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According to the AdS/CFT correspondence, theN ¼ 4 supersymmetric Yang-Mills (SYM) theory has

been studied by solving the dual supergravity. In solving the bulk Einstein equation, we find that it could

be related to the 4D Friedmann equation, which is solved by using the cosmological constant and the

energy density of the matter on the boundary, and they are dynamically decoupled from the SYM theory.

We call this combination of the bulk Einstein equations and the 4D Friedmann equation as holographic

Friedmann equations. Solving the holographic Friedmann equations, it is shown how the 4D decoupled

matter and the cosmological constant control the dynamical properties of the SYM theory, quark

confinement, chiral symmetry breaking, and baryon stability. From their effect on the SYM, the various

kinds of matter are separated to two groups. Our results would give important information in studying the

cosmological development of our universe.
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I. INTRODUCTION

Up to now, various holographic approaches to the
N ¼ 4 supersymmetric Yang-Mills (SYM) theory with
strong coupling have been performed from the dual super-
gravity [1–10]. In these, the research has been extended to
the SYM in the background dS4ðAdS4Þ by introducing 4D
cosmological constant (�4) [11–18]. Then, it has been
found that the dynamics of the SYM theory is largely
controlled by the 4D geometry, the dS4 and AdS4 [15,16].

In the case of dS4 (�4 > 0), a horizon1 exists in the bulk
geometry as in the case of AdS5-Schwarzschild back-
ground, which is dual to the SYM theory in the high
temperature deconfinement phase. As expected from this
similarity of the background, the gauge theory in dS4 is in
the deconfinement phase even if the theory is in the con-
finement phase at the limit of �4 ¼ 0 [15]. In fact, the
positive�4 plays a role similar to the temperature, then we
could see the screening of the confining force above the
corresponding scale of �4.

For�4 ¼ 0, the 4D boundary background is represented
by the Minkowski space-time, and the confinement phase
is realized by introducing a nontrivial dilaton, which im-
plies the condensate of the gauge field strength. This
condensate provides the tension of the linear potential
between the quark and the anti-quark [9]. In the present
universe, however, very small positive �4 would be be-
lieved to exist, then the cofining force responsible to dila-
ton would be screened. However the screening effect
would appears at very large distance between quarks, so
we could fortunately find stable mesons and baryons in our
universe since the effect of �4 is negligible within the

hadron scale. However, at early universe, the situation
would be changed.
On the other hand, in the case of AdS4 (�4 < 0), the

horizon disappears and we could find both the quark con-
finement and chiral symmetry breaking even if we neglect
the effect of the non-trivial dilaton, which is necessary in
the Minkowski space-time for the confinement.2 In dS4,
however, the screening effect of the positive �4 over-
whelms the dilaton effect at large scale. In the AdS4, we
find that the negative �4 and the dilaton are cooperative to
realize the confinement, and furthermore the negative �4

induces the chiral symmetry breaking [16].
In these approaches, we found that the deformation

of the boundary space-time due to the �4 plays an impor-
tant role in determining the dynamical properties of the
SYM theory living in this curved space-time. This point is
understood from the bulk metric which is also deformed

from the AdS5, and here we denote it as gAdS5. An explicit

example of such a gAdS5 is shown in the Sec. IV by the
Eqs. (49)–(51),3 and we should notice that it is reduced to
the undeformedAdS5 in the limit of � ¼ 0. The situation is
the same with the case of AdS5-Schwarzschild background
which reduces to AdS5 at the zero temperature limit. Thus

the deformation of gAdS5 is characterized by the parameter
(s) of the boundary theory, e.g., temperature, 4D cosmo-
logical constant, etc. These parameters are essential to
determine the dynamical properties of the CFT on the

*gouroku@dontaku.fit.ac.jp
†nakamura@sci.kagoshima-u.ac.jp
1Here we express the horizon by the zero points of the metric,

which is not necessarily the time component.

2It would be interesting to compare this result with the
observation given in Ref. [19] many years ago. The authors in
Ref. [19] has found a discrete mass spectrum for a free scalar
field in AdS4, and this spectrum coincides with our result for the
mass spectrum of a scalar meson, which is considered as a bound
state of quark and anti-quark in our holographic approach.

3The Eqs. (22)–(25) in Sec. II also represent another kind ofgAdS5.
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boundary. Thus, as a result of the analyses up to now, it
would be able to extend the duality relation as follows,

SUGRA in gAdS5  dual

! CFT in 4D curved space time; (1)

where the bulk gAdS5 comes back to the AdS5 by reducing
the parameter(s) of the 4D theory living on the boundary,
and we find

SUGRA inAdS5  dual

! CFT in 4DMinkowski space time:

(2)

According to the above idea, we extends our analysis to
the case of time dependent � by introducing various kinds
of matter living in the boundary. In our universe, there are
many other ingredients, which control the 4D space-time
of our universe, other than �4. It is therefore important to
make clear how do they could change the properties of the
SYM theory. This issue is examined here by extending our
holographic analysis to the case where various kinds of
matter are included. This is performed simply by replacing
the �4 to a time dependent form, �ðtÞ, which is given as

�ðtÞ ¼ 1

3

�
�4 þ �2

X
u

�u

a0ðtÞ3ð1þuÞ
�
� X

n¼3uþ2
�n; (3)

where �2 and a0ðtÞ denote the 4D gravitational constant
and the three dimensional scale factor of the Robertson-
Walker metric,

ds2ð4Þ ¼ �dt2 þ a0ðtÞ2�ijdx
idxj; (4)

which is set as the boundary metric in our analysis. Here
�ij ¼ �ij=ð1þ k

P
ix

i2Þ2=4 and k ¼ �1, or 0. The energy

density of the various kinds of matter are expressed by �u,
where u denotes the ratio of the pressure p to the energy
density of the matter,

u ¼ p

�u

: (5)

The �n of the right-hand side is introduced to describe each
term in the form of �n / 1=a0ðtÞnþ1, where n ¼ 3uþ 2. In
this notation, we could express various kinds of ordinary
matter by integer n, however we extend to the case of
noninteger in order to include abnormal kinds of matter.

