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Solutions with anti-D3 branes in a Klebanov-Strassler geometry with positive charge dissolved in fluxes

have a certain singularity corresponding to a diverging energy density of the Ramond-Ramond and Neveu-

Schwarz–Neveu-Schwarz three-form fluxes. There are many hopes and arguments for and against this

singularity, and we attempt to settle the issue by examining whether this singularity can be cloaked by a

regular event horizon. This is equivalent to the existence of asymptotically Klebanov-Tseytlin or

Klebanov-Strassler black holes whose charge measured at the horizon has the opposite sign to the

asymptotic charge. We find that no such Klebanov-Tseytlin solution exists. Furthermore, for a large class

of Klebanov-Strassler black holes we considered, the charge at the horizon must also have the same sign

as the asymptotic charge and is completely determined by the temperature, the number of fractional branes

and the gaugino masses of the dual gauge theory. Our result suggests that antibrane singularities in

backgrounds with charge in the fluxes are unphysical, which in turn raises the question as to whether

antibranes can be used to uplift anti–de Sitter vacua to deSitter ones. Our results also point to a possible

instability mechanism for the antibranes.
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I. INTRODUCTION

The backreaction of antibranes in backgrounds with
charge dissolved in fluxes, like the Klebanov-Strassler (KS)
[1] and the Klebanov-Tseytlin (KT) solutions [2], has been a
subject of intense study over the past few years. A probe
analysis of anti-D3 branes in the KS solution reveals that
these branes have a nontrivial potential that drives them to
polarize into NS5-branes, wrapping a two-sphere inside the
large three-sphere at the KS tip [3]. On the other hand, if one
tries to go beyond the probe approximation and obtain the
backreacted solution corresponding to smeared anti-D3
branes at the tip of the KS solution, a surprise awaits: both
the first-order backreacted solution [4–7] as well as the fully
backreacted solution [8] have a singularity.

The fate of this singularity is crucial. Adding anti-D3
branes to a KS-like throat is the most generic way to uplift
the vacuum energy of the AdS vacua that come out of
string theory flux compactifications with stabilized moduli
[9] and obtain deSitter vacua. If the singularity of the anti-
D3 solution is not physical, this implies that anti-D3 branes
cannot be used to give KS metastable vacua and to uplift
the AdS vacua to dS. Since the other known uplift mecha-
nisms (such as F- or D-term uplifting [10,11] or Kähler
uplifting [12,13]) are much less generic, this would imply
that string theory does not have a landscape of dS vacua.
Thus the fate of this singularity is closely intertwined with
that of the landscape.

In both the first-order and the fully backreacted solution,
this singularity comes from three-form RR and Neveu-
Schwarz–Neveu-Schwarz field strengthswhose energy den-
sities diverge. There have been quite a few arguments both
in favor and against this singularity. The arguments in favor
of this singularity [14] are based on the self-consistency of
the probe approximation of Ref. [3] and on the fact that
the divergent energy of the singularity has a finite integral.1

The arguments against it are that the self-consistence of the
probe approximation does not imply the existence of meta-
stable vacua when backreaction is taken into account
[15,16]. Furthermore, the finiteness of the integral of the
divergent energy density near a singularity can hardly con-
stitute a criterion for accepting it: the negative-mass
Schwarzschild solution also has a singularity with finite
energy, and yet has to be discarded as unphysical [17].2

It has also been argued that this singularity signals the
tendency of the branes to polarize (as it happens in the probe
approximation [3]), and one can therefore hope that this
singularity could be resolved by brane polarization [21] à la
Polchinski-Strassler [22]. However, the recent calculation
of [23]3 pours cold water on this hope: neither the smeared
anti-D3 branes nor the localized ones polarize into D5
branes, wrapping the S2 of the warped deformed conifold
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1In Ref. [14] it was also argued that the singularity may be an
artifact of first-order backreaction, but this has been shown not
to happen [8].

2Furthermore, there are similar singularities near anti-M2
[18,19] and anti-D2 branes [20], and for those singularities
both the energy density and its integral diverge.

3As well as the earlier analysis of anti-D6 singularities
[24–27].
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at a finite distance away from the KS tip despite the fact that
all the terms of the Polchinski-Strassler polarization poten-
tial are there. Since in Polchinski-Strassler there are always
multiple channels for brane polarization, the absence of a
D5 brane polarization channel for localized branes suggests
that the NS5 channel found in a brane probe approximation
in Ref. [3] is also not present in the backreacted solution.

Given that all the calculations made so far that could
have either confirmed or invalidated the arguments in favor
of this singularity have given negative results, the main
hope left is that some hither unknown physical phenome-
non will come to its rescue and resolve it. Even if this
‘‘resolution by mystery’’ proposal has not yet been articu-
lated, it does appear to us that disproving it beforehand
might once and for all settle the discussion.

The clearest argument that a given unknown singularity
can be physical has been formulated by Gubser in
Ref. [28], who argued that if the singularity can be cloaked
by an event horizon it is physical, and conversely if a
singularity cannot be obtained by ‘‘turning off’’ a black
hole horizon, then it is not physical. Hence, if the anti-D3
singularity were physical, one would expect that there
should exist a black hole in Klebanov-Strassler and/or
Klebanov-Tseytlin whose charge has the opposite sign to
the charge dissolved in the fluxes.

Our purpose is to revisit the KT and KS black holes
constructed numerically in the past and to show that no
such black holes exist. The existence of the Klebanov-
Tseytlin black hole solution was first proposed in
Ref. [29] and then was constructed in perturbation theory
around the black hole in Klebanov-Witten [30] in
Refs. [31,32]. However, the equations underlying the non-
linear solution cannot be solved analytically, and the full
solution was constructed numerically in Refs. [33–35].4

Interestingly enough, extending the ansatz to describe black
holes in Klebanov-Strassler is not so hard, but it turns out
that these solutions (which would be dual to a deconfined
phase with spontaneously broken chiral symmetry) do not
exist [38]! The only way to build a black hole in Klebanov-
Strassler is to turn on one or two non-normalizable modes
corresponding to gaugino masses in the dual theory, which
break explicitly the chiral symmetry [38].

In this paper we review the one-parameter family of KT
black holes and the three-parameter family of mass-
deformed KS black holes, and we calculate the D3 charge
at the horizon. We find that this charge does not have an
opposite sign to the asymptotic charge of the solution. In
fact, for a KT black hole of a given temperature, the value
of this charge is not a free parameter, as one might expect
naively from the perturbative analysis of Ref. [32]. Hence,
if one imagines keeping the temperature fixed and lowering
probe charges into the black hole, the configuration will

settle back to the original charge. This comes essentially
because the KT solution has charge dissolved in the fluxes,
and an over-charged or an under-charged black hole can
expel or absorb charge from the surrounding charge in the
fluxes to bring back its charge to its initial value. A similar
story happens for the mass-deformed KS black hole: if one
adds positive or negative charge to the black hole keeping
the temperature and gaugino masses fixed, the black hole
will interact with the surrounding flux and return to its
original charge.
In Sec. II we discuss the KT black hole and examine the

symmetries of the background, the single-parameter nature
of the solution and the relationship between its temperature
and the charge. In Sec. III we explore in more detail the
three-parameter mass-deformed KS black hole of Ref. [38]
and explain the relation between gaugino masses, tempera-
ture and charge. We conclude with a few comments and
suggestions for future work in Sec. IV.

