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We suggest a new perspective on the cosmological constant problem by scrutinizing its standard

formulation. In classical and quantum mechanics without gravity, there is no definition of the zero point of

energy. Furthermore, the Casimir effect only measures how the vacuum energy changes as one varies a

geometric modulus. This leads us to propose that the physical vacuum energy in a Friedmann-Lemaı̂tre-

Robertson-Walker expanding universe only depends on the time variation of the scale factor aðtÞ.
Equivalently, requiring that empty Minkowski space is gravitationally stable is a principle that fixes

the ambiguity in the zero-point energy. On the other hand, if there is a meaningful bare cosmological

constant, this prescription should be viewed as a fine-tuning. We describe two different choices of vacuum,

one of which is consistent with the current universe consisting only of matter and vacuum energy. The

resulting vacuum energy density �vac is constant in time and approximately k2cH
2
0 , where kc is a

momentum cutoff and H0 is the current Hubble constant; for a cutoff close to the Planck scale, values

of �vac in agreement with astrophysical measurements are obtained. Another choice of vacuum is more

relevant to the early universe consisting of only radiation and vacuum energy, and we suggest it as a

possible model of inflation.
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I. INTRODUCTION

The cosmological constant problem (CCP) is now re-
garded as a major crisis of modern theoretical physics. For
some reviews of the ‘‘old’’ CCP, see Refs. [1–4]. The
problem is that simple estimates of the zero-point energy,
or vacuum energy, of a single bosonic quantum field yield
a huge value (the standard calculation is reviewed below).
In the past, this led many theorists to suspect that it was
zero, perhaps due to a principle such as supersymmetry.
The modern version of the crisis is that astrophysical
measurements reveal a very small positive value [5,6]:

�� ¼ 0:7� 10�29 g cm�3 ¼ 2:8� 10�47 Gev4=ℏ3c5: (1)

This value is smaller than the naive expectation by a factor
of 10120. This embarrassing discrepancy suggests a con-
ceptual rather than computational error. The main point of
this paper is to question whether the CCP as it is currently
stated is actually properly formulated. As we will see, our
line of reasoning leads to an estimate of the cosmological
constant which is much more reasonable, and of the correct
order of magnitude.

Let us begin by ignoring gravity and considering only
quantum mechanics in Minkowski space. Wheeler and
Feynman once estimated that there is enough zero-point
energy in a teacup to boil all the Earth’s oceans. This has
led to the fantasy of tapping this energy for useful pur-
poses; however, most physicists do not take such proposals
very seriously, and in light of the purported seriousness of
the CCP, one should wonder why. In fact, there is no
principle in quantum mechanics that allows a proper defi-
nition of the zero of energy: as in classical mechanics, one

can only measure changes in energy; i.e., all energies can
be shifted by a constant with no measurable consequences.
Similarly, the rules of statistical mechanics tell us that
probabilities of configurations are ratios of (conditioned)
partition functions, and these are invariant if the partition
functions are multiplied by a common factor as induced by
a global shift of the energies. Based on his understanding
of quantum electrodynamics and his own treatment of the
Casimir effect, Schwinger once said [7], ‘‘the vacuum is
not only the state of minimum energy, it is the state of zero
energy, zero momentum, zero angular momentum, zero
charge, zero whatever.’’ One should not confuse zero-point
energy with ‘‘vacuum fluctuations’’ which refer to loop
corrections to physical processes: photons do not scatter
off the vacuum energy; otherwise they would be unable to
traverse the Universe. All of this strongly suggests that it is
impossible to harness vacuum energy in order to do work,
which in turn calls into question whether it could be a
source of gravitation.
The Casimir effect is often correctly cited as proof of the

reality of vacuum energy. However it needs to be empha-
sized that what is actually measured is the change of the
vacuum energy as one varies a geometric modulus, i.e.,
how it depends on this modulus, and this is unaffected by
an arbitrary shift of the zero of energy. The classic experi-
ment is to measure the force between two plates as one
changes their separation; the modulus in question here is
the distance ‘ between the plates and the force depends on
how the vacuum energy varies with this separation. The
Casimir force Fð‘Þ is minus the derivative of the electro-
dynamic vacuum energy Evacð‘Þ between the two plates,
Fð‘Þ ¼ �dEvacð‘Þ=d‘. An arbitrary shift of the vacuum
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energy by a constant that is independent of ‘ does not
affect the measurement. For the electromagnetic field, with
two polarizations, the well-known result is that the energy
density between the plates is �cas

vac ¼ ��2=720‘4. Note that
this is an attractive force; as we will see, in the cosmic
context a repulsive force requires an overabundance of
fermions. It is also clear that the Casimir effect is an
infrared phenomenon that has nothing to do with Planck
scale physics. Our cosmological proposal will actually
involve a mixing of the infrared (IR) and ultraviolet (UV).

