part of the field equations containing geometry only.
Now, in a Gaussian normal coordinate system, ds2 ¼

dy2 þ 
abdx
adxb, where the boundary is located at y ¼ 0,

the Ricci scalar can be written as

R ¼ 2@yK � K�
abK

�ab � 4

3
K2 þ �R; (10)

where �R is the Ricci curvature constructed from 
ab, the
extrinsic curvature of the boundary is Kab ¼ � 1

2@y
ab,

and K and K�
ab are the trace and trace-free parts of this

quantity, respectively.
It can be seen from the field equations (1) that Rmust be

continuous at the boundary. This is because the curvature
fluid contains terms like @yf

0ðRÞ, which can be expanded as
@yf

0ðRÞ ¼ f00ðRÞ@yR: (11)

If R is not continuous then the second term above would
contain a factor of �ðyÞ, this is not allowed unless f00ðRÞ¼0,
which is just Einstein’s equations. We can then see from
Eq. (10) that 
ab must also be continuous, otherwise Kab

would contain a factor of �ðyÞ, and Rwould contain factors
of ð�ðyÞÞ2. This is not allowed, as Kab and R occur directly
in the field equations. We therefore have that 
ab and R
must both be continuous across the boundary.
The yy and ya components of Eq. (1) are then given by

@y½ðKab � K
abÞf0ðRÞ þ 
abf
00ðRÞ@yR� ¼ 0: (12)

Integrating this across the boundary one then finds

½ðKab � K
abÞf0ðRÞ þ 
abf
00ðRÞ@yR�þ� ¼ 0; (13)

where the ½. . .�þ� notation means the difference of the
quantity in the brackets on either side of the boundary.
Similarly, one can integrate R across the boundary to find,
from Eq. (10) that ½R�þ� ¼ 0, and hence that ½2@yK �
K�

abK
�ab�þ� ¼ 0. The trace and trace-free parts of

Eq. (13) are then given by

f00ðRÞ½@yR�þ� ¼ 0; (14)

f0ðRÞ½K�
ab�þ� ¼ 0; (15)

½K�þ� ¼ 0; (16)

which, together with

½
ab�þ� ¼ 0; (17)

½R�þ� ¼ 0; (18)

form the junction conditions in fðRÞ theories in which
f00ðRÞ � 0. For further details the reader is referred to
Ref. [7].
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V. MATCHING TO FLRW

One of the oldest ways of trying to construct inhomoge-
neous cosmological models is to join FLRW solutions, at
some appropriate boundary, to the spherically symmetric
spacetimes that are expected to exist around individual
isolated objects. This was famously achieved by Einstein
and Straus for the case of the Schwarzschild solution and
the Einstein-de Sitter universe [20]. It is also possible to
join the Lemaı̂tre-Tolman-Bondi solutions of Einstein’s
equations to FLRW at a spherical boundary [21]. These
models are often referred to as ‘‘Swiss cheese’’, as this is
what the global structure starts to look like if one can keep
removing regions of the FLRW ‘‘cheese,’’ and replacing
it with either Schwarzschild or Lemaı̂tre-Tolman-Bondi
holes. The simplicity of this approach, and the degree to
which it has influenced the development of inhomogeneous
cosmology in general relativity, makes it a natural place to
begin studying the relationship between weak-field sys-
tems and cosmology in fðRÞ theories of gravity.

Here we will consider a FLRW geometry given by

ds2 ¼ �dt̂2 þ a2ðt̂Þ
"

dr̂2

1� kr̂2
þ r̂2d�̂2 þ r̂2sin 2�̂d�̂2

#
;

(19)

and that is filled with a perfect fluid. Within this spacetime

we will excise a region interior to the sphere r̂ ¼ �̂, and
replace it with a region of spacetime that is spherically
symmetric, and that is well described by the weak-field
geometry given in Eq. (4). In this case it is convenient
to write the spatial metric in spherical polar coordinates,
so that �ijdx

idxj ¼ dr2 þ r2d�2 þ r2sin 2�2d�2. We can

then identify the angular coordinates in both regions,
which we will refer to as region I and region II,
respectively.