II. THE KLEBANOV-TSEYTLIN BLACK HOLE

A. The cascading gauge theory and its
chiral symmetric phases

The N ¼ 1 supersymmetric SUðNÞ � SUðN þMÞ
cascading gauge theory can be realized as the world-
volume theory on N regular D3 branes to which we add
M fractional D3 branes (wrapped D5 branes) to the apex of
the conifold singularity. At low temperatures this cascad-
ing gauge theory spontaneously breaks a discrete chiral
symmetry, which corresponds in the dual bulk to the de-
formation of the conifold singularity. The full warped
deformed conifold solution dual to this cascading gauge
theory was constructed by Klebanov and Strassler (KS) in
Ref. [1]. One can also construct a singular solution dual to
the chirally symmetric phase of this theory (the Klebanov-
Tseytlin (KT) solution [2]). The two solutions have D3
brane charges dissolved in the fluxes.
This cascading gauge theory is an ideal testing ground for

understanding the deconfinement phase transition of
strongly coupled QCD-like gauge theories. The KS solution
is holographically dual to the confined chiral-symmetry-
broken phase, and the high temperature deconfined phase
with unbroken chiral symmetry was argued in Ref. [29] to
be dual to a black hole added to the KT solution. This black
hole was constructed in a perturbative expansion [31–33,35]
in the fractional brane number M around the black hole in
Klebanov-Witten [30] and then at full nonlinear level in
Refs. [34,35], using numerical methods.
We will review this solution, highlighting properties that

are relevant for our study. We emphasize that this is a one-
parameter of solutions, and we show that this black hole
will always have positive Maxwell D3 brane charge at the
horizon. Hence, there are no KT black hole solutions with
anti-D3 brane charge, contrary to what one might have
expected from the perturbative story.

4Other attempts to construct such black holes were discussed
in Refs. [36,37].
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B. The Klebanov-Tseytlin black hole

We review the construction of the Klebanov-Tseytlin
black hole, which is a solution of ten-dimensional type IIB
supergravity that asymptotes to the Klebanov-Tseytlin (KT)
background [2] and is holographically dual to a high-
temperature deconfined chirally symmetric phase of the
cascading gauge theory. Recall that the IIB supergravity field
content includes, besides the gravitational field, a dilaton
� ¼ lng, a Neveu-Schwarz–Neveu-Schwarz flux H3 ¼
dB2, and Ramond-Ramond fluxes F3 and F5 (the axion
vanishes, C0 ¼ 0). These solutions have a Z2M chiral sym-
metry, aUð1ÞB symmetry and a SUð2Þ � SUð2Þ global sym-
metry. In the absence of the black hole, theKTbackground is
a direct product ofM5 with metric g�� and a squashed T

1;1

with the radii of curvature of M5 and the fluxes H3, F5

varying logarithmically in the radial coordinate.
The most general ansatz (in the Einstein frame) that is a

deformation of the KT background [2] which preserves its
SUð2Þ � SUð2Þ � Z2P �Uð1ÞB symmetry is [33,34],

ds210 ¼ g��ðyÞdy�dy� þ ds2
T1;1 ;

ds2
T1;1 ¼ �2

1ðyÞe2c þ�2
2ðyÞ

X2

a¼1

ðe2�a þ e2�a
Þ;

(2.1)

and (we set �0 � 1)

F3 ¼ Pec ^ ðe�1 ^ e�1
� e�2 ^ e�2

Þ;

B2 ¼ KðyÞ
2P

ðe�1 ^ e�1
� e�2 ^ e�2

Þ;
F5 ¼ F 5 þ ?F 5;

F 5 ¼ �KðyÞec ^ e�1 ^ e�1
^ e�2 ^ e�2

;

(2.2)

where y denotes the coordinates ofM5 (greek indices�, �
run from 0 to 4) and ds2

T1;1 is the line element of the

warp-squashed T1;1, with the one-forms ec , e�a , e�a

(a ¼ 1, 2) given by

ec ¼1

3

�
dc þX2

a¼1

cos�ad�a

�
; e�a ¼

1ffiffiffi
6

p d�a;

e�a
¼ 1ffiffiffi

6
p sin�ad�a: (2.3)

The range of the T1;1 coordinates is 0 � c � 4�, 0 �
�a � � and 0 � �a � 2�. The dimensionful constant P
in (2.2) is related to the quantized dimensionless units of
fluxM entering in the rank of the gauge groups of the dual
field theory. We work in the normalization, where

P ¼ 3

23=4�
G1=4

5 M; (2.4)

where G5 ¼ G10=volT1;1 is the five-dimensional Newton’s
constant obtained after the dimensional reduction on T1;1

done next.
With this ansatz, we can do a standard Kaluza-Klein

reduction of the type IIB action to five dimensions and get
the effective action [33],

S5 ¼ 1

16�G5

Z
M5

volM5

�
�1�

4
2

�
R10 � 1

2
r��r��

�

� P2�1e
��

�r�Kr�K

4P4
þ e2�

�2
1

�
� 1

2

K2

�1�
4
2

�
; (2.5)

where R10 is the ten-dimensional Ricci scalar related to the
five-dimensional Ricci scalar R5 by

R10 ¼ R5 � 2��1
1 g��ðr�r��1Þ � 8��1

2 g��ðr�r��2Þ
� 4g��ð2��1

1 ��1
2 r��1r��2

þ 3��2
2 r��2r��2Þ þ 24��2

2 � 4�2
1�

�4
2 : (2.6)

The associated equations of motion are [33]

0¼ 1ffiffiffiffiffiffiffi�g
p @�

�
e���1

2P2

ffiffiffiffiffiffiffi�g
p

g��@�K

�
� K

�1�
4
2

; 0¼ 1ffiffiffiffiffiffiffi�g
p @�½�1�

4
2

ffiffiffiffiffiffiffi�g
p

g��@��� þ�1e
��ð@KÞ2
4P2

�P2e�

�1

;

0¼�4
2R5 � 12�2

2ð@�2Þ2 þ 24�2
2 � 12�2

1 � 8�3
2h5�2 � 1

2
�4

2ð@�Þ2 þP2e�

�2
1

� e��ð@KÞ2
4P2

þ K2

2�2
1�

4
2

;

0¼ 4�1�
3
2R5 � 8�3

2h5�1 � 24�1�
2
2h5�2 � 24�2

2@�1@�2 � 24�1�2ð@�2Þ2 þ 48�1�2 � 2�1�
3
2ð@�Þ2

þ 2K2

�1�
5
2

;

�1�
4
2R5�� ¼

g��

3

�
P2e�

�1

þ K2

2�1�
4
2

þh5ð�1�
4
2Þ � 24�1�

2
2 þ 4�3

1

�
þr�r�ð�1�

4
2Þ � 4�3

2ð@��1@��2 þ @��1@��2Þ

� 12�1�
2
2@��2@��2 þ�1e

��

4P2
@�K@�Kþ 1

2
�1�

4
2@��@��; (2.7)

where ð@FÞ2 denotes g��@�F@�F and h5 is the Laplacian in M5.
An ansatz for theM5 gravitational field that is tailored to search for the KT black hole with horizon located at x ¼ 1 and

asymptotic KT background at x ! 0 is [34]
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ds2M5
¼h�1=2ð2x�x2Þ�1=2½�ð1�xÞ2dt2þdx21þdx22þdx23�
þGxxdx

2; (2.8)

and it is also useful to rewrite the squashed T1;1 factors as

�1 ¼ h1=4
ffiffiffiffiffi
f2

p
; �2 ¼ h1=4

ffiffiffiffiffi
f3

p
: (2.9)

In these expressions, h, f2, f3, Gxx are functions of the
compact radial coordinate x. Recall that the solution is
fully specified once we find in addition the dilaton � ¼
ln gðxÞ and flux forms (2.2), which are determined by a
single function KðxÞ.

