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We derive a redshift drift formula for the spherically symmetric inhomogeneous pressure Stephani

universes which are complementary to the spherically symmetric inhomogeneous density Lemaı̂tre-

Tolman-Bondi models. We show that there is a clear difference between redshift drift predictions for

these two models as well as between the Stephani models and the standard�CDM Friedmann models. The

Stephani models have positive drift values at small redshift and behave qualitatively (but not quantitatively)

as the�CDMmodels at large redshift, while the drift for Lemaı̂tre-Tolman-Bondi models is always negative.

This prediction may perhaps be tested in future telescopes such as European Extremely Large Telescope

(with its spectrograph Cosmic Dynamics Explorer), the Thirty Meter Telescope, the Giant Magellan

Telescope, and especially, in gravitational wave interferometers Deci-Hertz Interferometer Gravitational

Wave Observatory and Big Bang Observatory [K. Yagi and N. Seto, Phys. Rev. D 83, 044011 (2011).].
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I. INTRODUCTION

In the context of the dark energy problem there has been
more interest in the non-Friedmannian models of the
Universe which could explain the acceleration only due
to inhomogeneity [1,2]. One of the strongest claims was
that we were living in a spherically symmetric void of
density described by the Lemaı̂tre-Tolman-Bondi (LTB)
dust spheres model [3]. However, there are a variety of
inhomogeneous models (for a review see e.g., Ref. [4])
which have the advantage that they are exact solutions of
the Einstein field equations and not the perturbations of the
isotropic and homogeneous Friedmann models. One of the
reasons to investigate the simplest Friedmann models is
their mathematical feasibility supported by the paradigm
of the Copernican principle which says that we do not
live at the center of the Universe. However, observations
are practically made from just one point in the Universe
(‘‘here and now’’) and extend only onto the unique past
light cone of the observer on the Earth. It is clear that even
the cosmic microwave background is observed from such a
point. Apparently, its observations prove isotropy of the
Universe (isotropy with respect to observation point—
the center of symmetry) but not necessarily homogeneity
(isotropy with respect to any point in the Universe) [5].
Then, the question is whether we should first start
with model-independent observations of the past light
cone and then make conclusions related to modeling of
the Universe (cf., observational cosmology program of
Ref. [6]). In other words, homogeneity needs a check.
Suppose that we have an inhomogeneous model of the
Universe with the same number of parameters as a homo-
geneous dark energy model and they both fit observations

very well. How could we differentiate between these
two models?
The simplest inhomogeneous cosmological models are

the spherically symmetric ones and these are complemen-
tary to each other: the inhomogeneous density %ðt; rÞ
(dust shells) LTB models and the inhomogeneous pressure
pðt; rÞ (gradient of pressure shells) Stephani models.
Apparently, due to a conservative approach related to the
matter content (dust) most of the cosmologists investigate
the former, and only a few investigate the latter. In view of
large expansion of investigations related to LTB models as
nearly the only example of an inhomogeneous cosmology,
we think that it is useful to present some geometrical and
physical properties of the complementary Stephani mod-
els. There are just a few papers about these models in
comparison to what has been written about LTB. That is
why in this paper we would like to investigate such a
complement of LTB models. One of the benefits of
Stephani cosmology is that it possesses a totally spacetime
inhomogeneous generalization [7,8] which does not violate
the cosmological principle. In fact, we consider our
investigations as the first step towards developing more
models of such a type—i.e., the universes which describe
real inhomogeneity of space (for a review see e.g.,
Ref. [9])—not only those which possess a rather unrealistic
center of the Universe which is against the Copernican
principle. Actually, the Stephani universes were the first
inhomogeneous models ever compared with observational
data from supernovae [10] and proved that they could be
fitted to it. Despite the LTB models being theoretically
explored much earlier, only later were they tested obser-
vationally [11].
Our paper is organized as follows. In Sec. II we present

some basic properties of inhomogeneous pressure Stephani
models, also in comparison to complementary LTB mod-
els. In Sec. III we discuss some exact Stephani models
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useful for further discussion. Section IV contains the main
result which is the redshift drift in these pressure-gradient
cosmologies. In Sec. V we give conclusions.