For reasons that will be clear, let us illustrate the above
remark on the Casimir effect with another version of it: the
vacuum energy in the finite size geometry of a higher
dimensional cylinder. Namely, consider a massless quan-
tum bosonic field on a Euclidean space-time geometry of
S1 � R3 where the circumference of the circle S1 is �.
Viewing the compact direction as spatial, the momenta
in that direction are quantized and the vacuum energy
density is

�cyl
vac ¼ 1

2�

X
n2Z

Z d2k

ð2�Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ð2�n=�Þ2

q

¼ ���4�3=2�ð�3=2Þ�ð�3Þ þ const: (2)

Due to the different boundary conditions in the periodic

versus finite size directions, �cas
vacð‘Þ ¼ 2�

cyl
vacð� ¼ 2‘Þ,

where the overall factor of 2 is because of the two photon
polarizations. The above integral is divergent; however, if
one is only interested in its � dependence, it can be
regularized using the Riemann zeta function giving the
above expression. Note that the (infinite) constant that
has been discarded in the regularization is actually at the
origin of the CCP. What is measurable is the � depen-
dence. One way to convince oneself that this regularization
is meaningful is to view the compactified direction as
Euclidean time, where now � ¼ 1=T is an inverse tem-

perature. The quantity �
cyl
vac is now the free energy density

of a single scalar field, and standard quantum statistical
mechanics gives the convergent expression which is just
the standard black-body formula:

�cyl
vac ¼ 1

�

Z d3k

ð2�Þ3 log ð1� e��kÞ

¼ ���4 �ð4Þ
2�3=2�ð3=2Þ ¼ ��2

90
T4: (3)

The two above expressions, (2) and (3), are equal due to a
nontrivial functional identity satisfied by the � function:

�ð�Þ ¼ �ð1� �Þ where �ð�Þ ¼ ���=2�ð�=2Þ�ð�Þ. (See
for instance the appendix in Ref. [8] in this context.) The
comparison of Eqs. (2) and (3) strongly manifests the
arbitrariness of the zero-point energy: whereas there is a
divergent constant in (2), from the point of view of quan-
tum statistical mechanics, the expression (3) is actually
convergent. Either way of viewing the problem allows a

shift of �
cyl
vac by an arbitrary constant with no measurable

consequences. For instance, such a shift would not affect
thermodynamic quantities like the entropy or density since
they are derivatives of the free energy; the only thing that is
measurable is the � dependence.
We now include gravity in the above discussion. Before

stating the basic hypotheses of our study, we begin with
general motivating remarks. All forms of energy should be
considered as possible sources of gravitation, including the
vacuum energy. However, if one accepts the above argu-
ments that the zero of energy is not absolutely definable
in quantum mechanics, and that only the dependence of
the vacuum energy on geometric moduli including the
space-time metric is physically measurable, it then remains
unspecified how to incorporate vacuum energy as a source
of gravity. One needs an additional principle to fix the
ambiguity.
The above observations on the Casimir energy were

instrumental toward formulating such a principle, as we
now describe. The cosmological Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) metric has no modulus corre-
sponding to a finite size analogous to �; however, it does
have a time dependent scale factor aðtÞ:

ds2 ¼ g��dx
�dx� ¼ �dt2 þ aðtÞ2dx � dx: (4)

(We assume the spatial curvature k ¼ 0, as shown by
recent astrophysical measurements.) When aðtÞ is constant
in time, the FLRW metric is just the Minkowski spacetime
metric. This leads us to propose that the dependence of
the vacuum energy on the time variation of aðtÞ is all that is
physically meaningful, in analogy with the � dependence

of �cyl
vac. This idea is stated as a principle below, in terms

of the stability of empty Minkowski space, and is at the
foundation of our conclusions.
Let us quickly review the standard cosmology. The

Einstein equations are

G�� � R�� � 1

2
g��R ¼ 8�GT��; (5)

where G is Newton’s constant. The stress energy tensor
T�� ¼ diagð�; p; p; pÞwhere � is the energy density and p

the pressure. The nonzero elements of the Ricci tensor are
R00 ¼ �3 €a=a, Rij ¼ ð2 _a2 þ a €aÞ�ij, and the Ricci scalar

is R ¼ g��R�� ¼ 6ðð _a=aÞ2 þ €a=aÞ, where overdots refer
to time derivatives. The temporal and spatial Einstein
equations (5) for the FLRW metric are then the
Friedmann equations:�

_a

a

�
2 ¼ 8�G

3
�; (6)

�
_a

a

�
2 þ 2

€a

a
¼ �8�Gp: (7)

Taking a time derivative of the first equation and using the
second, one obtains
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_� ¼ �3

�
_a

a

�
ð�þ pÞ; (8)

which expresses the usual energy conservation. The above
three equations are thus not functionally independent, the
reason being that Bianchi identities relate the two Friedmann
equations to the energy conservation equation (8). The total
energy density is usually assumed to consist of a mixture
of three noninteracting fluids, radiation, matter, and dark
energy, � ¼ �rad þ �m þ ��, each of which satisfies
Eq. (8) separately, with p ¼ w� for w ¼ 1=3, 0, and �1
respectively. Then, Eq. (8) consistently implies _�� ¼ 0. The
energy density is related to the classical cosmological
constant as� ¼ 8�G��.

In this paper we will assume that dark energy comes
entirely from vacuum energy, �� ¼ �vac. The vacuum
energy �vac is a quantum expectation value,

�vac ¼ hH i ¼ hvacjH jvaci; (9)

whereH a quantum operator corresponding to the energy
density, which is usually associated with T00.