In these conditions, it follows from the equations of
motion (2.7) that Gxx is given by an algebraic relation that
is a function of fh; f2; f3; K; gg and their first derivatives. So,
in total, to determine our black hole we need to solve a
system of five second-order coupled and nonlinear ODEs for
fh; f2; f3; K; gg. The explicit algebraic relation for Gxx and
the system of five equations of motion are explicitly written
in equations (2.6)–(2.12) of Ref. [34]. An important obser-
vation is that each of these five equations is second order.
Therefore, the total differential order of the system is 10.

To find the KT black hole we solve the equations of
motion subject to appropriate boundary conditions at the
horizon, x ! 1, and at the asymptotic boundary, x ! 0.

The IR boundary condition (horizon) is quite standard in
black hole physics. Formally, we rewrite our ansatz in
ingoing Eddington-Finkelstein coordinates (appropriate
to extend the analysis through the horizon), and we require
regularity of all our fields at the horizon in this coordinate
system. This amounts to saying that all our functions must
have a series expansion in ð1� xÞ2 [34],

h ¼ X1

n¼0

hhnð1� xÞ2n; f2 ¼
X1

n¼0

ahnð1� xÞ2n;

f3 ¼
X1

n¼0

bhnð1� xÞ2n; g ¼ X1

n¼0

ghnð1� xÞ2n;

K ¼ X1

n¼0

khnð1� xÞ2n; (2.10)

with the boundary condition simply requiring that the
coefficients fhh0 ; ah0 ; bh0 ; kh0 ; gh0g are constants. Solving the

five equations of motion perturbatively around the horizon
up to arbitrary order, one finds that only a few of the
coefficients in (2.10) are independent, with all the others
being a function of these. Concretely, one chooses the six
IR independent parameters to be

IR independent parameters ð6Þ: fhh0 ; ah0 ; bh0 ; kh0 ; gh0 ; ah1g:
(2.11)

Consider now the UV asymptotic structure at x ! 0.
The UV boundary condition is straightforward: we want
the KT black hole to approach asymptotically the KT
solution [2]. The latter is the leading-order contribution
of a power series expansion in x and ln ðxÞ of the equations
of motion [34],

h¼h0�P2g0
8a20

lnðxÞþX1

n¼1

Xn�1

k¼1

hn;kx
n=2lnkðxÞ;

f2¼a0þ
X1

n¼1

Xn�1

k¼1

an;kx
n=2lnkðxÞ;

f3¼a0þ
X1

n¼1

Xn�1

k¼1

bn;kx
n=2lnkðxÞ;

g¼g0þ
X1

n¼1

Xn�1

k¼1

gn;kx
n=2lnkðxÞ

K¼4h0a
2
0�

1

2
P2g0�1

2
P2g0 lnðxÞþ

X1

n¼1

Xn�1

k¼1

Kn;kx
n=2lnkðxÞ:

(2.12)

The presence of the ln x terms in h, K in the KT leading
contribution is responsible for the logarithmic running of
the fluxes and M5 radii of curvature.
As expected, not all coefficients in the expansion (2.12)

are independent. There are four independent asymptotic
parameters already present in the KT solution and those we
choose to be fP; g0; a0; h0g. P is related to the quantized
flux M by (2.4), g0 is related to the dimensionless parame-
ter of the cascading gauge theory, and there are two com-
binations of the other two parameters that are related to the
temperature and dynamical scale of the cascading gauge
theory. More concretely, one has a20 ¼ 4�G5sT, where s
and T are the entropy density and temperature of the
solution, which can be computed directly from the horizon
area and surface gravity using the expansion (2.10). In
addition, we can replace the independent parameter h0 by
a new dimensionless parameter ks defined as

ks � 4h0a
2
0

P2g0
� 1

2
� 1

2
ln

�
4�G5sT

�4

�
: (2.13)

This relation defines the dynamical scale � of the cascad-
ing theory. The other UV independent coefficients corre-
spond to vacuum expectation values (VEVs) of the
operators dual to the fields for which we are solving.
After using the conformal anomaly equation [33], one finds
that there are four VEV independent parameters, chosen to
be fa2;0; g2;0; a3;0; a4;0g.
We conclude that there are eight UV independent

parameters that determine the coefficients in (2.12)
to any order we wish. These can be chosen to be
fP;g0;a0;ks;a2;0;g2;0;a3;0;a4;0g. We can, however, use the

symmetries of the problem to get rid of some of these
parameters. First, observe that the ansatz (2.8) is invariant
under the scaling symmetry,5

5This scaling symmetry leaves h0a
2
0 invariant. This means that

h0a
2
0 is a function of the dimensionless parameter of our theory,

which is the ratio between the temperature and the dynamical
scale �. This motivates the definition (2.13).
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ðt; x; ~xÞ ! ð��2t; x; ��2 ~xÞ; h ! ��2h;

f2;3 ! �f2;3; g ! g K ! K:
(2.14)

We use this scaling symmetry to set a0 � 1. In addition, we
are working in the supergravity approximation (where we
neglect gs and �0 corrections). In this approximation, the
action and the associated equations of motion do not
depend separately on P2 and g0 but only on the combina-
tion P2g0. We can thus set g0 � 1. Furthermore, when we
neglect �0 corrections, the action is multiplied by a con-
stant when we rescale the ten-dimensional metric by a
constant factor (and rescale the p forms accordingly), so
that the equations of motion are left invariant. This trans-
formation acts on our variables as

h ! ��2h; f2;3 ! �2f2;3; K ! �2K;

g ! g; P ! �P:
(2.15)

As long as we work in the supergravity approximation, we
can thus use this symmetry to set P � 1 and use the scaling
(2.15) to generate the solutions for any other value of P.

To sum, after using the symmetries of our system we find
that we are left with five independent UV parameters,

UV independent parameters ð5Þ: fks; a2;0; g2;0; a3;0; a4;0g:
(2.16)

At this point we can ask how many parameters we need
to describe the KT black hole solution. We have a total of
6þ 5 ¼ 11 IR and UV independent parameters (2.11) and
(2.16), and the equations of motion are a system of total
differential order 10. We thus conclude that the KT black
hole is a one-parameter family of solutions. In the numeri-
cal search of the KT black hole, we will take this dimen-
sionless parameter to be ks. Equation (2.13) can then be
used to translate the results we obtain in terms of the
dimensionless temperature T=�.

The black hole is constructed numerically using a stan-
dard shooting method. One fixes the microscopic free
parameter of the theory, ks, and wants to find the other
ten IR and UV independent parameters (2.11) and (2.16).
The equations of motion have the following two critical
points: at the horizon, x ¼ 1, and at the boundary, x ¼ 0.
Consider first the horizon. Using the IR series expansion
(2.10), one constructs the solution in the near-horizon
region up to the tenth order (n ¼ 5 inclusive) in the radial
distance to the horizon. This solution depends on the six IR
parameters (2.11). One then integrates numerically the six
radial second-order ODEs, using a Runge-Kutta method,
up to a large radial distance. The procedure is repeated, this
time at the asymptotic critical point where one starts by
obtaining the asymptotic solution up to ninth order (n ¼ 9,
inclusive), using the UV series expansion (2.12). Fixing ks,
this asymptotic solution is a function of the four UV
parameters fa2;0; g2;0; a3;0; a4;0g. One integrates this solu-

tion down to very small values of the radial distance. In the

overlapping region of the two solutions, we then do their
matching, more precisely at x ¼ 0:5. The requirement that
both the set of five functions fh; f2; f3; K; gg and their first
derivatives must be continuous gives ten conditions that we
use to fix the ten IR and UV independent parameters (for a
given ks). The whole process is now repeated for other
values of ks to generate the results that will be presented in
the next subsection.