II. INHOMOGENEOUS PRESSURE
STEPHANI UNIVERSE

The inhomogeneous pressure Stephani model is the
only spherically symmetric solution of Einstein equations
for a perfect-fluid energy-momentum tensor Tab ¼
ð%þ pÞuaub þ pgab (p is the pressure, gab is the metric
tensor) which is conformally flat (Weyl tensor vanishes)
and embeddable in a five-dimensional flat space [7,8].
A general model has no spacetime symmetries at all, but
its three-dimensional hyperspaces of constant time are
maximally symmetric like in the Friedmann universe.
In order to be consistent with an LTB, here we consider
only a spherically symmetric subcase of the Stephani
model which reads as (one uses a Friedmann-like time
coordinate [8])

ds2 ¼ � a2

_a2

"ðVaÞ�
ðVaÞ

#
2

dt2 þ a2

V2
ðdr2 þ r2d�2Þ; (2.1)

where

Vðt; rÞ ¼ 1þ 1

4
kðtÞr2; (2.2)

and ð. . .Þ� � @=@t. The function aðtÞ plays the role of
a generalized scale factor, kðtÞ has the meaning of a
time-dependent ‘‘curvature index,’’ and r is the radial
coordinate. Kinematically, these models are characterized
by the nonvanishing expansion scalar � and the accelera-
tion vector _ua.

The energy density and pressure are given, respectively,
by

%ðtÞ ¼ 3

8�G

�
_a2ðtÞ
a2ðtÞ þ

kðtÞ
a2ðtÞ

�
; (2.3)

pðt;rÞ¼
2
64�1þ1

3

_%ðtÞ
%ðtÞ

h
Vðt;rÞ
aðtÞ

i
h
Vðt;rÞ
aðtÞ

i�
3
75%ðtÞ�weðt;rÞ%ðtÞ; (2.4)

where we have set the velocity of light c ¼ 1, G is the
gravitational constant, and weðt; rÞ is an effective spatially
dependent barotropic index. It is useful that the metric (2.1)
is written in terms of the isotropic coordinate which
is related to a standard Friedmann coordinate �r via
the transformation �r ¼ r=ð1þ ð1=4Þkr2Þ [or its inverse

r ¼ 2�r=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k�r2

p
Þ]. This allows one to make a good

appeal to a general Stephani model with no symmetry at
all, which is formulated in Cartesian coordinates [7].
Because of having a time-dependent curvature index kðtÞ
in Stephani models, the transformation to the isotropic
coordinate is not so convenient as for Friedmann models.

The global topology of Stephani models is S3 � R and they
look like the de Sitter hyperboloid with specific deforma-
tions near the ‘‘neck circle’’ which is the smallest radius
circle of the hyperboloid while taking positive curvature
spatial sections [8]. The local topology of the constant
time hypersurfaces [index kðtÞ] may change in time. In
a standard de Sitter case one cuts the hyperboloid by
either k ¼ 1 (S3 topology), k ¼ 0 (R3 topology) or
k ¼ �1 (H3 topology). Here we have a ‘‘three-in-one’’
case and the Universe may either ‘‘open up’’ to become
negatively curved or ‘‘close down’’ to become positively
curved. In a general Stephani model which has no space-
time symmetry at all, the point reflecting an instantaneous
(‘‘only one hypersurface’’) center of symmetry moves
around a deformed hyperboloid. Similarly as in an LTB
model, there are two antipodal centers of symmetry. In the
Stephani models there exist instantaneous standard big-
bang singularities (a ! 0, % ! 1, p ! 1) as well as
finite density (FD) singularities of pressure which appear
at some particular value of the radial coordinate r [8,12].
FD singularities at first glance resemble sudden future
singularities (SFS) [13] which appear in Friedmann models
with no equation of state to link the energy density and
pressure. However, FD singularities occur as singularities
in spatial coordinates rather than in time, which means that
even at the present moment of the evolution they may exist
somewhere in the Universe. It has been shown [14] that
SFS may appear in inhomogeneous Stephani universes,
independently of the FD singularities. In Stephani models
there is also the spacelike � boundary [12] which divides
each negative curvature kðtÞ< 0 hypersurface onto the two
sheets (the ‘‘far sheet’’ and the ‘‘near sheet’’ [7]). It appears
whenever the function Vðt; rÞ in (2.2) is zero. On a �
boundary the Universe behaves asymptotically like de
Sitter. As one can conclude from (2.3) and (2.4), there is
no global equation of state; rather it changes from shell to
shell, where it is explicit and fixed.
For the sake of comparison we remind that the simplest

