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We develop further a kinetic theory of strings and derive a transport equation for a network of cosmic

strings with Nambu-Goto evolution, interactions, and background gravitational effects taken into account.

We prove an H-theorem and obtain necessary and sufficient conditions for a thermodynamic equilibrium.

At the lowest order, the equilibrium is estimated by the von Mises-Fisher distributions, parametrized by

mean directions and dispersions of the right- and left-moving tangent vectors. Under assumption of a local

equilibrium, we derive a complete set of hydrodynamic equations that govern the evolution of strings on

large scales. We also argue that on small scales, the assumption of a local equilibrium would break down,

so nonequilibrium steady states, described by the Sinai-Ruelle-Bowen distributions, should be used

instead.
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I. INTRODUCTION

Cosmic strings are predicted by many models of sym-
metry breaking phase transitions [1] and give rise to very
distinct and detectable signatures such as gravitational
lensing [2], CMB non-Gaussianities [3], gravitational
waves [4], ultrahigh energy cosmic rays [5], radio signals
[6], etc. It is also believed that cosmic superstrings can be
formed at the end of brane inflation [7], which opens a
possibility of testing the models of string theory in the
cosmological settings. However, all of the phenomenologi-
cal predictions are based on the statistical properties of
cosmic strings, which remain largely unexplored.

In the early work on strings statistics [8], it was expected
that a typical length of closed loops would scale linearly
with time, but some old numerical simulations showed no
evidence for such scaling [9–13]. The average distance
between long strings was observed to scale linearly with
time, but the size of the smallest wiggles, as well as the
size of loops, remained at the resolution scale of the
simulations. More recently, the high-precision numerical
simulations [14] with much finer resolution were devel-
oped to demonstrate that the long strings do obey a scaling
law on a wide range of scales described by a universal
power spectrum. Moreover, there is evidence suggesting
that after a long transient regime, characterized by an
excessive production of small loops at the scale of initial
conditions, the characteristic size of large loops starts to
grow linearly with time [15]. (See also Ref. [16] for the
numerical results and interpretations reported by other
groups.) Unfortunately, the dynamical range of these simu-
lations is not sufficiently large to confirm the numerical
results with a high confidence level.

In addition to numerical studies, a number of analytical
models were proposed [17,18], but the downside of most
models is that they contain phenomenological parameters,

such as the mean velocity of strings. To overcome these
problems and to better understand various nonlinear
stringy phenomena, such as cross correlations [19] and
semi-scaling [20], we developed a kinetic theory of strings
[21]. The stochastic dynamics of strings was modeled with
a transport equation, which is capable of describing long
strings with Nambu-Goto evolution as well as interactions
taken into account and the corresponding system of
coupled transport equations, which can simultaneously
describe long strings as well as closed loops. In this paper
we extend the kinetic theory approach further and derive a
fully hydrodynamic description of strings.
The paper is organized as follows. In the next section we

derive a simplified version of the transport equation for
strings. In Sec. III we prove an H-theorem and derive an
equilibrium condition for strings. In Sec. IV we prove a
conservation theorem and obtain a general set of conser-
vation equations. The hydrodynamic equations for von
Mises-Fisher distributions are derived in Sec. V under
assumption of a local thermodynamic equilibrium. In
Sec. VI we relax the equilibrium assumption and discuss
the consequences of nonequilibrium steady states. The
main results of the paper are summarized in Sec. VII.

II. TRANSPORT EQUATION

The dynamics of cosmic strings without interactions,
such as reconnections of nearby strings or production of
string loops, is described fairly well byNambu-Goto action,

SNG ¼ ��
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� det ðhabÞ
q

d�dt; (2.1)

where � is the string tension and

hab ¼ g��x
�
;ax�;b: (2.2)

The corresponding equation of motion is

x
�;a
;a þ �

�
��habx�;ax

�
;b ¼ 0: (2.3)*vvanchur@umn.edu
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After gauge fixing (h01 ¼ 0, h00 þ h11 ¼ 0, t ¼ x0) on a
flat background, we get a system of equations for a three-
vector, x,

d2x

dt2
� d2x

d�2
¼ 0; (2.4)