C. Properties of the Klebanov-Tseytlin black hole

We are ready to discuss some physical properties of the
Klebanov-Tseytlin black hole that are relevant for our
study. For a detailed account of other properties, see
Refs. [34,35].
We present the results as a function of either the micro-

scopic parameter ks (which defines uniquely the solution)
or as a function of the dimensionless quantity T=�, where
T is the temperature of the solution and� is the dynamical
scale of the theory, related to ks via (2.13). As explained
above, the numerical construction of the solution exploits
the scaling symmetries of the theory and is done at P ¼
g0 ¼ a0 � 1. One can then restore the correct powers of P
using the scaling symmetry (2.15), which also introduces a
factor of g0=a0 together with every factor of P

2. In order to
relax the a0 ¼ 1 condition, we then use (2.13) which
implies that all the dimensionful quantities must be com-

puted in units of � ¼ e�ks=2.
From the surface gravity we can compute the black hole

temperature, which in � units is

T

�
¼ eks=2

4�hh0b
h
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð8hh0ðah0Þ2 � gh0P

2Þ
ah0 þ 2ah1

vuut (2.17)

and enables an immediate translation of a dependence on
ks into a dependence on the temperature. The entropy
density is computed from the horizon area. The energy
density E and pressure P of the KT deconfined plasma
phase can be read from the expectation values of the
appropriate components of the holographic stress tensor
Tab, E ¼ hTtti and P ¼ hTxixii. Moreover, since there are

no chemical potentials, the free energy density is simply
F ¼ �P . These quantities are dimensionless if expressed
in � units and given by

4�G5

P2g20

s

T3
¼

�
T

�

��4
e2ks ;

32�4

81

E
�4

¼ 3

4

�
1þ 4

7

a2;0
a0

�
e2ks ;

32�4

81

F
�4

¼ 3

7

�
a2;0
a0

� 7

12

�
e2ks :

(2.18)

We can now describe the KT black hole using these
thermodynamic quantities. The microscopic parameter ks
has no positive upper bound. For large positive values of ks,
the temperature is large and then decreases as ks decreases
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(see left panel of Fig. 1). However, as we keep decreasing
ks, the temperature reaches a minimum at ks ¼ kus ¼
�1:230ð3Þ (green dot in Fig. 1) and, for even smaller ks,
it increases until a critical lower bound, ks ¼ kcrits , is
reached (represented by the last numerical red point in
Fig. 1). As this critical value is approached, the curvature
invariant (like the Kretschmann scalar in the Einstein
frame) grows without bound, as shown in the right panel
of Fig. 1, which implies that the solution will develop a
naked singularity. Below ks ¼ kcrits there are no longer KT
black holes. In Fig. 1, the inset plot shows the behavior of
the temperature around its minimum value. In all the plots
of this section, the numerical red dots describe the region
with ks � ku, and the blue dots correspond to ks � ku.

The left panel of Fig. 2 shows what happens to the
energy density as a function of the temperature in the
most interesting region of the parameter space. For larger
temperatures it grows monotonically. On the other hand,
the free energy density as a function of the temperature is
plotted in the right panel of Fig. 2. For large values of the
temperature, the KT black hole solution is the preferred
thermodynamic phase since its free energy is negative.
However, it vanishes at6

Tc ¼ 0:6141111ð3Þ� (2.19)

and is positive for smaller temperatures. A first-order
deconfinement/confinement phase transition occurs at T ¼
Tc (represented by the magenta point in Fig. 2). The inset
plot in this right panel shows how the free energy behaves
in the vicinity of T ¼ Tu (green point). We see that in

this region the free energy stays positive, but precisely at
T ¼ Tuðkus Þ with

Tu ¼ 0:8749ð0ÞTc (2.20)

we find a cusp, and a continuous phase transition occurs.
To the right of this cusp, and within the temperature
window Tu < T < Tðkcrits Þ, we have two phases. The red
phase, with kcrits < k < kus , always has higher free energy
for a given temperature. So it is never the thermodynami-
cally preferred phase in the canonical ensemble. Note also
that the solution is regular at the cusp (in particular, in the
equivalent plot of free energy versus ks, this cusp corre-
sponds to a maximum inflection point of the curve).

Plotting the dimensionless entropy density 4�G5

P2g2
0

s
T3 as a

function of the dimensionless energy density 32�4

81
E
�4 , we

find that the two branches of solution can never have the
same energy and entropy densities (see left panel of Fig. 2).
So, why is T ¼ Tu so special? The answer relies on the

study of the speed of sound waves in the cascading plasma
[35]. In the gravitational description, this speed of sound cs
can be computed from the lowest quasinormal mode dis-
persion relation in the sound channel. Alternatively, in the
dual gauge theory description, it is computed from the

standard thermodynamic relation cs ¼
ffiffiffiffiffi
@P
@E

q
. It turns out

to be

c2s ¼ 1

3

7� 12
a2;0
a0

� 6P2 da2;0
dks

7þ 4
a2;0
a0

þ 2P2 da2;0
dks

: (2.21)

In the vicinity of Tuðkus Þ (determined by the condition

cs ¼ 0), we find that cs � ðks � kus Þ and cs � ð1� Tu

T Þ1=4.
Thus, the speed of sound becomes imaginary for ks < kus
(red dots), as shown in the right panel of Fig. 3.
Consequently, the specific heat cV ¼ s

c2s
of the cascading

FIG. 1 (color online). Left Panel: The dimensionless temperature T
� as a function of the microscopic parameter ks. The inset plot

zooms it in the neighborhood of T ¼ Tu (green point, i.e., minimum point). The red dots (to the left of the minimum) correspond to
ks � ku, and the blue dots (to the right of the minimum) correspond to ks � ku. To the left of the last red dot there are no black holes.
Right Panel: The Kretschmann scalar at the horizon as a function of the microscopic parameter ks.

6To pinpoint with higher accuracy the critical temperatures of
the green (T ¼ Tu) and magenta points (T ¼ Tc), we have made
runs in the code in a small window around these points with
much higher resolution than the one presented in the figures.
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plasma diverges at the threshold of the linear instability,
T ¼ Tu. We conclude that the KT deconfined plasma phase
becomes unstable at this temperature. Note that from the

inset plots of Fig. 2, one has that @F
@T jT!Tu

is finite while
@E
@T jT!Tu

diverges. This divergency in the change of the

energy density is responsible for the vanishing of the speed
of sound.