Lemaı̂tre-Tolman-Bondi universe is the only spherically
symmetric solution of Einstein equations for pressureless
matter energy-momentum tensor Tab ¼ %uaub (% is the
energy density, ua is the 4-velocity vector) and no
cosmological constant which has a spatially dependent
‘‘curvature index’’ kðrÞ. Models with a nonzero � term
are also possible and can be solved in terms of elliptic
functions in analogy to Friedmann models, though with the
spatially dependent constants of integration [15]. It has to
obey some ‘‘regularity conditions’’ like the existence of a
regular center of symmetry and the orthogonality of hyper-
surfaces of constant time (of topology S3 which implies the
existence of a second center of symmetry) to a 4-velocity
vector (see e.g., Ref. [4]). Another condition, which
in physical terms means the avoidance of the infinite
‘‘spikes’’ of density, is related to an apparent possibility
for ‘‘shell-crossing’’ singularities to exist [16]. However,
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these singularities are of a weak type in the sense of
Tipler and Królak [17] and are like some recently inves-
tigated exotic singularities known as generalized sudden
future singularities [18] (of first and higher pressure de-
rivatives or second and higher mass density derivatives) in
the Friedmann universes with no geodesic incompleteness
[19] (for a classification of weak singularities in Friedmann
cosmology see e.g., Ref. [20]). Kinematically, LTB models
are characterized by the nonvanishing expansion scalar �
and shear tensor �ab. One of the peculiarities is that in
LTB models the big-bang singularity is not necessarily
instantaneous—different points start evolution in different
moments of time.

It should be admitted that the pressureless dust matter
present in LTB models has its firm observational basis.
However, the acceleration of the Universe forces cosmol-
ogists to look for some exotic kinds of matter sources
(dark energy). As we know, this is even the case for the
cosmological constant, since its observed value is much
less than its most common physical interpretation as the
vacuum energy. While dealing with Stephani models, we
assume an unknown fluid varying from hypersurface to
hypersurface equation of state (which is, however, explicit
and fixed on each hypersurface). There have been many
proposals for the dark energy and we still do not knowwhat
it is. Then, our proposal is on the same footing as many
others with possible interpretation as a nongravitational
force in the Universe or a kind of spatially varying cosmo-
logical constant (or spatially dependent vacuum energy).

In fact, in Ref. [21] Tolman-Oppenheimer-Volkoff
equilibrium equation for exotic stars made of phantom
matter [22] or SFS-related matter, such as that related to
a big-brake singularity (a ¼ const, _a ¼ 0 and % ! 0,
p ! 1) was obtained for Friedmann models filled with
the anti-Chaplygin gas fulfilling the equation of state p ¼
A2=% (A ¼ const). In yet another Ref. [23] it was found
that the Chaplygin gas with p ¼ �A2=% may serve as
a source for stable exotic star configurations which
fulfill appropriate Tolman-Oppenheimer-Volkoff equa-
tions. Further, Ref. [24] shows that the generalized
Chaplygin gas model with p ¼ �A2=%� and a local
spherical collapse is a kind of generalization of the LTB
model. It was found that there existed a static spherically
symmetric configuration in which the central pressure at
r ¼ 0 was constant, while on some shell of constant radius
rs it became minus infinity. This is an analogue of the FD
singularity of Stephani models, though without time evo-
lution. Besides, on an arbitrary spherical shell placed be-
tween r ¼ 0 and r ¼ rs, the pressure is lower than at the
center, so that the particles can just be accelerated away
from the center. A similar effect of a pressure gradient is
present in the Stephani model. Of course, for full analogy
one needs expansion scalar� not to vanish, but this surely
shows that an inhomogeneous pressure universe can be
considered as a kind of interior of an exotic star.

III. EXACT INHOMOGENEOUS PRESSURE
COSMOLOGIES

In Refs. [8,25] two exact spherically symmetric
Stephani models were found: model I which fulfills
the condition ðV=aÞ�� ¼ 0 and model II which fulfills the
condition ðk=aÞ� ¼ 0 [this reduces the factor in front of dt2

in the metric (2.1) just to �1=V2]. A subclass of model II
with kðtÞ ¼ �aðtÞ (� ¼ const, with the unit ½�� ¼ Mpc�1)
was found in Ref. [26] and it was assumed that at the center
of symmetry the standard barotropic equation of state
pðtÞ ¼ w%ðtÞ was fulfilled. This assumption gives that