�
dx

dt

�
2 þ

�
dx

d�

�
2 ¼ 1; (2.5)

dx

d�
� dx
dt

¼ 0; (2.6)

where the speed of light is set to one. The solution of (2.4)
can be described in terms of right-movingað�� tÞ and left-
moving bð�þ tÞ waves,

x ð�; tÞ ¼ að�� tÞ þ bð�þ tÞ
2

(2.7)

with additional constraints,��������
da

d�

��������¼
��������
db

d�

��������¼ 1; (2.8)

due to (2.5) and (2.6).
In general the exact evolution of a given infinitesimal

segment of string is known only if all of the functions, að�Þ
and bð�Þ, for all strings are known. In the kinetic theory of
strings, such evolution is described by a system of equations
analogous to the Bogoliubov-Born-Green-Kirkwood-Yvon
hierarchy for particles [21]. Truncating the hierarchy at a
given order is equivalent to neglecting higher-order effects
and is often a starting point in a derivation of a transport
equation. The first attempt to drive a transport equation for
strings was given in Ref. [21], where the state of the system
was modeled with a 9þ 1 dimensional distribution func-
tion fðA;B;x; tÞ of the correlationvectorsA andB, comov-
ing positionx, and conformal time t. In this paperwemake a
crucial simplification by concentrating instead on a 7þ 1

dimensional distribution fðÂ; B̂;x; tÞ, where

Â � � da

d�
and B̂ � db

d�
(2.9)

are the unit three-vectors corresponding to tangent vectors
of right- and left-moving waves.

In a Friedmann universe described by an Friedmann-
Robertson-Walker metric,

ds2 ¼ aðtÞ2ðdt2 � dx2Þ; (2.10)

one can show that the unit vectors evolve according to

d

dt
Â ¼ �H ðB̂� ðÂ � B̂ÞÂÞ (2.11)

d

dt
B̂ ¼ �H ðÂ� ðÂ � B̂ÞB̂Þ (2.12)

and the energy density decays as

d

dt
f ¼ �H

1

2
ðÂþ B̂Þ2f; (2.13)

where H � _a
a is the Hubble rate in conformal coordinates

(See, for example, Ref. [11].). Then one can derive a

transport equation for fðÂ; B̂;x; tÞ by following the evo-

lution of fðÂ; B̂;x; tÞ from time t to time tþ �t. For an
infinitesimally small �t, we can use (2.11), (2.12), and
(2.13) to express the distribution at time tþ �t in terms
of the distribution at time t,

fðÂ�H ðB̂� ðÂ � B̂ÞÂÞ�t;
B̂�H ðÂ� ðÂ � B̂ÞB̂Þ�t;xþ 1

2
ðÂþ B̂Þ�t; tþ �tÞ

¼
�
1�H

1

2
ðÂþ B̂Þ2

�
fðÂ; B̂;x; tÞ þ

�
@f

@t

�
coll

�t:

(2.14)

The ‘‘collision’’ term on the right-hand side represents
the Nambu-Goto evolution and interactions. By expanding
to the linear order in �t, we obtain the following
equation,�
@

@t
þ1

2
ðÂþB̂Þ � @

@x
þH

�
1

2
ðÂþB̂Þ2�Â � @

@B̂
� B̂ � @

@Â

��

�fðÂ;B̂Þ¼
�
@f

@t

�
coll

; (2.15)

where the dependence on the comoving position x and
conformal time t is suppressed for brevity of notations.
Note that the use of the simplified distribution function

fðÂ; B̂;x; tÞ does not necessarily imply that the correla-
tions must be small. In fact, the long-distance correlations

may still exist whenever the distributions of Â and B̂ are
peaked sharply around a particular direction.
The effects of ‘‘collisions’’ can be estimated as in

Ref. [21]. The Nambu-Goto ‘‘collisions’’ proceed with
the same rate, regardless of the orientations of string world
sheets, as the right- and left-moving waves pass through
each other. The rate of such ‘‘collisions’’ is given by

�evolution � 1

lmin

; (2.16)

where lmin describes the resolution scale of the kinetic
theory. Since the Nambu-Goto action is only accurate on

sufficiently large scales there is a lower bond lmin &

��1=2. However, on the cosmological settings the resolu-
tion scale might also be set by the scale of the initial
conditions or by the scale of the gravitation backreaction.
The exact value of lmin is unimportant for the subsequent
discussion.
The rate of the second kind of ‘‘collision,’’ due to

interactions between a segment described by tangent

vectors Â and B̂ with another segment described by tan-

gent vectors Â0 and B̂0, is given by a probability of inter-
secting in the target space. In a universe with three large
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spatial dimensions, the probability must be proportional
to the local energy density, �, the intercommutation
probability, p,1 and also to what we call a cross-sectional
volume. Intuitively, the cross-sectional volume describes a
likelihood of interactions of string segments due to relative

orientations of their world sheets ð1; ÂÞ ^ ð1; B̂Þ and

ð1; Â0Þ ^ ð1; B̂0Þ. Altogether we get the following expres-
sion for the rate of interactions,