The generalized �ðtÞ appears in the bulk Einstein equa-
tions, then the differential equation for the dilaton becomes
a little complicated [18] due to the time-dependence of the
�. So we set the dilaton as a trivial one for the simplicity
since our purpose is to make clear the role of the various
kinds of matter as in the case that we have studied the
effects of �4 on the SYM theory. As for the competition
with the dilaton contribution, it will be postponed to study
it into the future.

When � depends on the time, the form of the time
component metric (g00) is largely changed from the one
of the time-independent case of �4. On the other hand,
other components are not changed in the form. Because of
this modification of the metric, it is not so simple to see the
changing of the dynamical properties of SYM from the
case of the constant �4. By picking up one component �n

from �ðtÞ, its effect on the SYM theory is studied, and we
find that many kinds of matter are classified to two groups,
(A) �n < 0 and n < 0, and (B) others. For group (A), quark
confinement and chiral symmetry breaking are realized,
and negative �4 is included in this group. On the other
hand, positive �4 and the ordinary kinds of matter are
included in the group (B), and the quark deconfinement
phase is realized. As for the chiral symmetry, it is restored
for most cases except for very large n case. We discuss
about the possibility of this exotic matter of large n and
positive �n.
Furthermore, we examined the effect of the matter on the

baryon vertex which is expressed by the D5 brane in the
present type IIB model. The D5 brane wraps on S5, then its
action depends only on g00 of ðAÞdS5 and the metric of S5.
As a result, we can see the effect of g00 directly in this case,
and we find the stability of the vertex in both groups when
the condition, n�n > 0, is satisfied.
In the next section, the model for the bulk theory is given

and the holographic Friedmann equation is explained.
Then the background solution used here is obtained. In
Sec. III, we examine the energy momentum tensor of
holographic SYM theory in order to see the relation to
the one of the matter. In Sec. IV, the role of various kinds of
matter in determining the dynamical properties of the SYM
is examined through the Wilson loop and the chiral con-
densate by introducing the probe D7 brane. In Sec. V, the
stability of the baryon vertex is examined. Summary and
discussions are given in the final section.

II. SETUP OF HOLOGRAPHIC THEORY

First, we briefly review our model. We start from the 10d
type IIB supergravity retaining the dilaton �, axion � and
selfdual five form field strength Fð5Þ,

S ¼ 1

2�2

Z
d10x

ffiffiffiffiffiffiffi�gp �
R� 1

2
ð@�Þ2

þ 1

2
e2�ð@�Þ2 � 1

4 � 5!F
2
ð5Þ

�
; (6)

where other fields are neglected since we do not need them,
and � is Wick rotated [20]. Under the Freund-Rubin ansatz

for Fð5Þ, F�1����5
¼ � ffiffiffiffi

�
p

=2��1����5
[21,22], and for the

10d metric as M5 � S5 or

ds210 ¼ gMNdx
MdxN þ gijdx

idxj

¼ gMNdx
MdxN þ R2d�2

5;
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we consider the solution. Here, the parameter is set as

ð� ¼Þ1=R ¼ ffiffiffiffi
�
p

=2.
The equations of motion of noncompact five dimen-

sional part M5 are written as4

RMN ¼ 1

2
ð@M�@N�� e2�@M�@N�Þ ��gMN (8)

1ffiffiffiffiffiffiffi�gp @Mð ffiffiffiffiffiffiffi�gp
gMN@N�Þ ¼ �e2�gMN@M�@N�; (9)

@Mð ffiffiffiffiffiffiffi�gp
e2�gMN@N�Þ ¼ 0: (10)

These equations have a supersymmetric solutions when the
following ansatz is imposed for the axion � [20–22],

� ¼ �e�� þ �0: (11)

And this ansatz is also useful in getting nonsupersymmetric
solutions. The merit to use this ansatz (11) is to be able to
reduce the above Eqs. (8)–(10) to the following two forms,

RMN ¼ ��gMN (12)

and

@Mð ffiffiffiffiffiffiffi�gp
gMN@Ne

�Þ ¼ 0; (13)

where we notice that the two Eqs. (9) and (10) are rewritten
to the same form with (13). So � and � are obtained by
using the solution of (12), however the dilaton is not
important here as mentioned in the introduction. Then we
set as � ¼ � ¼ 0 hereafter for the simplicity.

A. Holographic Friedmann equation

We solve the 5D Einstein equation (12) by supposing the
following metric and coordinates,

ds2E ¼ �n2ðt; yÞdt2 þ aðt; yÞ2�i;jdx
idxj þ dy2 (14)

for the Einstein frame metric [23] since this metric is useful
to study the cosmological development of the universe.

1. Dark radiation (C)

In terms of this metric, the following equation is ob-
tained from the Einstein equation of tt and yy components
of (12) [23,24],�

_a

na

�
2 þ k

a2
¼ ��

4
þ

�
a0

a

�
2 þ C

a4
; (15)

where _a ¼ @a=@t and a0 ¼ @a=@y. The parameter k is set
as �1 or 0 according to the situation and the sign of 4D
cosmological constant. The integration constant C must
be a constant with respect to both y and t in order to
satisfy other components of Einstein equations. The term
proportional to C is called as ‘‘dark radiation’’ since it is
proportional to a�4. From holographic viewpoint, it has
been cleared that this term corresponds to the energy
density of the thermal Yang Mills fields with a definite
temperature [17,25].