To summarize, the KT black hole is dual to the chirally
symmetric deconfined phase of the cascading gauge theory.
This is the thermodynamically dominant phase of the
theory at high temperatures. As its temperature decreases,
we reach a critical point where its pressure (free energy)

first vanishes and then becomes negative (positive). At this
critical temperature (2.19), a first-order deconfinement/
confinement phase transition occurs. This is a nonpertur-
bative phase transition since it proceeds via the nucleation
of bubbles of the confined phase. Below this temperature,
the KT deconfined chiral symmetric phase is still a meta-
stable phase of the system all the way down to Tu ¼
0:8749ð0ÞTc, where it joins a perturbatively unstable
branch (red dots in the plots) of the theory with negative
specific heat.
There is another property of the black hole that is

particularly important for our study. The KT black hole

FIG. 2 (color online). Left Panel: The dimensionless energy density as a function of the dimensionless temperature. The inset plot
shows this energy in the vicinity of the onset of the perturbative instability of the cascading plasma (where T ¼ Tu, the green point
where the derivative diverges). Right Panel: The dimensionless free energy density as a function of the temperature for temperatures at
the deconfinement transition (T ¼ Tc; magenta point where free energy vanishes) and around it. The inset plot shows the free energy
density in the vicinity of the perturbative instability of the cascading plasma (T ¼ Tu; green point at the cusp) and all the way down to
the last red point in the upper branch that represents the last KT black hole that exists. In these figures, the red/blue dots have the same
meaning as in Fig. 1.

FIG. 3 (color online). Left Panel: The dimensionless entropy density as a function of the dimensionless energy density in the vicinity
of T ¼ Tu. Right Panel: Square of speed of sound c2s in the vicinity of T ¼ Tu.
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is also characterized by its D5-brane and D3-brane
charges. The (Maxwell) D5-brane charge, also called the
fractional D3-brane charge, is simply

QMax
D5 ¼ M ¼ 23=4�

3G1=4
5

P; (2.22)

where we used (2.4). The definition of the D3-brane charge
is more subtle since the logarithm dependence of the fields
makes a naive definition diverge, and we need a suitable
regularization procedure. For a supergravity solution with
nontrivial Wess-Zumino terms, one can define three differ-
ent types of charges [39,40] that we now discuss. For a
solution asymptoting to the KT background and with a
horizon, the dimensionless D3-Page charge is (�0 � 1) [6]

QPage
D3 ¼ 1

ð4�2Þ2
Z
T1;1

ðF 5 � B2 ^ F3Þ; (2.23)

where the integration is done over the T1;1. The D3-Page
charge is conserved and is independent of the radius at
which it is evaluated.

We can also define the Maxwell D3 charge of the
solution as

QMax
D3 ¼ 1

ð4�2Þ2
Z
T1;1
xc

F 5; (2.24)

where the integral is again performed over T1;1, but this
time with the integrand evaluated at a certain cutoff, x ¼
xc. There are two physically distinct contributions to the
Maxwell charge, from the black hole (or from mobile
branes when no horizon is present), Qb, and from the
charge dissolved in the fluxes (Qf):

QMax
D3 ¼QD3

b þQD3
f ; QD3

b ¼ 1

ð4�2Þ2
Z
T1;1
H

F5;

QD3
f ¼ 1

ð4�2Þ2
�Z

T1;1
xc

F5�
Z
T1;1
H

F5

�
¼ 1

ð4�2Þ2
Z
M6

H3^F3;

(2.25)

where
R
T1;1
H

means that the integrand is evaluated at the

horizon x ¼ 1, and M6 is the ‘‘bulk’’ spacetime spanned
by the coordinates on T1;1 plus the radial coordinate. The
Maxwell charge depends on the scale at which it is mea-
sured, but if we fix a holographic screen, we expect physi-
cal processes to preserve its value at the screen. In
particular, for a given scale, it must be the same if two
solutions are to describe different vacua of the same theory.

For the KT black hole, we compute the Maxwell charge
at the black hole horizon using (2.10) to obtain

QD3
b ¼ 1

27�
kh0 : (2.26)

As described previously, the value of kh0 is determined

numerically and it is always positive, for all values of the
single parameter ks that parametrizes the KT black hole

family. Therefore, the KT black hole can only have positive
Maxwell D3-brane charge at the horizon, as explicitly
shown in Fig. 4. In particular, the D3 charge at the horizon
QD3

b can never have opposite sign to the asymptotic D3

charge QMax
D3 .

III. THE MASS-DEFORMED KLEBANOV-
STRASSLER BLACK HOLE

A. Broken-chiral-symmetry phases of the theory:
Mass-deformed cascading theories

So far we have discussed just deconfined/confined
phases of the cascading gauge theory with unbroken chiral
symmetry. From the holographic gauge theory perspective,
the chiral symmetry preservation is explicitly manifest in
the absence of expectation values for dimension-three
operators in the dual thermal states. On the other hand,
one knows that at zero temperature the cascading gauge
theory confines into a chiral-symmetry-breaking (�SB)
phase, with the supergravity dual of this phase being the
Klebanov-Strassler (KS) warped deformed conifold solu-
tion [1]. In the UV region, this solution asymptotes to the
KT solution, but deep into the IR bulk, the Z2M chiral
symmetry is spontaneously broken to Z2 (by gaugino con-
densation in the pure SYM limit of the theory) and the KS
solution also breaks the Uð1ÞB symmetry, while preserving
the SUð2Þ � SUð2Þ symmetry. If we heat the theory, the
confined phase persists: we have now a thermal gas of
hadrons described by the KS solution with a thermal
identification. A question that immediately emerges is
then whether this theory also allows for the existence of
a finite-temperature deconfined phase, this time with bro-
ken chiral symmetry, which we would naturally call a KS
black hole. This question does not come alone. A priori

FIG. 4 (color online). The dimensionless D3-brane charge
of the black hole QD3

b as a function of the dimensionless

temperature.
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there is no reason for this confinement/deconfinement
phase transition of the broken-chiral-symmetry phases to
occur at the same critical temperature Tc—see (2.19)—of
the phase transition for the chiral symmetric phases.

In supersymmetric gauge theories, chiral symmetry
breaking necessarily occurs at a temperature at least as
high as the confinement temperature. The question remains
concerning the thermal competition of the two deconfined
phases: what is the critical temperature, T�SB, at which the

KT black hole would exchange dominance in the partition
function with the KS black hole? That is, what would be
the relation between the critical temperatures for the con-
finement/deconfinement and the broken- /unbroken-chiral-
symmetry phase transitions?

These questions were analyzed in detail in Ref. [38],
whose conclusions we summarize next. We will soon
realize that some of the above-described intuition needs
to be reevaluated. Consider first the KT deconfined phase
with unbroken chiral symmetry. A good way to learn
whether this phase can condensate into a broken chiral
symmetric phase is to study chiral-symmetry-breaking
(�SB) deformations of this phase. In the supergravity
description this amounts to study linearized gravitational
perturbations about the KT black hole solution that break
the chiral symmetry of the background. To make our life
easier we want to restrict to the simplest sector of pertur-
bations that break the desired symmetries while keeping
frozen the fluctuations of fields irrelevant for the discus-
sion. Reference [38] found this sector of deformations that
solves the linearized equations of motion of the system.
The boundary conditions further constrain the quasinormal
mode spectrum of frequencies. The key observation is that
the imaginary part of this frequency spectrum changes sign
at a critical temperature,

T�SB ¼ 0:882503ð0ÞTc > Tu: (3.1)

Actually this �SB instability is a Gregory-Laflamme type
of instability, since it requires the breaking of the transla-
tional invariance along the planar spatial directions trans-
verse to T1;1.7 We seem to have all the ingredients to expect
a new branch of black holes in a phase diagram of solutions
of the theory. That is, at the threshold of �SB instability,
we expect a natural merger of the KT black hole with
what would be the KS black hole. This is where the
above intuition proves to be dramatically wrong. Indeed,
Ref. [38] numerically searched for gravitational solutions
describing the homogeneous and isotropic states of the
cascading plasma with spontaneously broken chiral sym-
metry. The idea was to construct the KS black hole by
deforming the chirally symmetric KT black hole for