8�G

3
%ðtÞ ¼ A2

a3ðwþ1ÞðtÞ ðA ¼ constÞ (3.1)

and allows one to write a generalized Friedmann
equation as

�
_aðtÞ
aðtÞ

�
2 ¼ A2

a3ðwþ1ÞðtÞ �
�

aðtÞ (3.2)

with the equation of state

pðtÞ ¼
�
wþ �

4
ðwþ 1ÞaðtÞr2

�
%ðtÞ ¼ we%ðtÞ: (3.3)

Since the effective barotropic index is both timely and
spatially dependent here, then it is useful to plot it as
the function of these coordinates and it is given in Fig. 1.
As we can see the effective barotropic index is getting
more and more negative simulating the dark energy for
large distances from the center of symmetry and far
from the big-bang singularity which is at t ¼ 0. Similarly
as in the Friedmann models, one can define the critical
density as %crðtÞ ¼ ð3=8�GÞ½ _aðtÞ=aðtÞ�2, and the density
parameter�ðtÞ ¼ %ðtÞ=%crðtÞ. After taking t ¼ t0, we have
from (3.1) that

FIG. 1. The effective barotropic index (3.3) as the function of
cosmic time in gigayears and the physical distance from the
center of symmetry at r ¼ 0 in gigaparsecs for the spherically
symmetric inhomogeneous pressure Stephani model with
�inh ¼ 1��0 ¼ 0:61 (for this plot we took w ¼ 0, i.e., the
dust matter at the center of symmetry).
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1 ¼ A2

H2
0a

3ðwþ1Þðt0Þ
� �

H2
0a0

� �0 þ�inh; (3.4)

and so

� ¼ a0H
2
0ð�0 � 1Þ< 0: (3.5)

Here we have a two-component universe with the
standard matter described by a barotropic equation of state
and an inhomogeneity-related kind of exotic matter. In
principle, one could consider a multicomponent universe
with many different fluids (radiation, stiff matter, etc.) as
was done in an LTB model in Ref. [27]. However, the point
is that models (3.2) have the property that at the center of
symmetry the barotropic equation of state is admitted, and
so they include dust (as in LTB models) in a natural way
together with an accelerating fluid in one analytic relation.
This is a kind of ‘‘two-in-one’’ fluid with dust dominating
in one regime and inhomogeneity (or pressure gradient)
dominating in the other regime. The same happens in
Friedmann-Robertson-Walker models with SFS—in late
times some exotic fluid dominates while in early times
the standard dust takes over [28]. Also, in a similar way
it is possible to simulate dark matter and dark energy with
one fluid in fðRÞ gravity [29].

The nonvanishing components of the 4-velocity and the
4-acceleration vectors are [25]

u� ¼ � 1

V
; _ur ¼ �V;r

V
: (3.6)

The acceleration scalar is

_u � ð _ua _uaÞ12 ¼ V;r

a
¼ 1

2
�r; (3.7)

and it does not depend on the time coordinate at all.
Bearing in mind that the constant � is negative in our
model [cf., formula (3.5) for �0 < 1], we have that the
highest pressure is at r ¼ 0 (the center of symmetry), while
the lower (negative) pressure regions are outside the center,
so that the particles are accelerated away from the center
which is a similar effect as the effect of the positive
cosmological constant in the �CDM model. However, in
�CDM the pressure is constant everywhere while in the
spherically symmetric Stephani model it depends on the
radial coordinate r. The components of the vector tangent
to a null geodesic are [25]

kt ¼ V2

a
; kr ¼ �V2

a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

r2

s
;

k� ¼ 0; k� ¼ h
V2

a2r2
;

(3.8)

where h ¼ const and the plus sign applies to a ray moving
away from the center of symmetry, while the minus sign
applies to a ray moving towards the center. The constant h
and the angle � between the direction of observation and

the direction defined by the observer and the center of
symmetry are related by

cos� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

r2

s
: (3.9)

The angle � should be taken into account when one
considers off-center observers [25].
In Ref. [30] it was shown that in model (3.1) the inho-

mogeneity could mimic the dark energy in the sense that
they produce the same redshift-magnitude relation which
corresponds to an accelerated expansion of the universe
and that �inh;0 ¼ 0:61þ0:08

�0:10. It also emerged that the inho-

mogeneity had dominated the universe quite recently, so it
influenced only slightly the Doppler peaks and did not
influence big-bang nucleosynthesis at all. Models of type
I have been studied in Ref. [31], where they were tested
against cosmic microwave background data.