2. Holographic Friedmann equation

Further, by setting the following ansatz [23,24],

nðt; yÞ ¼ _aðt; yÞ
_a0ðtÞ ; a ¼ a0ðtÞAðt; yÞ; (16)

the Eqs. (15) and (16) are rewritten as,�
_a0
a0

�
2 þ k

a20
¼ ��

4
A2 þ ðA0Þ2 þ C

a40A
2
; (17)

ds2E ¼ A2ðy; tÞð� �n2ðt; yÞdt2 þ a0ðtÞ2�i;jdx
idxjÞ þ dy2;

�n ¼ n

A
: (18)

At this stage, there are three unknown functions, a0ðtÞ,
Aðy; tÞ and nðy; tÞ, in spite of the two equations, (16) and
(17), to be solved. Then one of the three should be given by
some reasonable assumption. Our strategy is to find Aðy; tÞ
and nðy; tÞ by solving (16) and (17) with a0ðtÞ which is
given as a solution of the equation on the boundary.
Here the boundary of the present bulk is represented by

the following metric

ds2ð4Þ ¼ �dt2 þ a0ðtÞ2�ijdx
idxj; (19)

since our solution behaves as �n! 1 and Aðy; tÞ ! 1 for
y! 1 as shown in the next section. Then the 4D
Friedmann equation appeared in the standard cosmology
is expressed as�

_a0
a0

�
2þ k

a20
¼�4

3
þ�2

4

3

�
�m

a30
þ�r

a40
þ �u

a3ð1þuÞ0

�
¼�ðtÞ; (20)

where �4 (�4) denotes the 4D gravitational constant
(cosmological constant). �m and �r denote the energy
density of the nonrelativistic matter and the radiation of
4D theory respectively. The �ðtÞ in Eq. (20) represents the
same one of (3) given above although some terms are
written explicitly in Eq. (20). It is important to be able to
solve the bulk Eq. (17) by relating its left-hand side to the
Friedmann equation on the boundary at any y.
In this way, Aðy; tÞ and nðy; tÞ are solved by using the

time dependent function �ðtÞ. We notice here that, in
solving for Aðy; tÞ and nðy; tÞ, it is not necessary to know
the explicit form of �ðtÞ. As for the explicit form of a0ðtÞ,
we discuss it in the final stage by solving Eq. (20) for a0ðtÞ.

4The five dimensional M5 part of the solution is obtained by
solving the following reduced Einstein frame 5d action,

S ¼ 1

2�2
5

Z
d5x

ffiffiffiffiffiffiffi�gp �
Rþ 3�� 1

2
ð@�Þ2 þ 1

2
e2�ð@�Þ2

�
; (7)

which is written in the string frame and taking 	0 ¼ gs ¼ 1 and
the opposite sign of the kinetic term of � is due to the fact that
the Euclidean version is considered here [20].
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Through this procedure, we can see how the parameters
of 4D Friedmann equation (20) control the 4D dual theory,
the SYM theory. Further we notice following points;
In a sense, Eq. (17) is similar to Eq. (20) given at the
boundary. So we could interpret Eq. (17) as the Friedmann
equation given at the slice of finite y off the boundary. In
this sense, we call Eq. (17) here as the ’’holographic
Friedman equation’’ by combining it with the 4D
Friedmann equation (20).

Here we must be careful about the relation between the
radiation density �r and the dark radiation C. By compar-
ing Eqs. (20) and (17), one might expect that the dark
radiation term may approach to the radiation term of (20)
in the boundary limit as

C

A2
!
y!1

�2
4

3
�r: (21)

However, this correspondence is misleading since 1=A2!0
at the boundary. Then C

A2 disappears there. This fact is

consistent with the fact that the dark radiation belongs to
the SYM theory, which is dual to the bulk gravity. So it
should decouple from the gravity on the boundary, and then
it doesn’t appear in the 4D Freedmann equation of the
boundary. This is assured from the fact that the effective
gravitational coupling constant is expressed by 1=A2 which
vanishes at the boundary. So �r in Eq. (20) has nothing to
dowith the dark radiation. The radiation �r in 4D boundary
is therefore independent of the dual SYM theory. However,
we must notice that both radiations give dynamical effects
on the holographic gauge theory.

3. Solution

Finally, in this section, we give the solution of A and
n by using �ðtÞ. They are obtained by replacing the
coordinate from y to r defined as r=R ¼ e�y. Then, from
(16)–(18), we have

ds210 ¼
r2

R2
ð� �n2dt2 þ �A2a20ðtÞ�2ðxÞðdxiÞ2Þ

þ R2

r2
dr2 þ R2d�2

5: (22)

�A ¼
��

1� �

4�2

�
R

r

�
2
�
2 þ ~c0

�
R

r

�
4
�
1=2

; (23)

�n ¼
�
1� �

4�2 ðRrÞ2
��
1� �þa0

_a0
_�

4�2 ðRrÞ2
�
� ~c0ðRrÞ4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� �
4�2 ðRrÞ2Þ2 þ ~c0ðRrÞ4

q ; (24)

where

~c0 ¼ C=ð4�2a40Þ: (25)

We can see that the boundary geometry coincides with
(20) since �A and �n approach to one for r! 1ðy! 1Þ.

Then (20) can be used as a boundary condition, and it
determines a0ðtÞ.

III. ENERGY MOMENTUM hT��i
At first, we study 4D stress tensor from holographic

approach. In order to give it, we rewrite the 5d part of
the metric (22). According to the Fefferman-Graham
framework [26–28], it is given as

ds2ð5Þ ¼
r2

R2
ð� �n2dt2 þ �A2a20ðtÞ�2ðxÞðdxiÞ2Þ þ R2

r2
dr2

¼ 1

�
ĝ�
dx

�dx
 þ d�2

4�2

¼ 1

�
ð� �n2dt2 þ �A2a20ðtÞ�2ðxÞðdxiÞ2Þ þ d�2

4�2
; (26)

where � ¼ 1=r2, R ¼ 1 and

�A ¼
��
1� �

4�2

�
�

R2

��
2 þ ~c0

�
�

R2

�
2
�
1=2

; (27)

�n ¼
�
1� �

4�2 ð �R2Þ
��
1� �þ _�a0= _a0

4�2 ð �
R2Þ

�
� ~c0ð �R2Þ2

�A
: (28)