Apart from the ambiguity of the zero-point energy,
several other points should be emphasized. We will be
studying the semiclassical Einstein equations, where on
the right-hand side we include the contribution of vacuum
energy hT��i ¼ hvacjT��jvaci for some choice of vacuum

state jvaci. Given the very low energy scale of expansion in
the current universe, and the weakness of cosmological
gravitational fields, it is very reasonable to assume that
there is no need to quantize the gravitational field itself in
the present epoch. One hypothesis of the standard formu-
lation of the CCP is that the vacuum stress tensor is
proportional to the metric [1]. In an expanding universe,
the Hamiltonian is effectively time dependent, and there is
not necessarily a unique choice of jvaci, and in contrast to
flat Minkowski space, no Lorentz symmetry argument [9]
enforces that hT��i / g��. One needs extra information

that characterizes jvaci. This implies that hT��i is not

universal since it depends on jvaci, and thus, for example,
cannot always be expressed in terms of purely geometric
properties with no reference to the data of jvaci. One
mathematical consistency condition is D�hT��i ¼ 0 if

the various components of the total energy are separately
conserved, where D� is the covariant derivative, which is
the statement of energy conservation. However this may
not follow from D�T�� ¼ 0 since jvaci may be time

dependent. Also, hT��i is not necessarily expressed in

terms of manifestly covariantly conserved tensors such as
G��; again because it depends on jvaci. In fact, the only

convariantly conserved geometric tensor that is second
order in time derivatives is G��, and if hT��i / G��, this

would just amount to a renormalization of Newton’s
constant G.

The second point is that if one includes hT��i as a source
in Einstein’s equations, then since it depends on aðtÞ and

its time derivatives, doing so can be thought of as studying
the backreaction of this vacuum energy on the geometry.
The resulting equations must be solved self-consistently
and there is no guarantee that there is a solution consistent
with energy conservation.
Having made these preliminary observations, let us state

all of the hypotheses that this work is based upon, which
specify either the vacuum states or the nature of their stress
tensor. They are the following:
(i) As a criterion to identify possible vacuum states

jvaci, we look for preferred quantization schemes
such that jvaci is an eigenstate of the Hamiltonian
at all times, which implies there is no particle
production.

(ii) We calculate a bare �vac;0 from the Hamiltonian,

i.e., �vac;0 ¼ hvacjH jvaciwhereH is the quantum

Hamiltonian energy density operator. The calcula-
tion is regularized with a sharp cutoff kc in momen-
tum space in order to make contact with the usual
statement of the CCP.

(iii) We propose the following principle which pre-
scribes how to define a physical �vac from �vac;0:

Minkowski space that is empty of matter and ra-
diation should be stable, that is, static. This requires
that the physical �vac equal zero when aðtÞ is con-
stant in time. This leads to a �vac that depends on
aðtÞ and its derivatives, and also the cutoff.

(iv) Given this �vac, we assume the components of the
vacuum stress energy tensor have the form of a
cosmological constant:

hT��i ¼ ��vacg��: (10)

We provide some support for this hypothesis in
Sec. III, where we compare our calculation with
manifestly covariant calculations performed in the
past [10]. We are going to check the consistency of
this assumption in the next point (v).

(v) We include hT��i in Einstein’s equations and solve

them self-consistently, assuming that vacuum en-
ergy and other forms of energy are separately con-
served. In other words we study the consistency of
the backreaction of the vacuum energy on the
geometry. The consistency condition is _�vac ¼ 0,
which is equivalent to D�hT��i ¼ 0. There is no

guarantee there is such a solution since �vac depends
on aðtÞ and its derivatives.

Certainly one may question the validity of these assump-
tions. However in our opinion, they are rather conservative
in that they do not invoke symmetries, particles, or other,
perhaps higher dimensional structures, which are not yet
known to exist. The purpose of this paper is to work out
the logical consequences of these modest hypotheses.
Our main findings are the following:
(i) If there is a cutoff in momentum space kc, then by

dimensional analysis the vacuum energy density has
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symbolically the ‘‘adiabatic’’ expansion (up to
constants):

�vac;0 ¼ k4c þ k2c bRþ bR2 þ � � � ; (11)

where bR is related to the curvature and is a linear
combination of ð _a=aÞ2 and €a=a, depending on the
choice of jvaci. The principle of the stability of
empty Minkowski space (iii) leads us to discard the
k4c term, but not the other terms since they depend on
time derivatives of aðtÞ. The vacuum energy is now
viewed as a low energy phenomenon, like the
Casimir effect. Other regularization schemes, based
for example on point splitting [10], insist on a finite
�vac and thus discard the first two terms. According
to our principles, the second term must be kept since
it depends dynamically on the geometry. In the cur-

rent universe bR it is approximately on the order of
H2

0 , where H0 is the Hubble constant, and if the

cutoff kc is on the order of the Planck energy, then
the resulting value of �vac is the right order of
magnitude in comparison with the measured value
(1), namely �vac � ðkpH0Þ2 ¼ 3:2� 10�46 Gev4,

using for H0 the present value of the Hubble

constant. The bR2
is much too small to explain the

measured value. We emphasize that our �vac is not
simply proportional to H2 [see Eqs. (24) and (35)
below] and is in fact constant in time for the self-
consistent solutions that we find. There is nothing
special about H0 here, since �vac is constant in time;
we are simply evaluating it at the present time which
involves H0. A practical point of view is that astro-
physical observations are telling us that the k4c term
should be shifted away. More importantly, it remains
to determine whether the term that we do keep,

k2c bR, has physical consequences in agreement with
observations, which is the main purpose of our study.
Is shifting away the k4c term a fine-tuning? Let us
address this in the context of the Aronowitt-Deser-
Misner and Abbott-Deser framework [11,12]. In the
latter work it was shown that in classical general
relativity, once the value of the cosmological con-
stant � is fixed, there is a unique choice of energy
that is conserved; i.e., there is no more freedom to
shift it. For asymptotically flat spacetimes, this en-
ergy was proven to be positive and only zero for
Minkowski space [13,14]. Its ‘‘main importance is
that it is related to the stability of Minkowski space
as the ground state of general relativity,’’ to quote
Ref. [14]. For de Sitter space, there are similar state-
ments, though with some restrictions [12]. Let us
suppose that for some as yet unknown physical
reason, perhaps due to quantum gravity, there is a
meaningful bare cosmological constant �0. Then
the �vac;0 that we calculate leads to an effective