Without loss of generality, we consider the boundary to
be comoving with the fluid. As there are no spatial gra-
dients in region I, the boundary must be static with respect
to the hypersurfaces of homogeneity that exist in the
FLRW geometry. In region II, however, the boundary is
free to move in the radial direction. The first fundamental
form of the boundary, on either side, is then given by


I
abdx

adxb ¼ �dt̂2 þ a2�̂
2
d�2;


II
abdx

adxb ’ �ð1� 2�� _�2Þdt2 þ ð1þ 2c Þ�2d�2;

where the boundary is at r ¼ � in region II, and where we
have used the notation ’ to mean equal up to terms of post-
Newtonian order [i.e., up toOð	3Þ]. The junction condition
(17) then gives the conditions

ð1þ c Þ� ’ a�̂; (20)

dt̂

dt
’ 1��� 1

2
_�2: (21)

Now let us consider the extrinsic curvature. To calculate
this we need to know the normal to the boundary, which is
given in each region by

nI� ¼ a�r̂
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� kr̂2
p ; (22)

nII� ’
�
1þ c þ 1

2
_�2
�
�r
� � _��t

�: (23)

The second fundamental form on the boundary is then
given by

Kab ¼ @x�

@xa
@x�

@xb
n�;�; (24)

which for the two spacetimes we are considering is

KI
abdx

adxb ’ r

�
1� kr2

2a2
þ 1

f00
U� f000

2f00
R

�
d�2; (25)

and

KII
abdx

adxb ’
�
1

f00
U;r þ f000

2f00
R;r � €�

�
dt̂2

þ r

�
1� f000

2f00
Rþ 1

2
_�2 � f000

2f00
rR;r

þ 1

f00
Uþ r

f00
U;r

�
d�2; (26)

where we have already used the junction conditions (20)
and (21).
The junction conditions (15) and (16) then give

_�2

�2
’ � 2U;rj�

f00�
� k�̂

2

�2
þ f000

f00

R;rj�
�

; (27)

€�

�
’ U;rj�

f00�
þ f000

2f00

R;rj�
�

: (28)

These look very much like the Friedmann equations de-
rived from Einstein’s equations, with the terms containing
the Newtonian potentialU acting like the matter terms, and
with the term involving the spatial curvature k playing its
usual role. Here, however, we also have two additional
terms containing derivatives of the Ricci scalar, R. These
extra terms can be seen to contain all of the new behaviors
that one obtains by generalizing the gravitational Lagrangian
from R to fðRÞ.
So far we have only applied the junction conditions that

exist in Einstein’s equations: that the first and second
fundamental forms on the boundary must be continuous
if we are to avoid a surface layer of matter. Let us now
apply the additional junction condition (14). The spacetime
in region I is homogeneous, so in this case we must have

@yR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kr̂2

p

a
R;r̂ ¼ 0: (29)
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Applying the junction condition (14) then gives

R;rj� ’ 0; (30)

where we have used k�̂
2 �Oð	2Þ, as can be seen from

Eq. (27). This means that the last terms on the right-hand
side of both Eqs. (27) and (28) must vanish atOð	2Þ, so that
we are left with exactly the same equations as in Einstein’s
theory [up to the presence of f00 in the denominator of the

terms involving U, which can be absorbed into constants,
and the terms involving f0 in Eqs. (8) and (9), which act
like �].

This treatment appears to show that the only Swiss
cheese solutions that exist in fðRÞ theories of gravity
must either have FLRW regions that behave in the same
way they do in Einstein’s theory (possibly with �, and up
to possible small corrections), or it must be the case that the
spacetime within the excised spheres cannot be described
using the weak-field geometry given in Eq. (4), and ex-
plained in Sec. III.

VI. MATCHING WITHOUT FLRW

In the previous section we tried to join a region de-
scribed by a weak-field perturbations about Minkowski
space to a FLRW geometry. Here we take a different
approach, and instead try and join together numerous
different regions each of which is well described internally
by a weak-field geometry of the form given in Eq. (4). Note
that we do not require multiple regions to be well described
by the sameweak-field metric, but instead try and relate the
different weak-field systems to each other by using the
junction conditions discussed in Sec. IV.

We will proceed by taking a number of objects with the
same mass and distributing them regularly in space. We
will then take the domain of each object to consist of all the
points in space that are closest to that object. What we
mean by a ‘‘regular distribution’’ here is then that the
domains of all objects in the spacetime should be identical,
up to translations and rotations. An example of this in R3 is
obtained by dividing the space up into a cubic lattice, and
placing a mass at the center of each cube, the interior of
which then acts as the domain of the mass at its center.