�interaction���pjð1;ÂÞ^ð1;B̂Þ^ð1;Â0Þ^ð1;B̂0Þj; (2.17)

where

� �
Z

dÂdB̂fðÂ; B̂Þ (2.18)

and � is some constant.
When a ‘‘collision’’ takes place, the corresponding

opposite-moving tangent vectors are interchanged, e.g.,

ðÂ0;B̂Þ and ðÂ;B̂0Þ)ðÂ;B̂Þ and ðÂ0;B̂0Þ; (2.19)

or

ðÂ;B̂Þ and ðÂ0;B̂0Þ)ðÂ0;B̂Þ and ðÂ;B̂0Þ: (2.20)

This gives rise to a couple of integral terms which can be
combined together to yield the following expression,�
@f

@t

�
coll

¼
Z
dÂ0dB̂0ð�evolutionþ�interactionÞ

�fðÂ0;B̂ÞfðÂ;B̂0Þ�fðÂ;B̂ÞfðÂ0;B̂0Þ
�

: (2.21)

By substituting (2.21) into (2.15), we obtain the final form
of the transport equation,�
@

@t
þ1

2
ðÂþB̂Þ � @

@x
þH

�
1

2
ðÂþB̂Þ2�Â � @

@B̂
�B̂ � @

@Â

��

�fðÂ;B̂Þ
¼
Z
dÂ0dB̂0P ðÂ;B̂;Â0;B̂0ÞðfðÂ0;B̂ÞfðÂ;B̂0Þ

�fðÂ;B̂ÞfðÂ0;B̂0ÞÞ; (2.22)

where

P ðÂ;B̂;Â0;B̂0Þ
� 1

lmin�
þ�pjð1;ÂÞ^ð1;B̂Þ^ð1;Â0Þ^ð1;B̂0Þj: (2.23)

Note that the function P ðÂ; B̂; Â0; B̂0Þ is invariant under
permutations of variables. This property will turn out to be
crucial for proving an H-theorem and a conservation theo-
rem in the following sections.

III. EQUILIBRIUM DISTRIBUTIONS

Consider a localized version of the transport equation
(2.22) where the spatial inhomogeneities and gravitational
effects are ignored, i.e.,

@

@t
fðA;BÞ ¼

Z
dÂ0dB̂0P ðÂ; B̂; Â0; B̂0ÞðfðÂ0; B̂ÞfðÂ; B̂0Þ

� fðÂ; B̂ÞfðÂ0; B̂0ÞÞ: (3.1)

If we assume that a local equilibrium (defined by
@
@t feqðA;BÞ ¼ 0) is established much faster than all other

time scales, then the right-hand side of (3.1) must also
vanish,

Z
dÂ0dB̂0P ðÂ; B̂; Â0; B̂0ÞðfðÂ0; B̂ÞfðÂ; B̂0Þ
� fðÂ; B̂ÞfðÂ0; B̂0ÞÞ ¼ 0: (3.2)

We are now ready to prove anH-theorem for strings which
is analogous to the famous Boltzmann’s H-theorem for
particles. In particular, we will show that

Hðx; tÞ �
Z

dÂdB̂fðÂ; B̂Þ log ðfðÂ; B̂ÞÞ (3.3)

can never increase with time,

dH

dt
� 0; (3.4)

whenever fðÂ;B̂Þ satisfies the local transport equation
(3.1).
By differentiating (3.3) with respect to time, we obtain

dH

dt
¼

Z
dÂdB̂

@fðÂ; B̂Þ
@t

ð1þ log ðfðÂ; B̂ÞÞÞ (3.5)

and after substituting (3.1) into (3.5), we arrive at the
following equation,

dH

dt
¼
Z
dÂdB̂dÂ0dB̂0P ðÂ;B̂;Â0;B̂0ÞðfðÂ0;B̂ÞfðÂ;B̂0Þ

�fðÂ;B̂ÞfðÂ0;B̂0ÞÞ�ð1þ logðfðÂ;B̂ÞÞÞ: (3.6)