T < T�SB along the tachyonic directions revealed in the

linearized analysis. This attempt was unsuccessful: there
are no KS black hole solutions in the cascading gauge
theory.
At this point, we still need to add a twist to the story. So

far, we have been silently assuming that the KS deconfined
phase we were searching for was breaking the chiral
symmetry spontaneously. If we are less demanding, we
can still search for thermal deconfined phases of the mass-
deformed cascading gauge theory that explicitly break the
chiral symmetry. To get the mass-deformed cascading
gauge theory, one introduces the mass terms

�i � mi

�
; i ¼ 1; 2 (3.2)

for the gauginos (the N ¼ 1 fermionic superpartners of
SUðN þMÞ � SUðNÞ gauge bosons). These mass terms
explicitly break both the supersymmetry and the chiral
symmetry, and the theory does have a homogeneous and
isotropic deconfined thermal phase. The mass terms (3.2)
are the couplings of the two dimension-three operators that
explicitly break the chiral symmetry,

O j
3 ¼ Oj

3ð�iÞ; j ¼ 1; 2; (3.3)

and, in the chiral limit �i ! 0, the expectation values for
the condensates vanish as well,

lim
�i!0

Oj
3ð�iÞ ¼ 0: (3.4)

In the supergravity description, the homogeneous and iso-
tropic deconfined broken chiral phase is described by what
we call the mass-deformed KS black hole. This black hole
was numerically constructed at the full nonlinear level in
Ref. [38]. It is reassuring that the same numerical code that
does not find the KS black hole dual to what would be a
spontaneously broken chiral symmetric deconfined phase
of the theory (�i ¼ 0), does find the mass-deformed KS
black hole (�i � 0). This definitely guarantees that the
statement that KS black holes do not exist is not a con-
sequence of a somehow incomplete numerical search.
We can now turn back to the linearized study of the �SB

physical excitations of the KT black hole. The original
study of Ref. [38] included linearized perturbations with
the mass deformations turned on [these mass deformations
are dimension-three operators and can be read from the
coefficients of the non-normalizable modes that decay
asymptotically as 1=r; their normalizable partners give
the VEVs for these dimension-three operators (3.3)]. This
study finds that at T ¼ T�SB, the KT black hole becomes

linearly unstable. As described below, the threshold of this
instability signals a branch-off to a mass-deformed KS
black hole in a phase diagram of solutions of the cascading
theory. However, if �i ¼ 0, the KT black hole is still
unstable but there is no associatedKS black hole. The chiral
limit (3.4) suggests that in this black hole background the
‘‘chiral tachyons’’ condensate with finite momentum: the

7As an interesting side note, recall that the deconfined KT
plasma is thermodynamically stable down to Tu and the fact that
the �SB Gregory-Laflamme instability occurs at T�SB > Tu

provides an explicit example of a violation of the Gubser-
Mitra conjecture.
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resulting merging phase (and eventual endpoint state in a
time evolution) cannot be a homogeneous and isotropic
geometry described by what would be the KS black hole.

B. The mass-deformed Klebanov-Strassler black hole

In this section we will briefly review the numerical
construction of the mass-deformed KS black hole [38].
This black hole describes the high-temperature phase of
the mass-deformed KS theory. The zero temperature phase
of this theory is dual to the Kuperstein-Sonnenschein
perturbative solution [41] when the gaugino masses are
equal and to the more general perturbative solution of
Refs. [6,14] when the masses are arbitrary. The infrared
expansion of the zero-temperature solution is included in
the class of perturbative IR solutions constructed in
Refs. [8,42]. Our purpose is to calculate the D3-brane
charge at the horizon of the black hole in this theory and
to see whether the sign of the black hole charge could
somehow be made negative by scanning through the pos-
sible ranges of gaugino masses.

We are interested in the most general field ansatz of the
cascading gauge theory that describes its homogeneous
and isotropic states, both at zero and nonzero temperature.
Such ansatz is tailored to search for the (mass-deformed)
KS black holes and naturally describes also the supersym-
metric Klebanov-Strassler (KS) warped deformed conifold
solution [1]. It also includes as special cases the KT black
hole solution and the KT singular supersymmetric solution
discussed in the previous section, which further obey the
constraints imposed by requiring the Z2M chiral and Uð1ÞB
symmetries. In the Einstein frame this ansatz is

ds210 ¼ g��ðyÞdy�dy� þ ds2
T1;1 ;

ds2
T1;1 ¼ �2

1ðyÞg25 þ�2
2ðyÞ½g23 þ g24� þ�2

3ðyÞ½g21 þ g22�
(3.5)

for the gravitational field (y denotes the coordinates ofM5

with greek indices �, � ¼ 0; . . . ; 4) and

B2 ¼ h1ðyÞg1 ^ g2 þ h3ðyÞg3 ^ g4;

F3 ¼ 1

9
Pg5 ^ g3 ^ g4 þ h2ðyÞðg1 ^ g2 � g3 ^ g4Þ ^ g5

þ ðg1 ^ g3 þ g2 ^ g4Þ ^ dðh2ðyÞÞ;
F5 ¼ F 5 þ ?F 5;

F 5 ¼
�
4�0 þ h2ðyÞðh3ðyÞ � h1ðyÞÞ þ 1

9
Ph1ðyÞ

�
g5

^ g3 ^ g4 ^ g1 ^ g2;

� ¼ �ðyÞ (3.6)

for the fluxes H3 � dB2, F3, F5, and dilaton �. P is again
an integer corresponding to the RR 3-form flux on the
compact 3-cycle (and to the number of fractional branes
on the conifold), as given in (2.4).

To make closer contact with the original study of the KS
warped deformed conifold [1], we use the 1-forms on T1;1,

g1 ¼ �1 � �3

ffiffiffi
2

p ; g2 ¼ �2 � �4

ffiffiffi
2

p ; g3 ¼ �1 þ �3

ffiffiffi
2

p ;

g4 ¼ �2 þ �4

ffiffiffi
2

p ; g5 ¼ �5; (3.7)

where

�5 ¼ dc þ cos �1d�1 þ cos�2d�2;

�1 ¼ � sin �1d�1; �2 ¼ d�1;

�3 ¼ cos c sin �2d�2 � sin c d�2;

�4 ¼ sin c sin �2d�2 þ cos c d�2;

(3.8)

instead of those in (2.3).
With this ansatz, a Kaluza-Klein reduction of the type

IIB action to five dimensions yields the effective action
[38],

S5¼ 108

16�G5

Z
M5

volM5
�1�

2
2�

2
3

�
R10�1

2
ðr�Þ2

�1

2
e��

� ðh1�h3Þ2
2�2

1�
2
2�

2
3

þ 1

�4
3

ðrh1Þ2þ 1

�4
2

ðrh3Þ2
�

�1

2
e�

�
2

�2
2�

2
3

ðrh2Þ2þ 1

�2
1�

4
2

�
h2�P

9

�
2þ 1

�2
1�

4
3

h22

�

� 1

2�2
1�

4
2�

4
3

�
4�0þh2ðh3�h1Þþ1

9
Ph1

�
2
�
; (3.9)

where R10 is given in terms of the five-dimensional Ricci
scalar of the metric g�� as