In the present case, ĝ�
 is expanded as [27]

g�
¼ gð0Þ�
þgð2Þ�
�

þ�2ðgð4Þ�
þh1ð4Þ�
 log�þh2ð4Þ�
ðlog�Þ2Þþ �� � ;
(29)

where

gð0Þ�
 ¼ ðgð0Þ00; gð0ÞijÞ ¼ ð�1; a0ðtÞ2�i;jÞ; (30)

and

gð2Þ�
 ¼ �

2

�
1þ

a0
_a0

_�

�
;�gð0ÞijÞ

�
; (31)

gð4Þ�
 ¼ ~c0
R4
ð3; gð0ÞijÞ þ �2

16

�
�ð�þ

a0
_a0

_�Þ2
�2

; gð0Þij
�
: (32)

Then by using the following formula [26],

hT�
i ¼ 4R3

16�GN

�
gð4Þ�
 � 1

8
gð0Þ�
ððTrgð2ÞÞ2 � Trg2ð2ÞÞ

� 1

2
ðg2ð2ÞÞ�
 þ 1

4
gð2Þ�
Trgð2Þ

�
; (33)

we find

hT�
i ¼ 4R3

16�Gð5ÞN

�
~c0
R4
ð3; gð0ÞijÞ þ 3�2

16
ð1; �gð0ÞijÞ

�
; (34)

KAZUO GHOROKU AND AKIHIRO NAKAMURA PHYSICAL REVIEW D 87, 063507 (2013)

063507-4



� ¼ �
�
1þ 2 a0

_a0
_�

3�

�
: (35)

Then we have

hT�
i ¼ h ~Tð0Þ�
i þ 4R3

16�Gð5ÞN

�
3�2

16
ð1; �gð0ÞijÞ

�
: (36)

h ~Tð0Þ�
i ¼ 4R3

16�Gð5ÞN

~c0
R4
ð3; gð0ÞijÞ; (37)

where h ~Tð0Þ�
i is the stress tensor corresponding to
the thermal YM fields given in (3) for the case of � ¼ 0.
The second term comes from the loop corrections of the
YM fields in the curved space-time. While the first term
does not contribute to the conformal anomaly, namely

h ~Tð0Þ�� i ¼ 0; (38)

the second term leads to the anomaly as follows

hT�
� i ¼ �

3�2ð1þ _�
2�

a0
_a0
Þ

8�2
N2; (39)

where we used Gð5ÞN ¼ 8�3	04gs=R5 and R4 ¼ 4�N	02gs.
We can see that the anomaly (39) is the same one

obtained from the loop corrections in the N ¼ 4 SYM
theory for a curved space-time, which is given by (19) as
the boundary space-time here. In this background, the
curvature squared terms, which are responsible to the
anomaly, are given as

R�
�
R�
�
 ¼ 12

�
2�2 þ _��

a0
_a0
þ

�
_�
a0
2 _a0

�
2
�
; (40)

R�
R�
 ¼ 12

�
3�2 þ 3 _��

a0
2 _a0
þ

�
_�
a0
2 _a0

�
2
�
; (41)

1

3
R2 ¼ 12

�
4�2 þ 4 _��

a0
2 _a0
þ

�
_�
a0
2 _a0

�
2
�
: (42)

In general, the conformal anomaly for ns scalars, nf Dirac

fermions and nv vector fields is given as [29,30]

hT�
� i ¼ �ns þ 11nf þ 62nv

90�2
Eð4Þ �

ns þ 6nf þ 12nv

30�2
Ið4Þ;

(43)

Eð4Þ ¼ 1

64
ðR�
�
R�
�
 � 4R�
R�
 þ R2Þ; (44)

Ið4Þ ¼ � 1

64

�
R�
�
R�
�
 � 2R�
R�
 þ 1

3
R2

�
; (45)

wherehR has been abbreviated since it does not contribute
here. For the N ¼ 4 SYM theory, the numbers of the
fields are given by N2 � 1 times the number of each fields,

which are equivalent to ns ¼ 6, nf ¼ 2 and nv ¼ 1. Then

we find for large N,

hT�
� i ¼ N2

32�2

�
R�
R�
 � 1

3
R2

�
¼ � 3�2ð1þ _�

2�
a0
_a0
Þ

8�2
N2:

(46)

This result (46) is precisely equivalent to the above
holographic one (39).
Thus we could show that the holographic analysis could

provide correct results for the energy momentum tensor
even if the metric is time dependent. Then we can say that
any matter field, which decouples to the N ¼ 4 SYM
theory, could give an influence to theN ¼ 4 SYM theory
through the curvatures.

A. Continuity equation of SYM fields

Before seeing the other effects, we see another important
fact. The energy density of the SYM theory is composed
of two kind of contents, the one of the thermal SYM fields
and the one of the vacuum energy (�2-dependent terms)
obtained as the quantum corrections. This density obeys
the following continuity equation,

_�þ 3Hð�þ pÞ ¼ 0; (47)

where �, p and H represent the energy density, pressure
and the Hubble constant. Here H ¼ _a0=a0. In the present
case, we obtain them from (36) as

� ¼ 3	

�
~c0
R4
þ �2

16

�
;

p ¼ 	

�
~c0
R4
� 3

�2

16

�
1þ 2 _�

3�

a0
_a0

��
;

	 ¼ 4R3

16�Gð5ÞN
:

(48)

It is easy to see that the continuity equation (47) is satisfied
by the above � and p. This is satisfied even if � ¼ 0,
therefore the � dependent part also satisfies without the
thermal part. This fact implies that the energy momentum
is not transferred between the thermal part (SYM part) and
the �ðtÞ dependent part (matter part). This is consistent with
the fact that the SYM theory studied here decouples to the
gravity and also to the matter in the �ðtÞ. In other words, the
various kinds of matter are responsible for determining aðtÞ
through the 4D Friedmann equation, however the SYM
fields aren’t. So the role of the matter is to reform the
space-time background where the SYM theory lives. As a
result, this reformed background changes the dynamical
properties of the SYM theory as shown below.