Since P ðÂ; B̂; Â0; B̂0Þ is invariant under permutations of
variables, the right-hand side of (3.6) can be rewritten by

interchanging the dummy variables of integration Â, B̂ and

Â0, B̂0,

dH

dt
¼
Z
dÂ0dB̂0dÂdB̂P ðÂ0;B̂0;Â;B̂ÞðfðÂ;B̂0ÞfðÂ0;B̂Þ

�fðÂ0;B̂0ÞfðÂ;B̂ÞÞ�ð1þ logðfðÂ0;B̂0ÞÞÞ: (3.7)

Note that (3.6) and (3.7) only differ in an argument of the
logarithms. Thus, we can add (3.6) and (3.7) to get

1The intercommutation probability is a free parameter of order
one for the field theory strings but can also be much smaller than
one of the string theory strings.
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2
dH

dt
¼
Z
dÂ0dB̂0dÂdB̂P ðÂ0;B̂0;Â;B̂ÞðfðÂ;B̂0ÞfðÂ0;B̂Þ

�fðÂ0;B̂0ÞfðÂ;B̂ÞÞ�ð2þ logðfðÂ;B̂ÞfðÂ0;B̂0ÞÞÞ;
(3.8)

and by interchanging Â and Â0, we obtain another equiva-
lent equation,

2
dH

dt
¼
Z
dÂ0dB̂0dÂdB̂P ðÂ0;B̂0;Â;B̂ÞðfðÂ0;B̂0ÞfðÂ;B̂Þ

�fðÂ;B̂0ÞfðÂ0;B̂ÞÞ�ð2þ logðfðÂ0;B̂ÞfðÂ;B̂0ÞÞÞ:
(3.9)

To arrive at the final expression we add (3.8) and (3.9),

dH

dt
¼�1

4

Z
dÂ0dB̂0dÂdB̂P ðÂ0;B̂0;Â;B̂ÞðfðÂ;B̂0ÞfðÂ0;B̂Þ

�fðÂ0;B̂0ÞfðÂ;B̂ÞÞ�ðlogðfðÂ;B̂0ÞfðÂ0;B̂ÞÞ
� logðfðÂ;B̂ÞfðÂ0;B̂0ÞÞÞ: (3.10)

But since log is a monotonically increasing function, we
conclude that

ðfðÂ;B̂0ÞfðÂ0;B̂Þ�fðÂ0;B̂0ÞfðÂ;B̂ÞÞðlogðfðÂ;B̂0ÞfðÂ0;B̂ÞÞ
� logðfðÂ;B̂ÞfðÂ0;B̂0ÞÞÞ�0

as well as dH
dt � 0, which is exactly the statement of the

H-theorem for strings (3.4). Note that the equality dH
dt ¼ 0

is realized if and only if

feqðÂ; B̂0ÞfeqðÂ0; B̂Þ ¼ feqðÂ0; B̂0ÞfeqðÂ; B̂Þ (3.11)

corresponding to an equilibrium distribution feqðÂ; B̂Þ.
In addition, we can show that for an arbitrary equilib-

rium distribution, there exists a factorization,

feqðÂ; B̂Þ ¼ �paðÂÞpbðB̂Þ; (3.12)

where paðÂÞ and pbðB̂Þ are the normalized probability
distributions, i.e.,

Z
dÂpaðÂÞ ¼

Z
dB̂pbðB̂Þ ¼ 1: (3.13)

Indeed, for an arbitrary pair of unit vectors Â00 and B̂00 such
that fðÂ00; B̂00Þ � 0, we can define

paðÂÞ� feqðÂ;B̂00ÞR
dÂ0feqðÂ0;B̂00Þ and pbðB̂Þ¼

feqðÂ00;B̂ÞR
dB̂0feqðÂ00;B̂0Þ:

(3.14)

Then it is easy to check that the condition (3.11) implies
(3.12),

feqðÂ; B̂0ÞfeqðÂ0; B̂Þ
¼ feqðÂ0; B̂0ÞfeqðÂ; B̂Þ 8 Â; B̂; Â0; B̂0

) �paðÂÞpbðB̂Þ

¼
R
dÂ0dB̂0feqðÂ0; B̂0ÞfeqðÂ; B̂00ÞfeqðÂ00; B̂ÞR

dÂ0feqðÂ0; B̂00ÞR dB̂0feqðÂ00; B̂0Þ

¼
R
dÂ0dB̂0feqðÂ0; B̂0ÞfeqðÂ00; B̂00ÞfeqðÂ; B̂ÞR

dÂ0dB̂0feqðÂ0; B̂0ÞfeqðÂ00; B̂00Þ
¼ feqðÂ; B̂Þ: (3.15)