R10¼R5þ
�

1

2�2
1

þ 2

�2
2

þ 2

�2
3

� �2
2

4�2
1�

2
3

� �2
3

4�2
1�

2
2

� �2
1

�2
2�

2
3

�

�2h5 lnð�1�
2
2�

2
3Þ�fðrln�1Þ2þ2ðrln�2Þ2

þ2ðrln�3Þ2þðrlnð�1�
2
2�

2
3ÞÞ2g; (3.10)

and r and h5 denote the covariant derivative and the
Laplacian in M5, respectively. This action (3.9) also de-
scribes the theory governed by (2.5) as a special limit [38].
The general five-dimensional background geometry

with homogeneous and isotropic (but not necessary
Lorentz-invariant) asymptotic boundary takes the form
written in (2.8). It is tailored to search for the (mass-
deformed) KS black hole with horizon located at x ¼ 1
and asymptotic KT background at x ! 0. It is also useful
to encode all the information convening the warp-squashed
T1;1 factors �1;2;3ðxÞ, the flux-form functions h1;2;3ðxÞ and
the dilaton �ðxÞ in the following set of new functions
fK1; K2; K3; fa; fb; fc; h; gg defined as
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�i ¼!iH
1=4 ði¼ 1;2;3Þ; HðxÞ ¼ ð2x� x2ÞhðxÞ;

!1ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
fcðxÞ

p

3ð2x� x2Þ1=4 ; !2ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
faðxÞ

p
ffiffiffi
6

p ð2x� x2Þ1=4 ;

!3ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
fbðxÞ

p
ffiffiffi
6

p ð2x� x2Þ1=4 ; h1ðxÞ ¼ 1

P

�
1

12
K1ðxÞ� 36�0

�
;

h2ðxÞ ¼ P

18
K2ðxÞ; h3ðxÞ ¼ 1

P

�
1

12
K3ðxÞ� 36�0

�
;

gðxÞ ¼ e�ðxÞ: (3.11)

From the equations of motion of (3.9), we find that
GxxðxÞ can be expressed by an algebraic relation that is a
function of fK1; K2; K3; fa; fb; fc; h; gg and their first de-
rivatives. The nontrivial equations of motion can then be
written as a system of eight second-order nonlinear
coupled ODEs for fK1; K2; K3; fa; fb; fc; h; gg. Each of
these eight equations is second order. It follows that the
total differential order of the system is 16. The constant�0,
introduced in (3.6), does not appear in the equations of
motion.

The (mass-deformed) KS black hole must solve these
equations of motion subject to appropriate boundary con-
ditions at the horizon, x ! 1, and at the asymptotic bound-
ary, x ! 0.

Near the horizon, (x ! 1), the equations of motion have
the IR series expansion,

Ki¼
X1

n¼0

khinð1�xÞ2n; i¼1;2;3;

f�¼a0
X1

n¼0

fh�nð1�xÞ2n; �¼a;b;c;

h¼X1

n¼0

hhnð1�xÞ2n; g¼g0
X1

n¼0

ghnð1�xÞ2n:

(3.12)

and regularity of the expansion in the ingoing Eddington-
Finkelstein coordinates requires the leading terms of this
expansion to be just regular. There are nine independent IR
parameters that we choose to be,

IR independent parameters ð9Þ:
fk1h0; k2h0; k3h0; fah0; fah1; fbh0; fch0; hh0; gh0g: (3.13)

At the UV asymptotic boundary we want the (mass-
deformed) KS black hole to asymptote to the KT solution
[2], while allowing also for the mass-deformation parame-
ters. The latter is the leading-order contribution of a power
series expansion in x and ln ðxÞ of the equations of motion,

K1 ¼ 4h0a
2
0 �

1

2
P2g0 � 1

2
P2g0 ln xþ

X1

n¼1

X
k

k1nkx
n=4ln kx; K2 ¼ 1þ X1

n¼1

X
k

k2nkx
n=4ln kx;

K3 ¼ 4h0a
2
0 �

1

2
P2g0 � 1

2
P2g0 ln xþ

X1

n¼1

X
k

k3nkx
n=4ln kx; f� ¼ a0

�
1þ X1

n¼1

X
k

f�nkx
n=4ln kx

�
; �¼ fa; bg

fc ¼ a0

�
1þ X1

n¼2

X
k

fcnkx
n=4ln kx

�
; h ¼ h0 � P2g0

8a20
ln xþ X1

n¼2

X
k

hnkx
n=4ln kx; g ¼ g0

�
1þ X1

n¼2

X
k

gnkx
n=2ln kx

�
:

(3.14)

There are six independent microscopic parameters. Four of
them describe the KT solution, namely fP; g0; a0; h0g, and
have exactly the physical interpretation already described
below (3.14). In particular, h0 can be traded for the dimen-
sionless parameter ks, defined in (2.13), which defines the
dynamical scale � of the cascading theory. Moreover, the
straightforward extension (to accommodate for the field
content of the KS ansatz) of the three scaling symmetries
discussed in (2.14) and (2.15) still allows us to set

P ¼ g0 ¼ a0 � 1: (3.15)

The other two independent microscopic parameters are
fk110; fa10g and are related to the couplings of the two
dimension-three operators that explicitly break the chiral
symmetry. The explicit relation between fk110; fa10g and
these two mass-deformation parameters f�1; �2g of the
cascading gauge theory introduced in (3.2) is

fa10 ¼ ð�1 þ 4�2ksÞe�ks=2;
�
k110 þ 1

2
P2g0fa10

�
ð3P2g0 þ 8h0a

2
0Þ�1 ¼ �2e

�ks=2:

(3.16)

In addition to these microscopic UV parameters, there are
seven extra independent parameters ffa30; k230; fa40; g40;
fa60; fa70; fa80g associated with the VEVs of the operators
dual to the fields for which we are solving. Summarizing,
after using the scaling symmetries of our system, we are
left with ten UV independent parameters,

UV independent parameters ð10Þ:
fks; k110; fa10; fa30; k230; fa40; g40; fa60; fa70; fa80g:

(3.17)
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The total number of IR and UV independent parameters
is 9þ 10 ¼ 19 and is given by (3.13) and (3.17). On the
other hand, the equations of motion are a system of total
differential order 16. Therefore, a general mass-deformed
KS black hole is a three-parameter family of solutions. We
naturally take these three parameters to be the microscopic
parameters of the cascading gauge theory, namely
fks; k110; fa10g. We can then use (2.13) and (3.16) to express
the results in terms of the temperature T=� and the mass-
deformation parameters f�1; �2g. Of course, if we are just
interested in the KS black hole that would describe the
spontaneously symmetry-broken deconfined phase, we set
�1 ¼ �2 ¼ 0, and we have simply a one-parameter family
of solutions. As emphasized previously, the numerical code
does find generic mass-deformed KS black holes (whose
properties will be discussed below), but when we crank
down the mass deformations to zero, no solution with

Oj
3 � 0 is found.

The numerical construction of the mass-deformed KS
black holes is done using a shooting method similar to the
one used in the construction of the KT black hole. In this
shooting method, the IR power series solution (3.12) is
constructed up to order n ¼ 1 (inclusive), and the asymp-
totic UV series solution (3.14) is constructed up to eighth
order (n ¼ 8, inclusive). One then evolves these solutions
away from these critical points and does the matching in
the overlapping intermediate region (at x ¼ 0:5). Fixing
the microscopic parameters fks; k110; fa10g, we still have 16
independent IR/UV parameters that are determined by the
16 conditions that follow from requiring that the eight
functions fK1; K2; K3; fa; fb; fc; h; gg and their first deriva-
tives are continuous at x ¼ 0:5. The process is repeated for
different values of fks; k110; fa10g.