IV. DYNAMICAL ROLE OF DECOUPLEDMATTER

Here we study the dynamical effect of the matter on the
SYM theory. Many kinds of matter are introduced through
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the time-dependent cosmological term �ðtÞ as in (20).
In order to see its pure effect, we set ~c0 ¼ 0. Then the
metric is written as

ds210 ¼
r2

R2
ð� �n2dt2 þ �A2a20ðtÞ�2ðxÞðdxiÞ2Þ

þ R2

r2
dr2 þ R2d�2

5: (49)

�A ¼
�
1� �

4�2

�
R

r

�
2
�
; (50)

�n ¼
�
1� �þ a0

_a0
_�

4�2

�
R

r

�
2
�
: (51)

The �n is simplified when we restrict to one kind of
matter field (�m) in � whose energy density behaves as
� / 1=a0ðtÞnþ1. In this case, �n is written as follows

�n ¼
�
1þ n

�m

4�2

�
R

r

�
2
�
: (52)

We notice here the following point that, in �n for n > 0 and
positive �m, the horizon in �n disappears. On the other hand,
it remains in �A.

A. Wilson-loop and quark confinement

The quarks are introduced through probe D7 branes. By
presuming D7 brane embedding, we can consider the
Wilson-Loop whose boundary is on the D7 brane. In order
to study the potential between quark and anti-quark, we
consider the U-shaped (in r� x space) string whose
two end-points are on D7 brane as studied in Ref. [15].
Supposing the string action whose world volume is set in
ðt; xÞ plane,5 the energy E of this state is obtained as a
function of the distance (L) between the quark and anti-
quark according to Ref. [15].

Taking the gauge as X0 ¼ t ¼ � and X1 ¼ x1 ¼ 
 for
the coordinates ð�; 
Þ of string world-volume, the Nambu-
Goto Lagrangian in the present background (22) becomes

LNG ¼ � 1

2�	0
Z

d
 �nðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ

�
r

R

�
4ð �AðrÞa0ðtÞ�ðxÞÞ2

s
;

(53)

where we notice r0 ¼ @r=@x ¼ @r=@
. Then the energy of
this configuration is rewritten to more convenient form
according to Gubser [31] as

E ¼ �LNG ¼ 1

2�	0
Z

d~
ns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
R2

r2 �A
@~
r

�
2

s
; (54)

~
 ¼ a0ðtÞ
Z

d
�ð
Þ ¼ a0ðtÞ
Z

d

1

1� 
2=4
; (55)

ns ¼
�
r

R

�
2
�A �n : (56)

In the present case, we use the proper coordinate ~
 instead
of the comoving coordinate 
 to measure the distance
between the quark and anti-quark.
It is the criterion of the confinement that ns has a finite

minimum value at some appropriate rð¼ r�Þ. Actually, in
such a case, E is approximated as [15]

E� nsðr�Þ
2�	0

L; (57)

where

L ¼ 2
Z ~
max

~
min

d~
; (58)

and ~
min (~
max ) is the value at rmin (rmin ) of the string
configuration [16]. The tension of the linear potential
between the quark and anti-quark is therefore given as

�q �q ¼ nsðr�Þ
2�	0

: (59)

1. Two groups of the matter

In the case of the matter �m considered above, ns is
obtained by using Eqs. (50) and (52) as follows

�A ¼ 1� r2m
r2

; �n ¼ 1þ n
r2m
r2

; (60)

ns ¼
�
r

R

�
2
�
1þ n

r2m
r2

��
1� r2m

r2

�
; (61)

where r2m ¼ �mR
4=4. When this matter is dominant, we

find the necessary condition for the confinement is given by

ðAÞ �m < 0; and n < 0: (62)

In this case, we obtain

r� ¼
�
�n

�
�mR

4

4

�
2
�
1=4

; (63)

nsðr�Þ ¼ n�mR
2

4

�
1þ 1ffiffiffiffiffiffijnjp �

2
: (64)

On the other hand, for the case,

ðBÞ Other than ðAÞ; (65)

there is no finite minimum of ns. Therefore, the YM theory
is in the deconfinement phase in this case. As a result, the
matter is separated to two groups (A) and (B) as given
above. The matter of group (A) ((B)) works to confine
(deconfine) quarks.

5Here x denotes one of the three coordinate xi, and we take x1

in the present case.
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The above form of (61) is compared to the cases of the
positive (dS4) and negative (AdS4) constant �ð¼ �4=3Þ, in
which the corresponding factors are given as follows

ndS4s ¼
�
r

R

�
2
�
1� r20

r2

�
2
: (66)

and

nAdS4s ¼
�
r

R

�
2
�
1þ r20

r2

�
2
; (67)

for each case. Here r20 ¼ �0R
4=4, where �0 > 0. We know

that the area law of the Wilson loop for the quark and anti-

quark is obtained for the case of nAdS4s , then we find the
confinement. This belongs to the group (A) with n ¼ �1.
On the other hand, we find the deconfinement phase for

ndS4s since it has zero valued minimum at r ¼ r0. In fact,
this belongs to the group (B) with n ¼ �1.