These situations have been considered within the con-
text of Einstein’s equations by a number of authors.
Approximate matching schemes have been developed
and studied for joining together Schwarzschild solutions
in the spirit of the Wigner-Seitz construction from solid
state physics [22–25]. Perturbative treatments have also
been attempted [26–28], as well as an exact treatment of
the initial value problem [29], and numerical studies
[30,31]. This type of model seems ideally suited to a study
of the relationship between weak-field systems and cos-
mology, as they allow one to perform a bottom-up con-
struction of a cosmological model from the weak-field
systems themselves. They also do not require the existence
of FLRW geometry at the boundaries between regions, and

so one is allowed to move away from some of the restric-
tions of the Swiss cheese models discussed in Sec. V.
From the symmetry of the situation the junction condi-

tion (17) is automatically satisfied. We then need to con-
sider the conditions (15) and (16). To do this we need to
know the extrinsic curvature of the boundary of each
domain. If the unit normal to this hypersurface is given
by n� ¼ ðnt; niÞ then, in the geometry (4) this is given to

lowest nontrivial order by [26]

K��dx
�dx� ’ ðnt;t þ ni�;iÞdt2 þ ðni;t þ nt;iÞdxidt

þ ðni;j � 2c inj þ �i;j�
klc ;knlÞdxidxj:

The magnitude of nt can be seen to be ofOð	Þ here, while ni
is Oð1Þ, as the condition u�n� ¼ 0, where u� is the

4-velocity of the boundary, gives nt ¼ �niu
i, and ui isOð	Þ.

We must now transform K�� into Kab using Eq. (24). To

do this it is convenient to pick out a direction, which we
call z, that is normal to the boundary at the point where it
intersects a straight line that joins the positions of two
neighboring masses. The remaining two spatial directions,
which we will use together with t as the intrinsic coordi-
nates on the boundary, will then be written using indices A,
B, C etc. The position of the boundary itself will be given
by z ¼ Zðt; xAÞ. The extrinsic curvature of the boundary is
then [26]

Kabdx
adxb’�nz½ð €Z��;zþZjA�;AÞdt2þððZjAÞ_

þð _ZÞjAÞdxAdtþðZjAB�ðc ;z��CDZjCc jDÞ
�ð�ABþZjAZjBÞÞdxAdxB�; (31)

where _� u�@� ¼ @tþZ;t@z and jA�m�@�¼@AþZ;A@z.

Here m� is a spacelike unit vector in the boundary, and we
have taken uA ¼ 0 ¼ mt. All quantities in Eq. (31) should
be taken to be evaluated at the boundary.
It can now be seen that in order to simultaneously satisfy

Eqs. (15) and (16), as well the reflective symmetry about
the boundary that is required by our regular distribution
of masses, we must have Kab ¼ 0. From Eq. (31) this can
be seen to correspond to [26]

€Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðZjAÞ2

q ’ n � r�; (32)

ZjABffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðZjAÞ2

q ’ ð�AB þ ZjAZjBÞðn � rc Þ; (33)

as well as ðZjAÞ_ ’ ð _ZÞjA ’ 0. These equations govern the

motion and shape of the boundary in these highly symmet-
ric configurations.
Finally, let us apply the junction conditions (14) and (18).

The latter of these is again automatically satisfied from
the symmetry about the boundary. The former, however,
gives n � rR ¼ 0, which means that Eqs. (32) and (33)
become
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€Zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðZjAÞ2

q ’ 1

f00
n � rU; (34)

ZjAB ’ ð�AB þ ZjAZjBÞ €Z: (35)

These are exactly the same expressions that are found
using Einstein’s equations (up to the factors of 1=f00, which
can again be absorbed into constants, and terms involv-
ing f0, which again act like �). The solutions to Eqs. (34)
and (35) are known to be either decelerating, or correspond
to Minkowski space, unless f0 � 0.

Once again, we find that for the weak-field regions to
exist we must have cosmological behavior that is the same
as in Einstein’s theory (up to possible small corrections).
Therefore, within this approach, the large-scale behavior
must reduce to that expected from Einstein’s equations, or
one must relinquish the usual weak-field description of
perturbed Minkowski space around astrophysical objects.