Of course, the opposite is also true, and (3.12) implies
(3.11). Thus, we have four equivalent definitions of a local
equilibrium of strings,

@

@t
feqðÂ; B̂Þ ¼ 0 , d

dt
H½feqðÂ; B̂Þ� ¼ 0 , feqðÂ; B̂Þ

¼ �paðÂÞpbðB̂Þ , feqðÂ; B̂0ÞfeqðÂ0; B̂Þ
¼ feqðÂ0; B̂0ÞfeqðÂ; B̂Þ 8 Â; B̂; Â0; B̂0:

(3.16)

IV. CONSERVATION THEOREM

Consider an arbitrary quantityQðÂ; B̂Þwhich is conserved
during ‘‘collisions’’ (Nambu-Goto or interactions), i.e.,

QðÂ; B̂Þ þQðÂ0; B̂0Þ ¼ QðÂ0; B̂Þ þQðÂ; B̂0Þ: (4.1)

Then we can integrate both sides of the transport equation
(2.22) to get

Z
dÂdB̂QðÂ; B̂Þ

�
@

@t
þ 1

2
ðÂþ B̂Þ � @

@x
þH

�
1

2
ðÂþ B̂Þ2 � Â � @

@B̂
� B̂ � @

@Â

��
fðÂ; B̂Þ

¼
Z

dÂdB̂dÂ0dB̂0QðÂ; B̂ÞP ðÂ; B̂; Â0; B̂0ÞðfðÂ0; B̂ÞfðÂ; B̂0Þ � fðÂ; B̂ÞfðÂ0; B̂0ÞÞ; (4.2)

where the right-hand side can be rewritten as
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Z
dÂdB̂dÂ0dB̂0QðÂ; B̂ÞP ðÂ; B̂; Â0; B̂0ÞðfðÂ0; B̂ÞfðÂ; B̂0Þ � fðÂ; B̂ÞfðÂ0; B̂0ÞÞ

¼
Z

dÂdB̂dÂ0dB̂0QðÂ0; B̂ÞP ðÂ; B̂; Â0; B̂0ÞðfðÂ; B̂ÞfðÂ0; B̂0Þ � fðÂ0; B̂ÞfðÂ; B̂0ÞÞ

¼
Z

dÂdB̂dÂ0dB̂0QðÂ; B̂0ÞP ðÂ; B̂; Â0; B̂0ÞðfðÂ0; B̂0ÞfðÂ; B̂Þ � fðÂ; B̂0ÞfðÂ0; B̂ÞÞ

¼
Z

dÂdB̂dÂ0dB̂0QðÂ0; B̂0ÞP ðÂ; B̂; Â0; B̂0ÞðfðÂ; B̂0ÞfðÂ0; B̂Þ � fðÂ0; B̂0ÞfðÂ; B̂ÞÞ

due to invariance of P ðÂ; B̂; Â0; B̂0Þ under permutations of variables. By adding these four equivalent expressions together
and dividing by four, we obtain yet another equivalent expression,

1

4

Z
dÂdB̂dÂ0dB̂0P ðÂ;B̂;Â0;B̂0ÞðfðÂ0;B̂ÞfðÂ;B̂0Þ�fðÂ;B̂ÞfðÂ0;B̂0ÞÞ�ðQðÂ;B̂ÞþQðÂ0;B̂0Þ�QðÂ0;B̂Þ�QðÂ;B̂0ÞÞ;

(4.3)

which must vanish for any conserved quantity QðÂ; B̂Þ due to (4.1). Thus, the right-hand side of (4.2) is identically zero,
and we arrive at the following equation,

Z
dÂdB̂QðÂ; B̂Þ

�
@

@t
þ 1

2
ðÂþ B̂Þ � @

@x
þH

�
1

2
ðÂþ B̂Þ2 � Â � @

@B̂
� B̂ � @

@Â

��
fðÂ; B̂Þ ¼ 0: (4.4)

It is now convenient to define an expectation value,

hOi � 1

�

Z
dÂdB̂OðÂ; B̂ÞfðÂ; B̂Þ; (4.5)

and to rewrite (4.4), after integrating by parts, as

@

@t
h�Qi þ 1

2

@

@xj
h�ðAj þ BjÞQi þH

�
�

�
1

2
ðAj þ BjÞ2 þ Aj

@

@Bj

þ Bj

@

@Aj

�
Q

�
¼ 0; (4.6)

where the summation over repeated indices is implied. In
the literature on the kinetic theory of particles, a similar
expression is known as a conservation theorem. By apply-
ing the conservation theorem to different (locally) con-
served quantities, we can derive different conservation
equations.