2. A mixed example

It is possible to consider the case where several kinds of
matter with different n and the sign of �m are coexisting.
As a simple example, we consider here the combination of
4D negative cosmological constant (n ¼ �1) (group (A))
and a matter (n � �1) of group (B), �m > 0. In this case,
the combined � is given as

� ¼ ��0 þ �m; (68)

where �0 > 0 and �m / 1=anþ10 ðtÞ. Then ns is written as

nð2Þs ¼
�
r

R

�
2
�
1þ �0 þ n�m

4�2r2

��
1þ �0 � �m

4�2r2

�
: (69)

In this case, the factor nð2Þs has a finite minimum at r ¼ r�,
which is given as

nð2Þs ðr�Þ ¼ r2c þ nr2m
R2

0@1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c � r2m
r2c þ nr2m

s 1A2

; (70)

r� ¼ ððr2c þ nr2mÞðr2c � r2mÞÞ1=4; (71)

where

r2c ¼ �0

4�4
; r2m ¼ �m

4�4
: (72)

Here (70) is obtained for r2c > r2m. On the other hand, for

r2c < r2m, the minimum of nð2Þs is zero which is obtained at
r2 ¼ r2m � r2c. Then the quark deconfining phase is realized
in this case.
In order to understand well the results given above,

the E� L relation and the tension �q �q are examined

from numerical estimation in the followings. Since the
Lagrangian in (53) does not explicitly depend on the
coordinate 
 ¼ x, we find the following relation,

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr=RÞ4 �A2ðrÞ þ ðr0Þ2p �
r

R

�
4
�n �A2ðrÞ ¼ H; (73)

where H denotes a constant of motion. And we notice that
r0 ¼ @~
r. We can fixH at any point where we like, so we fix
it at r ¼ rmin . Then, taking asH ¼ ðrRÞ2 �nðrÞ �AðrÞjrmin

, we get

L ¼ 2R2
Z rmax

rmin

dr
1

r2 �AðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 �nðrÞ2 �AðrÞ2=ðr4min �nðrmin Þ2 �Aðrmin Þ2Þ � 1

q ;

E ¼ 1

�	0
Z rmax

rmin

dr
�nðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r4min �nðrmin Þ2 �Aðrmin Þ2=ðr4 �nðrÞ2 �AðrÞ2Þ
q :

(74)

Figure 1 shows the dependence of the energy E on the

distance L for �� �0 ¼ �0:5< 0 (curve A) and ��
�0 ¼ 1:5> 0 (curve B). In the former case, the matter

energy density � is small compared to the absolute value

of the negative cosmological constant �0, then we find the

linear potential at large L as expected. On the other hand,

in the case of � > �0, we find a typical screening behavior

as seen in the finite temperature deconfinement phase.
From this fact, we could say that the matter of group

(B) screens the long range force which is needed to

confine quarks and it comes from group (A) matter.

Then the effect of the 4D matter of group (B) on the

SYM theory is similar to the one given by the thermal

matter in the SYM theory.

B. Chiral condensate

In the next section, we study the effects of the decoupled
matter on the chiral condensate. We introduce D7 brane to
study the chiral condensate of the quark fields. The
D7-brane action is written by the Dirac-Born-Infeld
(DBI) and the Chern-Simons (CS) terms as follows,

SD8 ¼ �T8

Z
d8�e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det ðgab þ 2�	0FabÞ

q
þ T5

Z X
i

ðexp 2�	0Fð2Þ ^ cða1...aiÞÞ0...5;

gab � @aX
�@bX


G�
;

ca1...ai � @a1X
�1 . . . @aiX

�iC�1...�i
;

(75)
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where T5 ¼ 1=ðgsð2�Þ5ls6Þ is the brane tension. The DBI
action involves the induced metric gab and the Uð1Þ world
volume field strength Fð2Þ ¼ dAð1Þ.

The D7 branes are embedded in the background, which
is given by (22)–(25), by rewriting the extra six dimen-
sional of (22) as follows

R2

r2
dr2 þ R2d�2

5 ¼
R2

r2

�
d�2 þ �2d�2

3 þ
X9
i¼8

dXi2

�
; (76)

where the new coordinate � is introduced instead of r with
the relation

r2 ¼ �2 þ ðX8Þ2 þ ðX9Þ2: (77)

Thus, the induced metric of the D7 brane is obtained as

ds28 ¼
r2

R2
ð� �n2dt2 þ �A2a20ðtÞ�2ðxÞðdxiÞ2Þ

þ R2

r2
ðð1þ w02Þd�2 þ �2d�2

3Þ; (78)

where the profile of the D7 brane is taken as ðX8; X9Þ ¼
ðwð�Þ; 0Þ and w0 ¼ @�w, then

r2 ¼ �2 þ w2: (79)

In the present case, there is no R-R filed, so the action is
given only by the one of DBI as

SD8 ¼ �T8�3

Z
d4xa30ðtÞ�3ðxÞ

Z
d��3 �A3 �n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w02ð�Þ

q
;

(80)

where �3 denotes the volume of S3 of the D7’s world
volume.
From this action, the equation of motion for w is

obtained as

w00 þ
�
3

�
þ �þ ww0

r
@rðlog ð �A3 �nÞÞ

�
w0ð1þ w02Þ

� w

r
ð1þ w02Þ2@rðlog ð �A3 �nÞÞ ¼ 0: (81)

The constant w is not the solution of this equation, so the
supersymmetry is broken.

1. For group (A) matter

For the matter of group (A), the numerical solutions of
(81) for wð�Þ are shown in Fig. 3. In general, in this case,

we find finite chiral condensate h ���i ¼ c for anymq since

the curves decrease from the above with increasing �
according to the following asymptotic form

w ¼ mq þ c

�2
þ � � � ; (82)

at large � with c > 0. We can observe spontaneous chiral
symmetry breaking from the third curve shown in Fig. 2. It
shows the mass generation of a massless quark due to the

chiral condensate h ���i.
As a result, we could say that the spontaneous mass

generation of massless quarks is realized due to the matter
of group (A) in the 4D space-time. Then the matter of
group (A) contributes to both confinement and chiral sym-
metry breaking for the SYM theory. The situation is similar
to the case of AdS4.

10 20 30 40

0.5

1.0

1.5

2.0

w

FIG. 2 (color online). An example of group (A) matter. Plots of
wð�Þ vs � for � ¼ �2, � ¼ 1, n ¼ �0:5. The curves are given
for wð0Þ ¼ 1:5, 1.1, 0.98 from the top to the bottom.