C. Properties of the mass-deformed
Klebanov-Strassler black hole

Two quantities of utmost interest for our discussion are
the D5-brane and D3-brane charges of the mass-deformed
KS black hole. The former is simply given by (2.22),
QMax

D5 ¼ M. On the other hand, we can compute the

Maxwell D3 charge of the black hole (2.25) using (3.12)
to get

QD3
b ¼ kh10ð2� kh20Þ þ kh20k

h
30

54�
: (3.18)

Note that the constant �0 introduced in (3.6) does not
appear in the equations of motion nor in the flux F5, but
it does appear in the contribution B2 ^ F3 to the D3-Page
charge (2.23). Below we present the properties of the mass-
deformed KS black hole solution. As described above, this
is a three-parameter family of solutions parametrized by
fks; k110; fa10g, the values of which we give as an input to
the code. The values of fkh10; kh20; kh30g are then determined

numerically. For the several families of values of

fks; k110; fa10g that we have tried, it is always true that
QD3

b > 0.
We outline now our searches. In Fig. 5 we present values

of QD3
b with mass-deformation parameters fa10 ¼ 0:1 and

k110 ¼ 0, as a function of ks (related to T=�). Note that
smaller values of ks bring down the Maxwell D3-brane
charge at the horizon; it is thus desirable to study the small-
est possible values of ks. The technical reason that restricts
this is rooted in the instability of the finite-difference codes8

used to simulate mass-deformed KS black holes for small
ks. The insert in Fig. 5 shows the smallest values of ks we
can trust with our current numerics. A quadratic fit (in ks) to
these eight points shows that

min
ks

½QD3
b ðfa10¼0:1;k110¼0;ksÞ�¼0:000323195: (3.19)

Figures 6 and 7 present the results of a different search
strategy. Namely, we fix ks (set ks ¼ 0 for Fig. 6 and ks ¼
�0:5 for Fig. 7) and generate families of mass-deformed KS
black holes by scanning the mass-deformation parameter
k110 for a discrete set of fa10 ¼ f�0:4; . . . 0:4g (see the left
panels). For each of these curves we use quadratic extrapo-
lation to determine min k110½QD3

b � (see the right panels).

Finally, Fig. 8 indicates functional relations between non-
normalizable modes fa10 and k110 at minima of QD3

b for

ks ¼ 0 (see the left panel) and ks ¼ �0:5 (see the right
panel). The solid green lines represent the best linear fit
k110 / fa10. Note that (3.16) implies

0 20 40 60 80 100
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Q
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0.3 0.0 0.3
0.007

0.012

Q
bD

3

ks

FIG. 5. Mobile D3-brane charge QD3
b for mass-deformed KS

black holes with mass-deformation parameters fa10 ¼ 0:1 and
k110 ¼ 0, as a function of ks (related to T=�).

8It is possible that these instabilities can be alleviated with
spectral methods. We hope to report on this in future work.
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k110 ¼ fa10
4�2 � �1

2

�1 þ 4�2ks
: (3.20)

Thus, a linear relation between k110 and fa10, if true, would
imply a linear relation betweenm1 andm2. From the fits we
determine

m2

m1

¼
8<
:
0:072; for ks ¼ 0;

0:064; for ks ¼ �0:5:
(3.21)

Assuming that discrepancy between m2

m1
for different ks is a

numerical artifact, an interesting question remains as to the
physical significance of this ratio.
Although we cannot exclude the possibility that there is

some region in the parameter space that yields QD3
b < 0,

we could not find it. We take this, together with the fact
that the KT black hole of the previous section always has
positive QD3

b (recall that for this solution we could run the

full parameter space since it is a one-parameter solution),
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FIG. 6 (color online). Left Panel: Mobile D3-brane charge QD3
b for mass-deformed KS black holes with parameters ks ¼ 0 and

fa10 ¼ f�0:4; . . . ; 0:4g, as a function of the mass-deformation parameter k110. The central red curve/dots (fourth line from bottom/left)
with minimum at k110 ¼ 0 is for fa10 ¼ 0. As fa10 grows increasingly positive, the minimum shifts to the left (the first four black
curves on the left bottom corner are for fa10 ¼ f0:1; . . . ; 0:4g). As fa10 grows increasingly negative, the minimum shifts to the right (the
last four blue curves on the left are for fa10 ¼ f�0:4; . . . ;�0:1g). Right Panel: Minima of the black hole D3-brane charge QD3

b for

mass-deformed KS black holes with respect to k110 for ks ¼ 0, as a function of the mass-deformation parameter fa10.
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as strong evidence for the nonexistence of KS black holes
withQD3

b < 0. To summarize, the mass-deformed KS black

holes we have examined always have positive Maxwell
D3-brane charge at the horizon; there appear to be no such
black holes that have a Maxwell charge whose sign is
opposite to that of the asymptotic charge of the solution.

IV. CONCLUSION

The idea of a landscape of de Sitter vacua in string theory
is founded on two pillars. The first is the construction of a
very large number of string theory compactifications with
stabilized moduli, either via the KKLT construction [9] or
by another mechanism [12], which always give anti–de
Sitter vacua. The second is the uplift of these vacua to de
Sitter, and the most common way to do this is to trap anti-D3
branes in warped deformed conifoldlike regions of the
compactification manifold [9]. The recent analysis of
Refs. [4–6,8] shows that the geometries corresponding to
these antibranes are singular, and that furthermore this
singularity does not appear to be resolved à la Polchinski-
Strassler [22], which is its most obvious resolution channel
[23]; this supports the idea that this singularity is not physi-
cal and should therefore be discarded.

In this paper we have looked at the issue from a different
perspective. If the singularities coming from anti-D3
branes at the bottom of the Klebanov-Strassler throat are
physical, then following [28], it should be possible to cloak
them with a regular Schwarzschild horizon. The resulting
nonextremal geometries would be Klebanov-Tseytlin or
Klebanov-Strassler black holes that have negative D3-
brane Maxwell charge QD3

b at the horizon. These black

holes were constructed numerically in Refs. [34,35,38],
and we did an extensive scan of all these numerical solu-
tions but were unable to find any solution with QD3

b < 0.
While not a rigorous proof, our negative result strongly
supports the idea that singularities generated by anti-D3
branes at the bottom of the warped deformed conifold are
unphysical. This in turn suggests that the most common
mechanism for uplifting the landscape of AdS vacua ob-
tained from string theory compactifications with stabilized
moduli to deSitter does not work, and hence string theory
may only have a landscape of AdS vacua but not a land-
scape of deSitter vacua.

Furthermore, we also found that the charge of a given
KT or mass-deformed KS black hole is not an independent
parameter but is completely determined by the temperature

and the gaugino masses. This implies that if one is to
perform a gedanken experiment that consists of lowering
an anti-D3 brane into this black hole keeping the tempera-
ture fixed, the charge of this black hole will become a bit
smaller for a moment but then will immediately go back to
its previous value by absorbing charge from the surround-
ing fluxes. Hence, this black hole acts as a catalyst for
brane-charge annihilation for arbitrarily small values of the
temperature, and this may suggest that adding an antibrane
to a vacuum Klebanov-Strassler solution will cause the
surrounding flux to immediately annihilate it [43].
It would be interesting to further push the limits of the

KT/KS black hole parameter space (driven by the develop-
ment of more efficient numerical techniques) in order to
establish more completely that regular nonextremal ge-
ometries with QD3

b < 0 do not exist. It would also be

interesting to compute D3-brane charge of the bottom of
de Sitter deformed KT/KS geometries [44,45]. We hope to
report on this in future work.
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