In particular, an equation for a local conservation of
energy is obtained by setting Q ¼ 1 in (4.6),

@

@t
�þ 1

2

@

@xj
�hAj þ Bji þH�h1þ AjBji ¼ 0: (4.7)

Another important example is a local conservation of right-
moving and left-moving tangent vectors. This gives us six
more equations, one for each of the components of each
tangent vector. By setting Q to A1, A2, A3, B1, B2, or B3 in
(4.6), we obtain the following equations,

@

@t
�hAiiþ1

2

@

@xj
�hAjAiþBjAii

þH�hAjBjAiþAiþBii¼0; (4.8)

@

@t
�hBii þ 1

2

@

@xj
�hAjBi þ BjBii

þH�hAjBjBi þ Ai þ Bii ¼ 0: (4.9)

Altogether, there are seven conservation equations
[i.e., (4.7), (4.8), and (4.8)], but this is certainly not all there

is [e.g.,QðÂÞ¼�ðÂ�Â0Þ is conserved for an arbitrary Â0].
In fact, there is an infinite number of conservation condi-
tions that one could derive, and it may seem as if the system
is overconstrained. (Note that there are only five conserved
quantities in a kinetic theory of particles: mass, energy, and
momentum, which give rise to five hydrodynamic equa-
tions: the continuity equation, heat equation, and Navier-
Stokes equation.) However, as we will see in the following
section, seven is the exactly the number of equations needed
to describe the hydrodynamics of strings to the leading
order, and all other conservation conditions become relevant
only at higher orders in perturbation theory.

V. HYDRODYNAMIC EQUATIONS

In Sec. III we have shown that a local equilibrium is

established if and only if fðÂ; B̂Þ factors into a product of
the energy density, �, and two normalized probability

distribution functions on a unit sphere, paðÂÞ and pbðB̂Þ.
Clearly, an arbitrary choice of the normalized distributions

paðÂÞ and pbðB̂Þ would satisfy the equilibrium conditions
(3.16) and additional considerations are needed to deter-
mine the most physical distributions.
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From the conservation of energy and of tangent vectors
(of right- and left-moving waves), we derived Eqs. (4.8),
(4.9), and (4.7), which can be rewritten under assumption
of a local equilibrium as

@

@t
�hAiiþ1

2

@

@xj
�ðhAiAjiþhAiihBjiÞ

þH�ðhAjAiihBjiþhAiiþhBiiÞ¼0; (5.1)

@

@t
�hBiiþ1

2

@

@xj
�ðhBiBjiþhBiihAjiÞ

þH�ðhBjBiihAjiþhAiiþhBiiÞ¼0; (5.2)

@

@t
�þ1

2

@

@xj
�ðhAjiþhBjiÞþH�ð1þhAjihBjiÞ¼0:

(5.3)

This is a system of seven equations at the lowest order in
perturbation theory, but for a self-consistent description,

the energy distribution function fðÂ; B̂Þ must also be
estimated with seven parameters. One parameter is the
normalization constant, �, and the simplest three parame-
ter family of normalized distributions is given by the von
Mises-Fisher distributions on a unit sphere [22],

paðÂÞ ¼ 1

4�	 sinh ð1=	Þ exp
�
û � Â
	

�
(5.4)

and

pbðB̂Þ ¼ 1

4�
 sinh ð1=
Þ exp
�
v̂ � B̂



�
; (5.5)

where û, v̂ are the mean directions and 	,
 are the dis-
persion parameters of right- and left-moving tangent vec-
tors. The main motivation to use the von Mises-Fisher
distributions is that they are mathematically tractable and
at the same time give a good approximation of the
Gaussian distributions wrapped on a sphere [23]. The
corresponding lowest statistical momenta,

hAii ¼ uiFð	Þ; (5.6)

hBii ¼ viFð
Þ; (5.7)

hAiAji ¼ �ij	Fð	Þ þ uiujð1� 3	Fð	ÞÞ; (5.8)

and

hBiBji ¼ �ij
Fð
Þ þ uiujð1� 3
Fð
ÞÞ; (5.9)

where, for convenience, we defined

FðxÞ � coth

�
1

x

�
� x; (5.10)

which can be approximated in the limit of small disper-
sions as

FðxÞ 	 1� x: (5.11)