VII. MATCHING EXACT SOLUTIONS

We have so far considered joining weak-field geometries
to either FLRW, or to each other, in theories in which fðRÞ
is an analytic function. This has shown that acceleration in
the resulting cosmological model cannot occur in any new
ways if the junction conditions given in Sec. IV are to be
obeyed. One must therefore either allow for gravitational
fields to be rapidly varying, or give up on a description of
the regions around astrophysical objects as small fluctua-
tions about Minkowski space. The latter of these two
possibilities suggests that it may be useful for us to con-
sider exact solutions.

Unfortunately, the complexity of the field equations (1)
make exact solutions difficult to find. However we know
that for all functions fðRÞ which are of class C3 at R ¼ 0
and fð0Þ ¼ 0 while f0ð0Þ � 0, the Schwarzschild solution
is the only vacuum solution with vanishing Ricci scalar
[32]. It therefore seems natural to try and match a spherical
region with Schwarzschild geometry to an exterior
FLRW spacetime. In the context of Einstein’s theory this
corresponds to the well-known Einstein-Straus approach
described earlier [20]. Furthermore, if we restrict our con-
siderations to fðRÞ ¼ R1þ� then there are two known exact
solutions (other than the vacuum solutions of Einstein’s
equations, that is, which are also solutions of these theo-
ries). A static spherically symmetric vacuum solution with
nontrivial asymptotics was found in Ref. [9], and a time-
dependent spherically symmetric vacuum solution was
found in Ref. [6]. In what follows, we will also try and
join these two solutions to FLRW geometries.

A. An Einstein-Straus-like construction

The constructions we consider here consist of pointlike
masses at the center of otherwise empty spherical regions,
whose geometry is described by the Schwarzschild metric,

and that are embedded in FLRW geometry at appropriate
boundaries. Such constructions were originally considered
by Einstein and Straus [20], and were introduced to address
the question of whether or not the expansion of the
Universe can affect local mechanical phenomena, such as
planetary orbits. Since the spacetime near the central mass
is Schwarzschild, the planetary orbits are given by the
usual timelike geodesics of this geometry, and the cosmic
expansion does not affect them. Let us now investigate
whether such a construction can be performed in fðRÞ
gravity.
We begin by writing the Schwarzschild solution as

ds2 ¼ �AðrÞdt2 þ dr2

AðrÞ þ r2ðd�2 þ sin 2�d�2Þ; (36)

where

AðrÞ ¼
�
1� 2M

r

�
: (37)

Let us now try and embed this solution in a FLRW geome-
try, as specified in Eq. (19). To do this, consider a boundary

at r̂ ¼ �̂ in the FLRW spacetime and r ¼ � in the
Schwarzschild solution. The first fundamental form on
the boundary is then given in the vacuum region by


abdx
adxb ¼ �

�
A�

_�2

A

�
dt2 þ �2d�2 (38)

and in the FLRW region by


abdx
adxb ¼ �dt̂2 þ a2ðt̂Þ�̂2

d�2; (39)

where we have identified angular coordinates in the two
different regions at the boundary and where d�2 ¼ d�2 þ
sin 2�d�2. The junction condition (17) then gives

� ¼ aðt̂Þ�̂; (40)

dt̂

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�

_�2

A

s
: (41)

To calculate the second fundamental form we need the
spacelike unit vector normal to the boundary. In the vac-
uum region this is given by

n� ¼
ffiffiffiffi
A

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � _�2

p ð� _�; 1; 0; 0Þ; (42)

while in the FLRW region it is

n� ¼ aðt̂Þ�r
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k�̂
2

q : (43)

The second fundamental form on the FLRW side of the
boundary is then

Kabdx
adxb ¼ aðt̂Þ�̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k�̂

2
q

d�2; (44)
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while on the vacuum side of the boundary it is given by

Ktt ¼ 3AA;r
_�2 � A3A;r � 2A2 €�

2
ffiffiffiffi
A

p ðA2 � _�2Þ3=2 ; (45)

K�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2A3

ðA2 � _�2Þ

vuut ; (46)

where all quantities should be evaluated at the boundary.
Matching K	

�� at the boundary we obtain

_�2 ¼ A2

�
1� A

ð1� k�2=a2Þ
�
: (47)

Writing the above equation in the coordinates ðt̂; r̂; �; �Þ,
and using Eqs. (40) and (41) together with the form of the
function AðrÞ, we find

�̂
3
aðt̂Þ

�
kþ

�
daðt̂Þ
dt̂

�
2
�
¼ 2M: (48)

The left-hand side of the above equation is the usual
definition of the Cahil-Macvitte function in FLRW
spacetimes.