cosmological constant �eff ¼ �0 þ 8�G�vac;0 in

semiclassical gravity, and this is what is actually
measured. Our prescription (iii) amounts to setting
�eff to zero in Minkowski space where _a vanishes,
by adjusting �0 or the manifestly constant part of
�vac;0. This is a fine-tuning if �0 is unambiguously

defined. Our work has nothing more to say about this
issue; rather, the main point of this work is to study
the effects and consistency of what remains, i.e., the

�eff � k2c bR term which does not vanish in an expand-
ing geometry. One may argue that, as in any field
theory, the parameters in the effective Lagrangian
must ultimately be chosen to match experiments. As
we will see, under certain conditions, this term can
mimic a cosmological constant in a way that is
consistent with the current era of cosmology.

The analogy with the Casimir effect is clear both
mathematically [compare Eqs. (2) and (21)] and
physically. In the Casimir effect, as one pulls apart
the plates in a controlled manner in an experiment,
this induces a measurable force. In cosmology the
analog of the growing separation of the plates is
the expansion itself, which induces an acceleration;
the complication is that the effect of this backreac-
tion must be solved self-consistently, as we will do.
Note that whereas the Casimir force is attractive, to
describe the positive accelerated expansion of the
Universe, one needs a positive �vac, which as we
will explain, requires an overabundance of fermions.

(ii) For a universe consisting of only matter and vacuum
energy, such as the present universe, there is a
choice of jvaci with the above �vac that leads to a
consistent solution if a specific relation between
kc and the Newton constant G is satisfied. By
‘‘consistent,’’ we mean _�vac ¼ 0. Our solution for
aðtÞ is consistent with present day astrophysical
observations if one ignores the very small radiation
component. In fact, as we will show, our solution
aðtÞ, Eq. (30) below, once one matches the integra-
tion constants to their present measured values, is
identical to the standard �CDM model of the
present universe, i.e., a universe consisting only of
a cosmological constant plus cold dark matter, and
is thus not ruled out by observations up to fairly
large redshift z < 1000; it certainly agrees with
supernova observations at low z. To our knowledge
this choice for jvaci has not been considered before.
Below, we also remark on the cosmic coincidence
problem in light of our result. We speculate that the
relation between G and kc suggests that gravity
itself arises from quantum fluctuations, and we pro-
vide an argument that ‘‘derives’’ gravity from quan-
tum mechanics.

(iii) For a universe consisting of only radiation and
vacuum energy, there is another different choice
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of vacuum, jdvaci, that also has a consistent solu-
tion, again only for a certain relation between kc
and G. This vacuum has been studied before and is
referred to as the conformal vacuum in the litera-
ture. We suggest that this solution possibly de-
scribes inflation, without invoking an inflaton
field, and speculate on a scenario to resolve the
‘‘graceful exit’’ problem. We also argue that when
H ¼ _a=a is large, the first Friedmann equation sets
the scale H� kc, which is the right order of mag-
nitude if kc is the Planck scale.

It is worthwhile comparing our model with
other, similar proposals. Based on ‘‘wave-function
of the universe’’ arguments [15], or simply dimen-
sional analysis [16], it was proposed that �vac �
ðkp=dHðtÞÞ2, where dH is a dimensionful scale fac-

tor related to the cosmological horizon; roughly
dH � aðtÞt. In the present universe dHðt0Þ � t0 �
1=H0, so this �vac is also of the right magnitude.
The problem with it is that it is time dependent, and
ruled out by observations. Different arguments
based on unimodular gravity [17,18] also led to
the proposal that �� 1=d2H. The work that is clos-
est to ours is by Maggiore and collaborators [19].
Our approach differs from all the above in that
our �vac is constant in time, in agreement with
observations.

The next two sections simply describe these two
choices of vacua and analyze the self-consistency
of the backreaction. Our analysis is done using an
adiabatic expansion. In the conclusion, we further
discuss our results.

II. VACUUM ENERGY PLUS MATTER

A. Choice of vacuum and its energy density

We first review the standard version of the cosmological
constant problem. Since a free quantum field is an infinite
collection of harmonic oscillators for each wave vector k,
we first review simple quantum mechanical versions in
order to point out the difference between bosons and
fermions. Canonical quantization of a bosonic mode [24]
of frequency ! yields to a pair of creation and annihilation
operators, a, ay, with ½a; ay� ¼ 1, and a Hamiltonian
H ¼ !

2 ðaay þ ayaÞ ¼ !ðayaþ 1
2Þ. The boson zero-point

energy is thus identified as !=2. For fermions, the zero-
point energy has the opposite sign. Fermionic canonical
quantization [25] yields to Grassmanian operators b, by,
with fb; byg ¼ 1, b2 ¼ by2 ¼ 0, and a Hamiltonian
H ¼ !