To obtain a complete system of hydrodynamic equa-
tions, we can plug the expressions (5.6), (5.7), (5.8), and
(5.9), into the Eqs. (5.1), (5.2), and (5.3). The resulting
equations are

@

@t
�uiFð	Þþ1

2

@

@xj
�ð�ij	Fð	Þþuiujð1�3	Fð	ÞÞ

þuivjFð	ÞFð
ÞÞþH�ðuiFð	ÞþviFð
Þð1þ	Fð	ÞÞ
þuiujvjFð
Þð1�3	Fð	ÞÞÞ¼0; (5.12)

@

@t
�viFð
Þþ1

2

@

@xj
�ð�ij
Fð
Þþvivjð1�3
Fð
ÞÞÞ

þviujFð	ÞFð
ÞÞþH�ðviFð
ÞþuiFð	Þð1þ
Fð
ÞÞ
þviujvjFð	Þð1�3
Fð
ÞÞÞ¼0 (5.13)

and

@

@t
�þ 1

2

@

@xj
�ðujFð	Þ þ vjFð
ÞÞ

þH�ð1þ uivjFð	ÞFð
ÞÞ ¼ 0: (5.14)

There are seven equations with seven unknowns: three
scalar quantities, �, 	, 
, and two vector quantities, û, v̂,
constrained to unity, i.e., jûj ¼ jv̂j ¼ 1. This system of
partial differential equations is a huge simplification in
comparison to the integro-differential transport equations
of the kinetic theory (2.22).
Note that the hydrodynamic equations can be simplified

further on a Minkowski background (i.e., H ¼ 0),

@

@t
�uiFð	Þ þ 1

2

@

@xj
�ð�ij	Fð	Þ þ uiujð1� 3	Fð	ÞÞ

þ uivjFð	ÞFð
ÞÞ ¼ 0; (5.15)

@

@t
�viFð
Þ þ 1

2

@

@xj
�ð�ij
Fð
Þ þ vivjð1� 3
Fð
ÞÞÞ

þ viujFð	ÞFð
ÞÞ ¼ 0; (5.16)

@

@t
�þ 1

2

@

@xj
�ðujFð	Þ þ vjFð
ÞÞ ¼ 0; (5.17)

and in the limit of small dispersions 	 and 
,

@

@t
�uið1� 	Þ þ 1

2

@

@xj
�ð�ij	þ uiujð1� 3	Þ

þ uivjð1� 	� 
ÞÞ ¼ 0; (5.18)

@

@t
�við1� 
Þ þ 1

2

@

@xj
�ð�ij
þ vivjð1� 3
ÞÞ

þ viujð1� 	� 
ÞÞ ¼ 0; (5.19)
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@

@t
�þ 1

2

@

@xj
�ðujð1� 	Þ þ vjð1� 
ÞÞ ¼ 0: (5.20)

Evidently, even without gravitational effects, the evolution
of right-moving waves, described by ui and 	, and left-
moving waves, described by vi and 
, is coupled not
only through energy density �, but also directly though
the cross terms,

1

2

@

@xj
�viujFð	ÞFð
Þ and

1

2

@

@xj
�uivjFð	ÞFð
Þ: (5.21)

These terms give rise to the so-called cross correlations
between opposite moving waves [19], which are often
overlooked in the literature on cosmic strings. Our analysis
shows that the cross correlations appear at the leading
order and should not be ignored.

VI. NONEQUILIBRIUM STEADY STATES

The reader might be puzzled by the fact that the hydro-
dynamic equations derived in the previous section do not
depend on the intercommutation probability p. At first
glance this seems very counterintuitive, given that there
are numerical simulations that have demonstrated the de-
pendence of string dynamics on p, at least on small scales.
Since the only assumption that we have made so far is the
assumption of a local thermodynamic equilibrium, there
must be a critical scale below which the assumption is no
longer valid. The scale can be quite small for the field
theory strings with p� 1 but can also be rather large for
the string theory strings with p 
 1.

Evidently, on small scales the network of strings must
not behave as a closed Hamiltonian system whose equilib-
rium distribution would be given by the Liouville measure.
For more general hyperbolic dynamical systems the non-
equilibrium steady states provide a more accurate descrip-
tion of the dynamics. These states were originally proposed
by Sinai [24], Ruelle [25], and Bowen [26] and go by the
name of the Sinai-Ruelle-Bowen (SRB) measures [27]. In
this paper we will refer to them as the SRB distributions.
Of course, an arbitrary local distribution can be substituted
into (4.7), (4.8), and (4.9), to yield a new set of hydro-
dynamic equations for strings, and thus the main problem
is to estimate the SRB distribution for strings.