Differentiating Eq. (48) with respect to t̂ gives G1
1 ¼ 0.

This implies that the total pressure (standard matter and
curvature fluid) must vanish on the boundary, but as the
pressure in the FLRW region is homogeneous, this means
that the total pressure should vanish throughout the FLRW
region. In this case, equating the time component of the
extrinsic curvature will not give any new information.

If we now impose the requirement that R should be the
same on either side of the boundary, from Eq. (18), then we
must have

6

�
1

aðt̂Þ
d2aðt̂Þ
dt̂2

þ 1

aðt̂Þ2
�
daðt̂Þ
dt̂

�
2 þ k

aðt̂Þ2
�
¼ 0: (49)

The above equation combined with the condition of van-
ishing total pressure, then implies vanishing total density
(curvature fluid and standard matter) in the FLRW region.
What is more, putting R ¼ 0 in Eq. (1) shows that the
effective energy-momentum tensor of the curvature fluid
must be proportional to g��. It then follows that the

energy-momentum tensor of standard matter, Tm
��, must

also be proportional to g��, and so can only be a vacuum

energy. It also follows that the FLRW region can only be
Minkowski spacetime (in Milne coordinates, if k ¼ �1).
Finally, from Eq. (14) we see that the normal gradients
automatically match identically, as R ¼ 0 on both sides.

We note that the situation remains the same if instead of
a Schwarzschild interior we have a Schwarzschild-de
Sitter, or anti-de Sitter, interior. In these cases the interior
region has a constant, nonzero Ricci scalar. As R must be
matched across the boundary, the FLRW region must also
have a constant Ricci scalar, and from Eq. (1) it can be easily
seen that the effective energy-momentum tensor of the

curvature fluid must be proportional to g��. Furthermore,

matching the second fundamental form now gives G1
1 ¼

constant in the FLRW region, which implies that the total
pressure must be constant. Taken together, these two con-
ditions imply that the total energy density should also be
constant, and that the energy-momentum tensor of matter in
the FLRW region must have Tm

�� / g��, which is nothing

other than vacuum energy. The only solution in this case is
therefore a spacetime that is de Sitter everywhere.
It is a curious result that the Schwarzschild solution

cannot be embedded in any FLRW spacetime (other than
the trivial case of Minkowski space) in fðRÞ theories of
gravity, unless the theory is linear in R. However, this
conclusion is natural from the junction conditions. This
is because the conditions that the Ricci scalar and its first
derivative should match across the boundary make the
nontrivial fðRÞ theories qualitatively different from gen-
eral relativity, where R can be discontinuous. If a spheri-
cally symmetric object is joined to a FLRW geometry in
fðRÞ theories, then one must expect an evolution of the
boundary values of R and _R, which is something that pure
Schwarzschild or Schwarzschild-de Sitter solutions cannot
satisfy. Hence, in the following sections, we will explore
some other exact nongeneral relativity solutions in fðRÞ
gravity, in order to check whether Einstein-Straus-like
constructions are possible with them.

B. A static solution in Rn gravity

An exact static, spherically symmetric vacuum solution
of fðRÞ ¼ R1þ� is given by [9]

ds2 ¼ �AðrÞdt2 þ dr2

BðrÞ þ r2ðd�2 þ sin 2�d�2Þ; (50)

where

AðrÞ ¼ r
2�ð1þ2�Þ
ð1��Þ þ c1

r
ð1�4�Þ
ð1��Þ

;

BðrÞ ¼ ð1� �Þ2
ð1� 2�þ 4�2Þð1� 2�� 2�2Þ

�
1þ c1

r
ð1�2�þ4�2Þ

ð1��Þ

�
:

The Ricci scalar for this solution is

R ¼ � 6�ð1þ �Þ
ð1� 2�� 2�2Þa2r2 : (51)