A

B

0.5 1.0 1.5 2.0 2.5 3.0
L

0.5

1.0

1.5

2.0

2.5

3.0

E

FIG. 1 (color online). Plots of E vs L for (A) � ¼ �0 � 0:5 and
(B) � ¼ �0 þ 1:5, where n ¼ 10, �0 ¼ 1:0 and � ¼ 1=R ¼ 1.
Further, 	0 ¼ 1. E increases linearly with L at large L for the
the case of (A), �� �0 < 0. This behavior is obtained due
to negative 4D cosmological constant ��0. The case of (B),
�� �0 > 0, shows the case of the deconfinement phase due to
large matter energy density �.
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2. For group (B) matter

For the matter of group (B), they are separated further
to the two groups by the behavior near � ¼ 0, which is
given as

w ¼ w0 þ w2�
2 þ � � � ; (83)

for w0 > rm.
6 As shown below, we find two cases i)

positive and ii) negative w2, the sign of the coefficient
w2. We notice that only the case of negative w2 appears
for group (A) matter.

3. Behavior of w near � ¼ 0

The behavior near small � is seen as follows. By
substituting this into (81) and using (60), we find

w2 ¼ r2mð4nr2m þ ð3� nÞw2
0Þ

4w0ðw2
0 � r2mÞðw2

0 þ nr2mÞ
: (84)

Then we find w2 > 0 for the following two cases,

w0 < 2rm; n > 0 (85)

and

w0 > 2rm; n <
3w2

0

w2
0 � 4r2m

: (86)

On the other hand, for the following third case,

w0 > 2rm; n >
3w2

0

w2
0 � 4r2m

; (87)

we find w2 < 0.

In the latter case (87), we could expect finite chiral
condensate as in the case of the matter of group (A). In
order to see this point we need numerical analysis since it is
difficult to obtain the analytic solution which describe
wð�Þ for all region of �.
For n ¼ 3 and n ¼ 4 (non-relativistic matter

and radiation).—For nþ 1 ¼ 3 (for �m or non-relativistic
matter) and 4 (for �r or radiation), it seems to be impos-
sible to find the spontaneous mass generation even if the
situation is set as w2 < 0. This is assured from the results
shown in Fig. 3, where the two cases of nþ 1 ¼ 3 and 4
are shown for both rm < w0 < 2rm and 2rm < w0 by the
upper red curves in each case. The behavior of these
solutions of wð�Þ shows the similar one of the high tem-
perature or the negative constant �0 case. In both cases, the
SYM theory is in the deconfinement and chiral symmetric
phase. In the previous section, we have shown that the role
of the group (B) matter is similar to the one of the high
temperature SYM in the deconfinement phase. In this
sense, the results for the matter of nþ 1 ¼ 3 and 4 is
consistent with the results of the previous section.
Large n matter.—Next, we consider the matter given by

�u=a
3ð1þuÞ
0 ¼ �u=a

nþ1
0 with large n from the viewpoint of

theoretical interest. Astonishingly, as shown in Fig. 3, the
behavior of the solutions for very large n show the asymp-
totic form given by Eq. (82) with positive chiral conden-
sate, c. So we summarize the analysis for large n as
follows;
(i) We could find the solution with positive chiral

condensate, c, for any value of w0 for enough
large u.

(ii) The solution withmq ¼ 0 and c > 0 could be found

at appropriate large value of n for any matter of
group (B). Actually, we could show such solutions
at about nð�70Þ for both cases of w2 < 0 and
w2 > 0 as shown in Fig. 3.

We give a comment on this matter of large u (or n).
Consider a model for this matter in terms of a scalar field�

10 20 30 40
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1.5

2.0

w
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1.5

2.0

w

FIG. 3 (color online). For the group (B) matter. Plots of wð�Þ vs � for � ¼ 2, � ¼ 1. The curves are given for n ¼ 2, 3, 50, 60, 70
from the top to the bottom. The left (right) figure for rm < wð0Þ ¼ 0:71< 2rm (wð0Þ ¼ 1:50< 2rm). Each curves of the left and right
figures have common behavior near � ¼ 0.

6In the case of w0 < rm, the value of � is restricted as � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2m � w2

0

q
since the metric �A has zero point at r ¼ rm. �n also has

zero point at different value of r, and it is larger than rm for n <
�1 and �m > 0. However, we do not consider this case here
since it does not produce new things.
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with a self-interacting potential which is given by Vð�Þ. In
this case, the parameter u for this scalar is given as,

u ¼
1
2
_�2 � Vð�Þ

1
2
_�2 þ Vð�Þ ; (88)

where�ðtÞ is assumed to be solved for an appropriate form
of Vð�Þ. The present purpose is not to study this model in
detail but to point out the possibility of large u case. This
may be found when V becomes negative at some time-
interval of varying�ðtÞ. It would be an interesting problem
how and when this interval would appear in the universe.
However we will discuss this point in other article where
cosmological problem is studied at the same time.

V. D5 BRANES AND BARYON

Here we show the stability of the baryon vertex through
the analysis of the D5 brane action which corresponds to
the baryon vertex, which combines theNc quarks to make a
color singlet.

First, we briefly review the model based on type IIB
superstring theory [32–36]. In the type IIB model, the
vertex is described by the D5 brane which wraps S5 of
the 10D manifold M5 � S5. In this case, in the bulk, there
exists the following form of self-dual Ramond-Ramond
field strength

Gð5Þ � dCð4Þ ¼ 4

R
ð�S5 þ ��S5Þ (89)

�S5 ¼ R5volðS5Þd�1 ^ � � � ^ d�5; (90)

where volðS5Þ�sin4�1volðS4Þ�sin4�1sin
3�2sin

2�3sin�4,
and �S5 denotes the volume form of S5 part. The flux
from the stacked D3 branes flows into the D5 brane as
Uð1Þ field which is living in the D5 brane.