To derive a local distribution of strings, wewill apply the
so-called thermodynamic formalism [27] with many ideas
borrowed from the conventional statistical mechanics, but
one important difference. In the statistical mechanics we
are usually interested in the phase space states, X, when in
the dynamical system of strings the key role is played by
the phase space trajectories, XðtÞ. Thus, it is convenient to
think of time, t, as a thermodynamical volume which is a
conjugate variable to the topological pressure defined as

p ¼ lim
T!1

1

T
logZ; (6.1)

where

Z ¼
Z

dXð0Þ exp
�
�
Z T

0

X
�i>0

�iðXðtÞÞdt
�

(6.2)

is the dynamical partition function [27]. The sum of local
Lyapunov exponents �i (defined as a local rate of separa-
tion of the nearby trajectories) is taken over directions
corresponding to only positive global Lyapunov exponents
�i (defined as a rate of separation of nearby trajectories in
the limit of infinite times).
According to the partition function (6.2), the trajectories

with large Lyapunov exponents are exponentially sup-
pressed. This effect can be easily estimated for strings
from an expected collision rate of a given configuration.
In the transport equation (2.22), there are two types of
‘‘collisions,’’ one due to Nambu-Goto evolution and an-
other due to interactions. As was already stressed, the
Nambu-Goto ‘‘collisions’’ take place with the same rate
regardless of the trajectory and can always be factored out.
In contrast, the rate of interactions depends on the trajectory
in question. Such collisions give rise to an exponential
sensitivity to initial conditions and contribute to the overall
sum of the positive local Lyapunov exponents in (6.2). Then
the effect of interactions can be estimated from (2.17) as

fSRBðÂ; B̂Þ / paðÂÞpbðB̂Þ exp ð���pjð1; ÂÞ ^ ð1; B̂Þ
^ ð1; ûÞ ^ ð1; v̂Þj��1=2Þ; (6.3)

where � is some constant and ��1=2 is the time scale of
collisions. Note that, in general, onemust solve for themean

directions (i.e., û ¼ hÂi and v̂ ¼ hB̂i) to determine all of
the parameters of the distribution. However, if we are only
interested in a leading-order effect of the interactions, then
we can assume that the true SRB distribution is not too far
from an equilibrium distribution described by (5.4) and
(5.5). By treating the nonequilibrium effects as a small
perturbation, we obtain

fSRBðÂ; B̂Þ / exp

�
û � Â
	

þ v̂ � B̂



� ��pjð1; ÂÞ ^ ð1; B̂Þ

^ ð1; ûÞ ^ ð1; v̂Þj��1=2

�
: (6.4)

This distribution together with Eqs. (4.7), (4.8), and (4.9)
can, in principle, be used to determine an improved set of
hydrodynamic equations.

VII. SUMMARY

The main objective of the paper was to develop a hydro-
dynamic approach to cosmic strings based on the ideas of
the kinetic theory originally introduced in Ref. [21]. In
what follows we will summarize the key results.
First of all, we derived a simplified version of the

transport equation (2.22) with Nambu-Goto evolution, in-
teractions (such as reconnections of nearby strings and
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production of string loops), and background gravitational
effects (such as Friedmann expansion) taken into account.
Secondly, we proved an H-theorem (3.4) and derived the
four equivalent equilibrium conditions for strings (3.16).
We also proved a conservation theorem (4.6) and derived a
system of conservation equations (4.7), (4.8), and (4.9).

Finally, we derived a complete set of hydrodynamic
equations (5.12), (5.13), and (5.14) and discussed their
possible generalizations in the context of the nonequilib-
rium steady states described by a Sinai-Ruelle-Bowen
distribution (6.3). These equations provide an enormous
simplification to the problem of string dynamics, but we
will not attempt to solve them here. Instead, we will finish

by noting that on a Minkowski background and in the limit
of small dispersions 	 and 
, the linearized equations take
a particularly simple form (5.18), (5.19), and (5.20). In fact,
they are not much more complicated than the standard
hydrodynamic equations for particles (i.e., continuity
equation, heat equation, and Navier-Stokes equation),
and thus there should not be any obstacles to solving these
equations numerically, if not analytically.
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