We will now try and embed this solution in a FLRW
geometry. To do this, consider a boundary at r ¼ � in
the vacuum region. The first fundamental form on the
boundary is then given in the vacuum region by


abdx
adxb ¼ �

�
A�

_�2

B

�
dt2 þ �2d�2: (52)

Matching the first fundamental forms then gives

� ¼ aðt̂Þ�̂; (53)
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dt̂

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�

_�2

B

s
: (54)

In the vacuum region the spacelike unit vector normal to
the boundary is given by

n� ¼
ffiffiffiffi
A

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AB� _�2

p ð� _�; 1; 0; 0Þ: (55)

The second fundamental form of the vacuum side is

Ktt ¼ 2BA;r
_�2 þ AB;r

_�2 � AB2A;r � 2AB €�

2
ffiffiffiffi
A

p ðAB� _�2Þ3=2 ; (56)

K�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2B2A

ðAB� _�2Þ

vuut ; (57)

where all quantities should be evaluated at the boundary.
The junction conditions (15) and (16) are then satisfied if

_�2 ¼ AB

�
1� B

ð1� k�2=a2Þ
�
; (58)

€� ¼ ðA;rBþ B;rAÞ
2

� Bð2A;rBþ B;rAÞ
2ð1� k�2=a2Þ : (59)

Consistency of these equations requires

ðAB;r � A;rBÞ
ð1� kr2Þ ¼ 0: (60)

Substitution from Eq. (50) shows that this can be achieved
only if � ¼ 0 or �1=2.

If we now impose the requirement that R should be the
same on either side of the boundary, from Eq. (18), then
we get

1

aðt̂Þ
d2aðt̂Þ
dt̂2

þ 1

aðt̂Þ2
�
daðt̂Þ
dt̂

�
þ k

aðt̂Þ2

¼ � �ð1þ �Þ
ð1� 2�� 2�2Þaðt̂Þ2�̂2

: (61)

This strongly constrains the allowed form of aðtÞ. Finally,
from Eq. (14), we find that we must haveffiffiffiffi

A
p

BR;rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AB� _�2

q ¼ 0; (62)

as there are no spatial gradients in the FLRW region. This
means that we must also require R;r ¼ 0 at the boundary in
the vacuum region. This is only satisfied if � ¼ 0 or�1, as
can be seen from the right-hand side of Eq. (61).

It is therefore the case that the junction conditions from
Sec. IV can only be satisfied if � ¼ 0, in which case the

field equations (1) simply reduce to Einstein’s equations. In
this case the vacuum solution given in Eq. (50) reduces to
the Schwarzschild solution, and Eq. (61) no longer needs to
be satisfied as f00 ¼ 0, and the right-hand side of Eq. (11)
vanishes automatically. The vacuum solution (50) cannot,
therefore, be used to model the gravitational field of an
astrophysical object embedded in a FLRW universe in
these theories, unless fðRÞ is linear in R. This is despite
the fact that this solution is the asymptotic attractor of all
spherically symmetric, static, vacuum solutions of theories
with fðRÞ ¼ R1þ� [9], suggesting that the spacetime
around astrophysical objects that are embedded in FLRW
should be time dependent.

C. A nonstatic solution in Rn gravity

An exact solution for time-dependent, spherically sym-
metric vacuum situations in fðRÞ ¼ R1þ� theories is given
by [6]

ds2 ¼ �AðrÞdt2 þ q2ðtÞBðrÞðdr2 þ r2d�2Þ; (63)

where qðtÞ ¼ t
�ð1þ2�Þ
ð1��Þ , and

AðrÞ ¼
�
1� c2

r

1þ c2
r

�
2=�

; BðrÞ ¼
�
1þ c2

r

�
4
A�þ2��1;

where �2 ¼ 1� 2�þ 4�2. The Ricci scalar in this case is
given by

R ¼ � 6�ð1þ �Þð1þ 2�Þð1� 4�Þ
ð1� �Þ2t2A : (64)

Again, to match this solution with a FLRW exterior, con-
sider a boundary at r ¼ � in this solution. The first fun-
damental form on the boundary is then given in the vacuum
region by


abdx
adxb ¼ �ðA� q2B _�2Þdt2 þ q2B�2d�2: (65)