2 ðbyb� bbyÞ ¼ !ðbyb� 1
2Þ. The fermion zero-

point energy is �!=2.
In a free relativistic quantum field theory with particles

of mass m in three spatial dimensions, the above applies

with !k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
, where k is a three-dimensional

wave vector. Thus the zero-point vacuum energy density is

�vac ¼
Nb � Nf

2

Z d3k

ð2�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
; (12)

where Nb;f is the number of bosonic, fermionic particle

species. Regularizing the integral with an ultraviolet
cutoff kc much larger than m, one finds �vac �
ðNb � NfÞk4c=16�2. If kc is taken to be the Planck energy

kp, then k
4
c=16�

2 ¼ 1075 Gev4. The modern version of the

cosmological constant problem is the fact that this is too
large by a factor of 10122 in comparison with the measured
value. One should also note that in the above calculation a
positive value for �vac requires more bosons than fermions,
contrary to the currently known particle content of the
Standard Model.
As explained in the introduction, we are interested in the

vacuum energy of a free quantum field in the nonstatic
FLRW background spacetime geometry. For simplicity we
consider a single scalar field, with action [26]

S ¼
Z

dtd3x
ffiffiffiffiffiffi
jgj

q �
� 1

2
g��@��@���m2

2
�2

�
: (13)

In order to simplify the explicit time dependence of the
action, and thereby simplify the quantization procedure,

we define a new field 	 as � ¼ 	=a3=2. Then the action
(13), after an integration by parts, becomes

S¼
Z

dtd3x
1

2
ð@t	@t	� 1

a2
~r	 � ~r	�m2	2 þAðtÞ	2Þ;

(14)

where

A � 3

4

��
_a

a

�
2 þ 2

€a

a

�
: (15)

The advantage of quantizing 	 rather than� is that most of
the time dependence is now in A, so that there is no
spurious time dependence in the canonical momenta, etc.
The field can be expanded in modes:

	 ¼
Z d3k

ð2�Þ3=2 ðakuke
ik�x þ ayku

	
ke

�ik�xÞ; (16)

where the ak’s satisfy canonical commutation relations

½ak; ayk0 � ¼ �ðk� k0Þ. The function uk is time dependent

and required to satisfy

ð@2t þ!2
kÞuk ¼ 0; !2

k � ðk=aÞ2 þm2 �A: (17)

The solution is the formal expression

uk ¼ 1ffiffiffiffiffiffiffiffi
2W

p exp

�
i
Z t

WðsÞds
�
; (18)

where W satisfies the differential equation:

W2 ¼ !2
k þ 3

4
ð _W=WÞ2 � 1

2
€W=W: (19)

Let us assume that the time dependence is slowly varying,
i.e., we make an adiabatic expansion. The above equation
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can be solved iteratively, where, to lowest approximation,
W is the above expression with W replaced by !k on the
right-hand side of the differential equation. In other words,
the ‘‘adiabatic condition’’ is _!k=!k 
 !k.

As we now explain, it appears one has to distinguish
between massive versus massless particles. Consider for
instance the term proportional to ð _!k=!kÞ2 ¼ ð _a=aÞ2 �
ðk2=ðk2 þm2a2ÞÞ2. When m ¼ 0 this gives a term which
modifies A, as does the €!=! term. The adiabatic condi-
tion is simply _a=a 
 k. The result is that the additional
two terms on the right-hand side of Eq. (19) (with W ¼
!k) give W2 ¼ ðk=aÞ2 �R=6; i.e., A is converted to
R=6. This dependence on the Ricci scalar R can be
derived more directly using conformal time, as in the
next section. In this section we will only be considering
cosmological matter plus vacuum energy. When m � 0,
the additional terms do not simply convert A to R=6. In
order to implement an adiabatic expansion in this case, we
consider the opposite limit of m large. One way to perhaps
justify this is as follows. We will ultimately be interested in
this vacuum energy in the presence of a nonzero density of
real matter. In cosmology, ‘‘matter’’ refers to nonrelativis-
tic particles, and formally, the nonrelativistic limit corre-

sponds to m ! 1, e.g.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
� m2 þ k2=2m. More

importantly, matter is defined as having zero pressure. For
a relativistic fluid, the contribution of each mode k to the
pressure is p ¼ nkk

2=3!k where nk is the density. One
then sees that zero pressure corresponds to m ! 1. Here

the adiabatic condition is _a=a 
 ðk2 þm2Þ3=2=k2 which
is automatically satisfied in this limit. In the limit m ! 1,
the additional terms on the right-hand side of Eq. (19)
actually vanish. Thus, to lowest order we simply take
W ¼ !k, and to this order _uk ¼ i!kuk. As we will
show in the next subsection, for a pressureless fluid this
has a self-consistent backreaction.

With this choice of uk, and to lowest order in the
adiabatic expansion, the Hamiltonian takes the standard
form:

H ¼ 1

2

Z
d3x

�
_	2 þ 1

a2
ð ~r	Þ2 þ ðm2 �AÞ	2

�

¼ 1

2

Z
d3k!kðaykak þ aka

y
kÞ: (20)

Importantly, there are no ayka
y
�k terms, which implies the

vacuum jvaci defined by akjvaci ¼ 0 is an eigenstate of H
for all times, i.e., there is no particle production, again to
lowest order in the adiabatic expansion. By the transla-
tional invariance of the vacuum, for the bare vacuum
energy we finally have

�vac;0 ¼ 1

V
hHi ¼ 1

2

Z d3k

ð2�Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2 �A

p
; (21)

where V is the volume and we have used �kð0Þ ¼
V=ð2�Þ3. In obtaining the above expression we have prop-
erly scaled by redshift factors: V ! a3V, the cutoff was

scaled to kc=a, and we made the change of variables
k ! ak. Comparing the above equation with Eq. (2), the
analogy with the Casimir effect is clear.
Introducing an ultraviolet cutoff kc as before, one finds