IV. REDSHIFT DRIFT IN A PRESSURE-GRADIENT
COSMOLOGY

Recently, lots of interest was attracted by the effect
of redshift drift in cosmological models—the effect first
noticed by Sandage and later explored by Loeb [32]. The
idea is to collect data from the two light cones separated by
10–20 years to look for the change in redshift of a source as
a function of time. It has recently been investigated for the
LTB models [1], backreaction timescape cosmology [33],
and very recently for the axially symmetric Szekeres
models [34]. Here we will consider this effect for the
Stephani models.
In order to do that we assume that the source does not

possess any peculiar velocity, so that it maintains a fixed
comoving coordinate dr ¼ 0. The light emitted by the
source at two different times te and te þ �te will be
observed at to and to þ �to related by

Z to

te

dt

aðtÞ ¼
Z toþ�to

teþ�te

dt

aðtÞ : (4.1)

For small �te and �to we have

�te
aðteÞ ¼

�to
aðtoÞ : (4.2)

A general formula for redshift which is valid for any
cosmological model reads as [35]

1þ z ¼ ðuakaÞe
ðuakaÞo : (4.3)

The redshift drift is defined as [32]

�z ¼ ðuakaÞðre; te þ �teÞ
ðuakaÞðr0; t0 þ �t0Þ �

ðuakaÞðre; teÞ
ðuakaÞðr0; t0Þ ; (4.4)

which can be calculated using the expansions
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ðuakaÞo ¼ ðuakaÞðr0; t0Þ þ
�
@ðuakaÞ

@t

�
ðr0;t0Þ

�t0;

ðuakaÞe ¼ ðuakaÞðre; teÞ þ
�
@ðuakaÞ

@t

�
ðre;teÞ

�te:

From (3.6) and (3.8) we have

uak
a ¼ � 1þ 1

4 kðtÞr2
aðtÞ : (4.5)

Using (4.2), (4.3), and (4.5), one can calculate the redshift
drift (4.4) for the Stephani universes as

�z

�t
¼ � H0

1þ 1
4 kðt0Þr20

�
H

H0

� ð1þ zÞ
�
; (4.6)

which with the help of (3.4) can be rewritten to the form

�z

�t
¼� H0

1þ 1
4H

2
0ð�0�1Þ~r20

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0~a
�3ðwþ1Þ þð1��0Þ~a�1

q
�ð1þzÞ

�
; (4.7)

where ~a ¼ a=a0 and ~r ¼ ra0.
Using all the above Eqs. (4.2), (4.3), (4.4), (4.5), (4.6),

and (4.7) we end up with the set of equations which
combined together allow us to find the redshift drift of
any source at redshift z in the considered class of Stephani
models II defined by the condition that kðtÞ ¼ �aðtÞ as

�z

��
¼�H0

4þH2
0ð�0�1Þ~a~r20

4þH2
0ð�0�1Þ~r20

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0~a
�3ðwþ1Þþð1��0Þ~a�1

q
�1�z

�
; (4.8)

~a�1 ¼ 4þH2
0ð�0 � 1Þ~r20

4þH2
0ð�0 � 1Þ~a~r2 ð1þ zÞ; (4.9)

d~r

d�
¼ �

�
~a�1 þH2

0

4
ð�0 � 1Þ~r20

��
1� ~r20

~r2
sin 2�

�
1=2

;

(4.10)

where � is the proper time (d� ¼ dt=V) measured by an
observer placed at ~r0 and the last equation describes the
propagation of the null geodesic.

In the limit �0 ! 1 ) �inh ! 0 and w ¼ 0 (a flat
Friedmann model filled with dust), the formula (4.6)
reduces to

�z

�t
¼ �H0½ð1þ zÞ3=2 � ð1þ zÞ�; (4.11)

which coincides with the standard Friedmann universe
formula obtained by Sandage and Loeb [32]. On the

other hand, for an inhomogeneity-dominated universe
�0 ! 0 ) �inh ! 1, and we have a simple result