Matching the first fundamental forms then gives

q
ffiffiffiffi
B

p
� ¼ aðt̂Þ�̂; (66)

dt̂

dt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� q2B _�2

q
; (67)

and the unit vectors tangent and normal to the boundary are
given by

u� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� Bq2 _�2

q ð1; _�; 0; 0Þ; (68)

n� ¼
ffiffiffiffiffiffiffi
AB

p
qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A� Bq2 _�2
q ð� _�; 1; 0; 0Þ: (69)

Calculating the second fundamental form for the matching
surface we get
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Ktt ¼ 2 _qqðB2q2 _�3 � 2AB _�Þ þ q2 _�2ð2ArB� BrAÞ � 2q2AB €�� AAr

2
ffiffiffiffiffiffiffi
AB

p
qðA� Bq2 _�2Þ3=2 ; (70)

K�� ¼ q�ðABr�þ 2ABþ 2 _q _�B2q�Þ
2

ffiffiffiffiffiffiffi
AB

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� Bq2 _�2

q : (71)

Matching the Ricci scalar then gives

1

aðt̂Þ
d2aðt̂Þ
dt̂2

þ 1

aðt̂Þ2
�
daðt̂Þ
dt̂

�
2 þ k

aðt̂Þ2

¼ ��ð1þ �Þð1þ 2�Þð1� 4�Þ
ð1� �Þ2t2Að�Þ : (72)

Finally, the boundary condition n � rR ¼ 0, gives

_� ¼ � 2c2
��2ð1� c2

�Þ3ð1þ c2
�Þ3

�
1� c2

�

1þ c2
�

�4ð1��Þ
�
t
ð1�3��4�2Þ

ð1��Þ ; (73)

unless � ¼ 1=4, 0,�1 or�1=2, in which case n � rR ¼ 0
automatically. We can now construct an algebraic con-
straint for � by equating Ktt on either side of the boundary
and using Eqs. (66) and (73) to remove aðt̂Þ and _�. This
gives

q

A
1�2�
2

2
6664 ð�2 þ c22Þð1� �Þk� 2c2�

2�

ð1� �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 4c22t

2ð1�2��2�2Þ
ð1��Þ �8ð1��Þ=�ð�2 � c22Þ2A2ð1��Þ

r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k�̂

2
q

ð�2 � c22Þ

3
7775 ¼ 0: (74)

This equation must be satisfied at all times, but is clearly
very difficult to solve for � directly. We can, however,
perform a series expansion in c2. To zero order we then
have the constraint

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k�̂

2
q

¼ 1þOðc2Þ; (75)

so that k ’ 0. This says that the FLRW geometry that we
are embedding within must be close to spatially flat. Using
this in the first order equation then gives

�

ð1� �Þ c2 ¼ 0þOðc22Þ; (76)

so that the only possible solutions would appear to require
either � ¼ 0þOðc2Þ, or c2 ¼ 0. The first of these possi-
bilities requires � to be complex, which we are not inter-
ested in here, and the second is the requirement that the
central mass vanishes. The matching of this latter situation
to FLRW is trivial, as the geometry in Eq. (63) can itself be
seen to reduce to FLRW when c2 ! 0. Once again we
therefore appear to be unable to match solutions to FLRW,
except when � ¼ 0, or when the entire spacetime is FLRW
anyway.

The anomalous cases that remain are those in which � ¼
1=4, �1 or �1=2, as in these cases Eq. (73) can no longer
be used. Of these � ¼ �1 seems problematic as it corre-
sponds to a Lagrangian density L ¼ constant, which can
hardly be said to be a Lagrangian for gravity at all. The
cases � ¼ �1=2 and � ¼ 1=4 also seem problematic, as in
these cases the field equations (1) contain terms that are
ill defined, with both numerator and denominator reducing

to zero. In all of these cases the Ricci scalar must vanish, so
the only exterior FLRW geometry that one could match to
would have to be Milne anyway. We do not, therefore,
consider them to be of any interest for our current
purposes.
We therefore find that even for this nontrivial nonstatic

solution, a matching with a FLRW exterior is not possible.
This is true even though the solution itself approaches
FLRW asymptotically.