The effective action of D5 brane is given by using the
Born-Infeld and Chern-Simons term as follows

SD5 ¼ �T5

Z
d6�e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det ðgab þ 2�	0FabÞ

q
þ T5

Z
ð2�	0Fð2Þ ^ cð4ÞÞ0...5; (91)

gab � @aX
�@bX


G�
;

ca1...a4 � @a1X
�1 . . . @a4X

�4C�1...�4
;

where T5 ¼ 1=ðgsð2�Þ5l6sÞ and Fð2Þ ¼ dAð1Þ, which repre-

sents the Uð1Þ worldvolume field strength. In terms of (the
pullback of) the background five-form field strength Gð5Þ,
the above action can be rewritten as

SD5 ¼ �T5

Z
d6�e��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� det ðgþ FÞ

q
þ T5

Z
Að1Þ ^Gð5Þ:

The embedding of the D5 brane is performed by solving
the rð�Þ, xð�Þ, and Að1Þð�Þ [36]. They are retained as

dynamical fields in the D5 brane action as the function of
� � �1 only. The equation of motion for the gauge field
Að1Þ is written as

@�D ¼ �4sin 4�;

where the dimensionless displacement is defined as the
variation of the action with respect to E ¼ Ft�, namely

D ¼ �~S=�Ft� and ~S ¼ S=T5�4R
4. The solution to this

equation is

D � Dð
; �Þ
¼

�
3

2
ð
�� �Þ þ 3

2
sin � cos�þ sin 3� cos �

	
: (92)

Here, the integration constant 
 is expressed as 0 	 
 ¼
k=Nc 	 1, where k denotes the number of Born-Infeld
strings emerging from one of the pole of the S5.
Next, it is convenient to eliminate the gauge field in

favor of D, then the Legendre transformation is performed
for the original Lagrangian to obtain an energy functional
as [34–36]:

U ¼ N

3�2	0
Z

d� �n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r02 þ ðr=RÞ4x02ð �Aa0�Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffi
V
ð�Þ

q
:

(93)

V
ð�Þ ¼ Dð
; �Þ2 þ sin 8�; (94)

where we used T5�4R
4 ¼ N=ð3�2	0Þ. Then, in this

expression, (93), rð�Þ and xð�Þ are remained, and they
are solved by minimizing U. As a result, the D5 brane
configuration is determined.
For simplicity, here, we restrict to the point like

configuration, namely r and x are constants. In this case,
we have for the matter considered here

U ¼ r �nðrÞU0 ¼ r

�
1þ n

�m

4�2

�
R

r

�
2
�
U0; (95)

where U0 is a constant given as

U0 ¼ N

3�2	0
Z

d�
ffiffiffiffiffiffiffiffiffiffiffiffi
V
ð�Þ

q
: (96)

From (95), we find that U has a minimum at rm ¼ffiffiffiffiffiffiffiffiffi
n�m

p
R2=2. For group (A), this assures the stability of

the baryon vertex.
As for the group (B) matter, we must restrict r as r >ffiffiffiffiffiffiffi
�m

p
R2=2. So we can see the stability for n > 1. This

situation is different from the effect of the thermal Yang-
Mills field which screens the long range confinement
force and destabilize the baryon vertex [37]. It would be
an interesting problem to study the stability for more
complicated case, however, it will be postponed to the
future work here.
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VI. SUMMARYAND DISCUSSIONS

Here, the holographic approach is extended to the SYM
theory in a time-dependent curved space-time. Then the
SYM theory in such a universe, which is represented by
the RW type of metric, is examined by adding the 4D
cosmological constant and the matter which is decoupled
from the SYM field but control the RW metric. In the
holographic approach, the SYM theory decouples also
from the gravity on the boundary. Then, the form of the
RW metric on the boundary is given as a solution of 4D
Friedmann equation, which is obtained from the Einstein
equation on the boundary with the added matter. The
matter therefore determines the scale factor of the RW
metric. This process to solve the 4D Friedmann equation
is performed independently of the SYM theory. In spite of
this fact, the dynamical properties of the SYM theory are
controlled by the added matter through the holographic
dual 5D Einstein equation, which leads to a deformed

AdS5. This background is denoted as gAdS5. Namely, the
effect of the matter added is reflected to the bulk geometrygAdS5, which is deeply related to the 4D Friedmann equa-
tion as a result.

The energy density of various kinds of matter is intro-

duced in the form of �u=a
3ðuþ1Þ
0 ðtÞ / 1=anþ10 ðtÞ in the 4D

Friedmann equation. For example, the non-relativistic
matter and the radiation are correspond to the one of
u ¼ 0 and u ¼ 1=3 respectively. The effects of these
ordinary kinds of matter are similar to the case of the
positive cosmological constant, namely we find the similar
dynamical properties to the one found for the SYM theory

in the dS4. In these cases, therefore, the confinement force
is screened above an appropriate distance, and furthermore
the chiral symmetry is restored.
On the other hand, we find confinement and chiral

symmetry breaking for �u < 0 and n < 0 (group(A)), and
the negative cosmological constant belongs to this group.
Then, we can separate the matter to two groups (A) and
others (group (B)). As for the group (B), they are further
separated to ordinary kinds of matter and exotic one. The
ordinary kinds of matter are the one of u ¼ 0 and u ¼ 1=3
mentioned above, and the positive cosmological constant.
They lead to deconfinement and chiral symmetric phase of
the SYM theory. The one called as exotic matter has very
large u (or large n) compared to the ordinary kinds of
matter. As an effect of this matter, the chiral symmetry of
the theory is spontaneously broken.
Furthermore we have examined the effect of these

kinds of matter on the D5 brane as the baryon vertex,
which is in general unstable in the case of deconfining
phase. However, in the case of the matter of group (B) with
any n � 1, we find that the D5 brane is stable.
The results obtained here are important when we study

the developing universe since the matter belonging to the
SYM theory is the important ingredient of the universe,
and the SYM is surrounded by other kind of matter which
control the dynamical properties of the SYM theory.
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