�z

�t
¼ H0

z

2
; (4.12)

which means that the drift grows linearly with redshift.
In Ref. [36] the redshift drift as a function of redshift for

the �CDM model, the Dvali-Gabadadze-Porrati brane
model, the matter-dominated model (CDM), and other
three different LTB void models were presented. It has
been shown that the redshift drift �z=�t for �CDM and
Dvali-Gabadadze-Porrati models is positive up to z � 2
and becomes negative for larger redshifts, while it is
always negative for LTB void models [37]. Using the
formulas (4.8), (4.9), and (4.10) we plot the redshift drift
as a function of redshift for the Stephani model with r0 ¼
0, w ¼ 0, and �inh ¼ 1��0 ¼ 0:40; 0.61; 0.80; 0.99 in
Figs. 2 and 3. It emerges that for large redshifts the drift for
Stephani models and �CDM models exhibits the behavior
which is like the redshift drift in the void LTB models.
However, unlike in the void models, and depending on the
value of inhomogeneity�inh, it becomes positive for small
redshifts and approaches the behavior of the �CDM
model, which allows negative values of the drift, for very

0 1 2 3 4 5

4

3

2

1

0

1

z

10
10

z
ye

ar

inh 0.40

inh 0.61

inh 0.80

CDM

inh 0.99

FIG. 2 (color online). The redshift drift (4.7) as a function of
redshift for the spherically symmetric inhomogeneous pressure
Stephani model with r0 ¼ 0, w ¼ 0, and �inh ¼ 1��0 ¼
0:40; 0.61; 0.80; 0.99. It is clear that the drift is similar to the
(negative) drift of LTB models if the parameter of inhomoge-
neity�inh is small, while it is like the drift in �CDM models for
larger values of the inhomogeneity parameter �inh. For larger
values of redshift both Stephani and �CDM models behave
similar to the void LTB models and the drift becomes negative.
However, for a very large inhomogeneity, the drift becomes
positive for larger and larger redshifts, reaching the limit that
the inhomogeneity is totally dominating �inh ¼ 1 with linear
drift dependence on z [cf. Eq. (4.12)] being always positive. The
plot shows that one is able to differentiate between the drift in
�CDM models and in Stephani models which can be verified in
future experiments [38]. It also shows that the LTB inhomoge-
neity (due to the energy density) is different from the Stephani
inhomogeneity (due to the pressure) which exhibits as the fact
that the drift is always negative for an LTB model and always
positive for an inhomogeneity-dominated Stephani model.
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high redshifts. For example, in the model with�inh ¼ 0:61
the redshift drift becomes positive for z 2 ð0; 0:34Þ and
attains its highest value � 1:0� 10�12=year for z� 0:17
(cf. Fig. 3). However, for a very large inhomogeneity, the
drift becomes positive for larger and larger redshifts
(e.g., for inh�inh ¼ 0:99 it is positive until z � 13), reach-
ing the limit that the inhomogeneity is totally dominating
�inh ¼ 1 with linear drift dependence on z [cf. Eq. (4.12)]
being always positive. This may allow one to detect the
difference between the spherically symmetric LTB models
and spherically symmetric Stephani models as well as
the �CDM models in future telescopes such as the
European Extremely Large Telescope (with its spectro-
graph Cosmic Dynamics Experiment) [38,39], the Thirty
Meter Telescope, the Giant Magellan Telescope, and
especially, in gravitational wave interferometers Deci-
Hertz Interferometer Gravitational Wave Observatory
(DECIGO) and Big Bang Observer (BBO) [40]. The first
class of the experiments involving the very sensitive spec-
trographic techniques such as those utilized in the Cosmic
Dynamics Experiment spectrograph use a detection of a
very slow time variation of the Lyman-� forest of the
number of quasars uniformly distributed all over the sky
to measure the redshift drift. However, since Lyman-�
lines become impossible to measure for z < 1:7 from the
ground [39], such experiments are incapable to distinguish
between the void LTB models and the mimicking dark
energy Stephani models with �inh ¼ 0:61. On the other
hand, such a distinction seems to be possible to make
with the other mentioned class of future experiments
involving the space-borne gravitational wave interferome-
ters DECIGO/BBO. Such experiments are based on the
measurement of the correction due to the accelerating
expansion of the Universe to the phase of the hypothetical
gravitational waves coming from neutron-star binaries. As
was shown in Ref. [40], a detection of such a phase
correction may be used to infer the positivity of the redshift

drift at even z� 0:2. This suggests that with the future
observations of gravitational waves it will be possible to
rule out any void LTB models, unless one assumes an
unrealistically steep density gradient for z� 0. In this
regard, the future experiments involving the gravitational
wave interferometers DECIGO/BBO may be thought to be
complementary to all those experiments that use the shift
of the Lyman-� forest to detect the redshift drift. Besides,
it is worth mentioning that there is another test known as
the cosmic parallax test [36] which is due to anisotropic
expansion and is strictly related to a nonvanishing shear.
However, Stephani universes as shear-free should not
experience it—this may be another way to differentiate
Stephani models and LTB models.