�vac;0 � k4c
16�2

�
1þ 
þ 
2

8
ð1þ 2 log ð
=4ÞÞ

�
; (22)

where 
 � ðm2 �AÞ=k2c is assumed to be small and
positive. Assuming that masses m are all much smaller
than the cutoff, we approximate the above expression as

�vac;0 � k4c
16�2

�
1þm2

k2c
�A

k2c
þA2

8k4c

�
; (23)

where we have neglected the logarithmic contribution. It
should also be noticed that the A2 term is beyond the
lowest order in the adiabatic expansion.
Now we apply the principle (iii) of the introduction. In

empty Minkowski space, by definition _a ¼ €a ¼ 0 and �vac

must be zero; otherwise empty Minkowski spacetime
would not be static due to gravity. Thus, �vac;0 must be

regularized to a physical �vac by subtracting the first two
constant terms in brackets:

�vac � �N

�
k2c

16�2
A� 1

128�2
A2

�
; (24)

such that �vac ¼ 0 when _a ¼ €a ¼ 0. Above, we have in-
cluded multiple species�N ¼ Nf � Nb whereNf;b are the

numbers of species of fermions and bosons. It is important
to observe that in the cylindrical version of the Casimir
effect, Eq. (2), the analog of the first term above is propor-
tional to �ð�2Þkc=�3 ¼ 0, so that there is no analog of it in
the Casimir effect.
Before proceeding, let us first check that the above

expression gives reasonable values. In the present universe,
_a=a ¼ H0 ¼ 1:5� 10�42 Gev is the Hubble constant, and
ð _a=aÞ2 � €a=a. If kc is taken to be the Planck energy kp,

then �vac � ðkpH0Þ2 ¼ 3:2� 10�46 Gev4, which at least is

in the ballpark. Fortunately there are more fermions than
bosons in the Standard Model of particle physics so that the
above expression is positive. Each quark/antiquark has two
spin states, and comes in three chromodynamic colors. The
electron/positron has two spin states, whereas a neutrino
has one. For three flavor generations, this gives Nf ¼ 90.

Each massless gauge boson has two polarizations, eight
for QCD, and four for the electroweak theory, which leads
to Nf � Nb ¼ 60 including the four Higgs fields before

spontaneous electroweak symmetry breaking and the two
graviton polarizations. Incidentally, for one generation
Nf ¼ Nb ¼ 30, so in order for the cosmological constant

to be positive, one needs at least two generations. The
measured value of the vacuum energy can be accounted
for with a cutoff about an order of magnitude below the
Planck energy [28], kc � 3� 1018 Gev. We have ignored
interactions which modify the value of �vac; however, we
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expect that they do not drastically change our results. One
should also bear in mind that the sharp cutoff kc is meant to
represent a crossover from the effective theory valid at
energy scale well below kc to that (including gravity) valid
above kc.

B. Consistent backreaction

Let us suppose that the only form of vacuum energy is
�vac of the last section, Eq. (24), and that aðtÞ is varying
slowly enough in time that the A2 term can be neglected.
Define the dimensionless constant

g ¼ 3�N

8�
Gk2c (25)

such that

�vac ¼ g

6�G
A: (26)

Including �vac in the total �, the first Friedmann equation
can be written as�

1� g

3

��
_a

a

�
2 � 2g

3

€a

a
¼ 8�G

3
ð�m þ �radÞ: (27)

We emphasize that we have not modified the Friedmann
equation; the extra terms on the left-hand side come from
�vac which were originally on the right-hand side of the
first Friedmann equation.

As we now argue, there is only a consistent solution
when g ¼ 1. First consider the case where there is no
radiation or matter. Then Eq. (27) implies €a=a ¼
ð3� gÞð _a=aÞ2=2g. First, note that this implies a constant
expansion, i.e., de Sitter space, only if g ¼ 1. Second, the
pressure can then be found from Eq. (7):

pvac ¼ � 1

g
�vac: (28)

Thus, the equation of state parameter w ¼ �1=g when
there is only �vac. However energy conservation requires
_�vac ¼ 0, which requires pvac ¼ ��vac, i.e., g ¼ 1. The
solution is aðtÞ / eHt for an arbitrary constant H, and �vac

is independent of time, as a cosmological constant must be.
What is not immediately obvious is that a consistent

solution can also be found when matter is included, again
when g ¼ 1. At the current time t0, as usual, define the
critical density �c ¼ 3H2

0=8�G where H0 is the Hubble

constant. The matter and radiation densities scale as
�m=�c ¼ �m=a

3 and �rad=�c ¼ �rad=a
4, where �m,

�rad are the current fractions of the critical density at
time t ¼ t0 where aðt0Þ ¼ 1. The first Friedmann equation
becomes, when g ¼ 1,

2

3H2
0

��
_a

a

�
2 � €a

a

�
¼ �m

a3
þ�rad

a4
: (29)

When �rad ¼ 0, the general solution, up to a time
translation, is

aðtÞ ¼
�
�m

�

�
1=3½sinh ð3 ffiffiffiffi

�
p

H0t=2Þ�2=3: (30)

The constant � is fixed by aðt0Þ ¼ 1. One can check that
�vac is indeed constant in time:

�vac

�c

¼ �; (31)

which implies that �þ�m ¼ 1, i.e., � is just �vac

However, when �rad � 0, �vac is no longer constant in
time. This can be proven directly from the Friedmann
equations or, if one wishes, numerically.
Thus, there is a choice of vacuum with a backreaction

that is entirely consistent with the current era; namely our
solution to aðtÞ is identical to the �CDM model. At early

times, aðtÞ / t2=3, i.e., matter dominated, and at later
times grows exponentially, aðtÞ / exp ð ffiffiffiffi

�
p

H0tÞ, i.e., is

dominated by vacuum energy. Given �m, then the
equation aðt0Þ¼1 determines tH � H0t0 and thus the age
of the Universe. Observations indicate �m ¼ 0:266, and
Eq. (30) gives tH ¼ 0:997. The reason this is so close to
the measured value of tH ¼ 0:996 is that radiation is
nearly negligible.
It is interesting to compare our model with the Standard

Model of cosmology when one includes radiation, since, as
explained above, �vac no longer behaves like a cosmologi-
cal constant. In Fig. 1 we compare the expansion rate
H ¼ _a=a as a function of redshift z. One sees that for
redshifts z ¼ 1� 1=aðtÞ up to at least 1000, there is
only a small discrepancy between our model and the
Standard Model of cosmology. Interestingly, our vacuum
energy ceases to behave as a cosmological constant
roughly around the time the cosmic microwave back-
ground was formed.
The condition g ¼ 1 relates Newton’s constant G to the

cutoff kc. There are a number of possible interpretations of
this curious result. Recall the Planck scale kp is simply the
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FIG. 1 (color online). The Hubble constant as a function of
redshift z for the solution to our model Eq. (29) including
radiation, versus the Friedmann equation Eq. (6) with radiation,
matter, and a standard cosmological constant with �m ¼ 0:266,
�rad ¼ 8:24� 10�5, �� ¼ 1��m ��rad.
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scale one can define from G, but it is not a priori a
physically meaningful energy scale; rather it is just the
scale that one naively expects some form of quantization of
the gravitational field to become important. Here, the
relation g ¼ 1 is a specific relation between the cutoff,
Newton’s constant G, and the number of particle species,
and is unrelated to the quantization of gravity itself. One
interpretation is simply that the cutoff kc is the fundamen-
tal scale and that G is not fundamental, but rather is fixed
by the cutoff from g ¼ 1.

Allow us to speculate further: the relation g ¼ 1 sug-
gests that gravity itself originates from quantum vacuum
fluctuations. Let us now argue how gravity can be heuris-
tically ‘‘derived’’ from quantum mechanics. Processes in a
closed universe are adiabatic, dQ ¼ 0, and the first law of
thermodynamics is dE ¼ �pdV, where p is the total
pressure due to all constituents regardless of their nature.
Let us identify the internal energy with vacuum energy,
dE ¼ �vacdV. Recalling that �vac is proportional to A,
Eq. (24) to lowest order, the first law is then nothing other
than the second Friedmann equation (7), with Newton’s
constant identified as G ¼ 8�

3�Nk2c
, which is the same as

g ¼ 1. If one assumes energy conservation D�T�� ¼ 0,

then this implies Eq. (8), from which, together with Eq. (7),
one can derive the first Friedmann equation (6). It is well-
known that the first Friedmann equation can be derived
from nonrelativistic Newtonian gravity, so the above argu-
ment indirectly implies Newton’s law of gravitation. From
this point of view, the fundamental constants are ℏ, c, and
kc, and Newton’s constant G is emergent. Curiously, in a
universe with more bosons than fermions, gravity would
actually be repulsive. The Planck scale has lost any real
physical meaning here, and gravity is very weak simply
because the cutoff kc is large. If there is any truth to this
idea, it renders the goal of quantizing gravity obsolete
since it is already a quantum effect. Gravity would
then be the ultimate macroscopic quantum mechanical
phenomenon.

Finally we wish to make some observations on the so-
called cosmic coincidence problem. Simply stated, the
problem is that at the present time t0 the densities of matter
and vacuum energy are comparable, and since they evolved
at different rates, their ratio would apparently have had to
be fine-tuned to differ by many orders of magnitude in the
very far past. From the point of view of the second order
differential Eq. (29), � ¼ �vac is just one of its arbitrary
integration constants and we cannot predict it. However
our construction has a bit more to it, based on the detailed
Eq. (24). First of all, in our approach to the problem, �vac is
determined by current era physics, and is guaranteed to be
of order 1 if kc is close to the Planck scale; this is how our
proposal involves UV/IR mixing. Using A � 9H2

0=4,

which is an observational input, one finds �vac=�c �
3�Nk2c
8�k2p

. Note also that if one rules out ‘‘phantom energy’’

with w<�1 based either on its strange cosmological
properties [29] or general thermodynamic arguments
[30], then this implies g < 1 which gives �vac=�c < 1.
One can argue further. Let tm be the time beyond which

radiation can be neglected. In the solution Eq. (30), t
should be replaced by t� tm. To a good approximation,
t0 � tm � t0. Imposing then aðt0Þ ¼ 1 in Eq. (30) with
�þ�m ¼ 1 determines H0t0 as a function of �m. One
can show that 2=3<H0t0 <1. As stated above, with the
present data, �m ¼ 0:226, this gives H0t0 ¼ 0:997. Thus
the ‘‘coincidence’’ that �m=�vac � 0:37 is now linked to
the fact that current measurements give H0t0 very close
to 1. How would these numbers change if they had been
measured in the past, say, at time t0 ¼ t0=2, nearly 7 billion
years ago when the Universe was half as old? Using
Eq. (30) with �m ¼ 0:266, one finds that at the time t0=2
the Hubble constant wasH0 ¼ 1:52H0 andH