VIII. DISCUSSION

The idea that the late-time acceleration of the Universe
could be explained by modifications of the Einstein-Hilbert
action has recently attracted considerable interest, but a
complete understanding of the consequences of such a
radical shift away from the standard approach to cosmol-
ogy is still far from complete. Here we attempt to add to
this understanding by considering the construction of cos-
mological models that contain massive astrophysical
bodies within the context of fðRÞ theories of gravity.
Such constructions are key to understanding the effect
cosmological expansion has on the gravitational fields of
astrophysical bodies, as well as describing the large-scale
expansion that emerges in a universe with large density
contrasts.
After a discussion of the junction conditions that need to

be satisfied when matching together different solutions in
fðRÞ theories, a number of attempts were made to construct
inhomogeneous cosmological models by matching differ-
ent regions of spacetime. This was done both for theories
with general analytic functions fðRÞ and for nonanalytic
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theories with fðRÞ ¼ Rn. In all cases studied, it was found
that it is impossible to satisfy the required junction con-
ditions without the large-scale behavior reducing to what is
found from Einstein’s equations with a cosmological con-
stant. For theories with analytic fðRÞ this suggests that the
usual treatment of weak-field systems as perturbations
around Minkowski space may not be compatible with
late-time acceleration that is driven by anything other an
effective cosmological constant given by fð0Þ. For theories
with fðRÞ ¼ Rn, we found that a number of well-known
spherically symmetric vacuum solutions could not be
matched to an expanding FLRW background, including
the well-known Einstein-Straus-like embeddings of the
Schwarzschild exterior solution in FLRW spacetimes.

The absence of these constructions represents a crucial
difference between fðRÞ theories and scalar-tensor theories
of gravity. In the latter it is already known that
Einstein-Straus-like embeddings are indeed possible, both
in cosmological and astrophysical gravitational collapse
scenarios (see for example Ref. [33]). This is true despite
the extra junction conditions that are required in scalar-
tensor theories, where the scalar field and its normal deriva-
tive must be matched at the boundary. These two conditions
may initially seem quite similar to the extra conditions
required in fðRÞ gravity (i.e., matching the Ricci scalar
and its normal derivative). However, it turns out that the
conditions in fðRÞ theories are much more restrictive, and
give much stronger constraints on the spacetimes allowed on
either side of the boundary. This is due to R taking a very
specific formonce an ansatz has beenmade for themetric [by
specifying it should be give by Eqs. (4) and (36), for ex-
ample],which is in general not true for scalar-tensor theories.

These results are quite different to what is suggested by
using linear perturbation theory around a FLRW back-
ground in fðRÞ theories. In that case there seems to be
little impediment to including large density contrasts by
allowing �� to become large, while � and c are required
to stay small. This difference could indicate that while the
weak-field solutions we have considered here are problem-
atic, there may be ways of obtaining useful (approximate)
spacetime geometries from the perturbed FLRWapproach.
This would, in fact, appear to be quite similar to the
approach that is taken in Ref. [18], where the expansion

of fðRÞ is performed around a time-dependent, but spa-
tially homogeneous and isotropic background geometry
with R ¼ R0ðtÞ. In this case small regions of spacetime
can still be approximated as being close to Minkowski
space, but the emergence of cosmological evolution on
large scales cannot be studied in the same way, as it is, at
least to some degree, being assumed from the outset. This
does not in any way diminish the potential validity of such
an approach, but it does appear to require knowledge about
the geometry of the entire observable universe in order to
model the spacetime around a single astrophysical object
(it would also appear to require a rethink of the current
framework for interpreting precision tests of gravity).
Alternatively, it may be the case that the difference be-
tween the bottom-up constructions attempted here, and the
top-down construction of perturbed FLRW, could be in-
dicating that cosmological backreaction is large in fðRÞ
theories. This is certainly plausible, and should probably
be expected when ‘‘screening mechanisms’’ such as the
chameleon effect come into play.
As a final thought, it would be interesting to study the

physical consequences of ‘‘jumps’’ in the Ricci scalar and/
or in the normal derivative of the Ricci scalar across the
boundary. As is well known from the Israel junction con-
ditions, a jump in the second fundamental form gives rise
to surface stress-energy and surface tension on the match-
ing surface that can, for example, be used to stabilize
gravitational vacuum condensate stars [34]. In a similar
way, it is plausible that relaxing the extra matching con-
ditions in fðRÞ theories could give rise to surface terms that
might be of physical interest. This has been studied in the
context of brane-world cosmology in Ref. [7].
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