V. CONCLUSIONS

Observations from just a point in the Universe we make
suggest its isotropy, but not necessarily homogeneity.
This gives some motivation for studying inhomogeneous
spherically symmetric models of the Universe rather than
isotropic and homogeneous ones. In this paper we have
discussed the Stephani models of pressure-gradient spheri-
cal shells which are complementary to the energy density
varying spherical shells of the Lemaı̂tre-Tolman-Bondi
models. The formula for redshift drift �z=�t of any source
at redshift z in the specific class of Stephani models for
both centrally and noncentrally placed observers has been
obtained. We have shown that, at least for the centrally
placed observers, there is a subset of observationally viable
Stephani models which exhibit qualitatively different
behavior of redshift drift than the LTB void models as
well as the quantitatively different behavior than the
�CDM models. We proved that small inhomogeneity
(e.g.,�inh ¼ 0:40) makes a Stephani model behave almost
like an LTB model, while large inhomogeneity makes it
behave more similar to �CDM. For a very large inhomo-
geneity, the drift becomes positive for larger and larger
redshifts, reaching the limit that the inhomogeneity is
totally dominating �inh ¼ 1 with linear drift dependence
on z [cf. Eq. (4.12)] being always positive. This gives
a good perspective to differentiate between the drift in
�CDM models and in Stephani models in future ex-
periments [38]. It is vital that the LTB inhomogeneity
(due to the energy density) is different from the Stephani
inhomogeneity (due to the pressure) which exhibits as the
fact that the drift is always negative for an LTB model and
always positive for an inhomogeneity-dominated Stephani
model. These differences may allow one to test Stephani
cosmology against LTB and �CDM cosmology in future
experiments aimed to measure the redshift drift, especially
those aimed at low redshift like DECIGO/BBO.
If the observations show that the drift is positive,

then the datawill exclude the void LTBmodels which allow
the negative redshift drift only, while this will not be the
case for both �CDM and Stephani models. The difference
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FIG. 3 (color online). The same plot of redshift drift for the
spherically symmetric inhomogeneous pressure Stephani model
with r0 ¼ 0, w ¼ 0, and�inh ¼ 1��0 ¼ 0:40; 0.61; 0.80; 0.99
as in (1), but enlarged for small redshifts. It is seen that small
inhomogeneity (e.g., �inh ¼ 0:40) makes the model to behave
almost like LTB, while large inhomogeneity makes it more
similar to �CDM.
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between �CDM and Stephani models will be determined,
provided the inhomogeneity is not large. On the other hand,

if the data show that the drift is negative, then both�CDM

and Stephani models will have to be rejected. This gives a

clear test for all three models of the Universe.
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Krasiński, Gen. Relativ. Gravit. 15, 673 (1983).

[8] M. P. Da̧browski, J. Math. Phys. (N.Y.) 34, 1447 (1993).
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[11] M.-N. Célérier, Astron. Astrophys. 362, 840 (2000); K.

Tomita, Prog. Theor. Phys. 106, 929 (2001).
[12] R. A. Sussmann, J. Math. Phys. (N.Y.) 28, 1118 (1987);

29, 945 (1988); 29, 1177 (1988).
[13] J. D. Barrow, Classical Quantum Gravity 21, L79

(2004).
[14] M. P. Da̧browski, Phys. Rev. D 71, 103505 (2005).
[15] W. Valkenburg, Gen. Relativ. Gravit. 44, 2449 (2012);

A. E. Romano and P. Chen, arXiv:1207.5572; D. Edwards,
Mon. Not. R. Astron. Soc. 159, 51 (1972); M. P.
Da̧browski and J. Stelmach, Ann. Phys. (N.Y.) 166, 422
(1986).

[16] R. A. Vanderveld, E. E. Flanagan, and I. Wasserman, Phys.
Rev. D 74, 023506 (2006); A. Krasiński, C. Hellaby, K.
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