0t0 ¼ 0:76. As
we did, an observer at that time interprets the solution with
aðt0Þ ¼ 1, and from Eq. (30) we can infer the value of�0

m;
one finds �0

m ¼ 0:68 and �0
m=�

0
vac ¼ 2:13. Thus for the

entire duration of the second half of the Universe’s history,
the product H0t0 only varied by a factor 3=4 and the ratio
�0
m=�

0
vac by less than a factor of 6. Actually the evolution of

this ratio is very slow. For instance, if one would have
measured it at time tN ¼ t0=N, one would have obtained
ð�m=�vacÞðtNÞ ¼ 0:61N2 for N large. Thus one has to go
very deep into the past to have a huge difference between
�m and �vac. Furthermore, at these very early times the
radiation plays a role and our model breaks down, perhaps

with jvaci being replaced by jdvaci of the next section.
An alternative way of summarizing what we have added

to the discussion of the cosmic coincidence problem is the
following: if one takes the point of view that the scale of
vacuum energy �vac is not determined by Planck scale
physics, but rather by current day physics, as in our model,
then there is much less of a need to explain any fine-tuning
in the very far past. All one needs is a high energy cutoff,
which is within the framework of low energy quantum
field theory as we currently understand it. In our model,
vacuum energy is a low energy, IR phenomenon, like the
Casimir effect, but is also influenced by UV physics, via
the cutoff.

III. VACUUM ENERGY PLUS RADIATION

A. Vacuum energy in the conformal time vacuum

In this section, we show that another choice of vacuum

jdvaci is consistent with a universe consisting only of vac-
uum energy and radiation, i.e., massless particles. The
quantization scheme is based on conformal time �, defined
as dt ¼ ad�. Like the choice in the last section, this also
simplifies the time dependence of the action (13), and is
common in the literature. (See for instance Refs. [31,32]
and references therein.) Rescaling the field � ¼ �=a, and
integrating by parts, the action becomes
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S¼
Z
d�d3x

�
1

2
@��@���1

2
~r� � ~r�þRa2

12
�2

�
; (32)

with the Ricci scalar R ¼ 6a00=a3, where primes indicate
derivatives with respect to conformal time �.

The field can be expanded in modes

� ¼
Z d3k

ð2�Þ3=2 ðakvke
ik�x þ aykv

	
ke

�ik�xÞ; (33)

where the ak’s satisfy canonical commutation relations as
before. The function vk is now required to satisfy

ð@2� þ b!2
kÞvk ¼ 0; b!2

k � k2 �Ra2=6: (34)

The analysis of the last section applies withA replaced by
R=6, which leads to

�cvac � �N

�
k2c

96�2
R� 1

4608�2
R2

�
: (35)

It is clear that jvaci � jdvaci since the vk � uk.
It is instructive to compare the above result with the

detailed point-splitting calculation performed in Ref. [10]
for de Sitter space. The regularization utilized there
insists on a finite answer and thus discards the k4c and
k2c term:

hT��iren ¼�g��

�
1

128�2
ð��1=6Þ2R2� 1

138240�2
R2

�
;

(36)

where � is an additional coupling to R� in the original
action. In our calculation � ¼ 0, and one sees that our
simple calculation reproduces the first R2 term. When
� ¼ 1=6 the theory is conformally invariant and the addi-
tional term is the conformal anomaly [33], which our
simple calculation has missed. This is not surprising, since
the anomaly depends on the spin of the field, and not
simply of opposite sign for bosons versus fermions. In
any case, in our approximation we are dropping the R2

terms. What this indicates is that the assumption (iv) in the
introduction is essentially correct if one carefully con-
structs the full stress tensor in a covariant manner, such
as by point splitting.

B. Consistent backreaction

In this case define the dimensionless constant

bg ¼ �N

3�
Gk2c (37)

such that

�cvac ¼ bg
32�G

R: (38)

Including �cvac in �, the first Friedmann equation then

becomes

�
1� bg

2

��
_a

a

�
2 � bg

2

€a

a
¼ 8�G

3
ð�m þ �radÞ: (39)

Similarly to what was found in the last section, a
consistent solution only exists when bg ¼ 1, but this time
with no matter, �m ¼ 0. First consider the case where
there is no radiation or matter. Then Eq. (39) implies
€a=a ¼ ð2� bgÞð _a=aÞ2=bg. Using this, the pressure can again
be found from Eq. (7):

pcvac ¼ �ð4� bgÞ
3bg �cvac: (40)

Consistency requires the equation of state parameter
w ¼ �1, i.e., bg ¼ 1. The solution is aðtÞ / eHt for some
constant H, and �cvac is independent of time.

Now, let us include radiation. At a fixed time ti define
�i ¼ 3H2=8�G where H is a constant equal to _a=a at the
time ti. Now we have to solve (when bg ¼ 1)

1

2H2

��
_a

a

�
2 � €a

a

�
¼ �rad

a4
; (41)

where �rad ¼ �rad=�i at the time ti where aðtiÞ ¼ 1.
The general solution, up to a time shift, is

aðtÞ ¼
�
�rad

�

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh ð2H ffiffiffi
�

p
tÞ

q
; (42)

where � is a free parameter. Surprisingly, again �cvac is still
a constant,

�cvac
�i

¼ �: (43)

However this is spoiled if there is matter present (see

below). At early times, radiation dominates, aðtÞ / t1=2,
and at later times vacuum energy dominates, aðtÞ /
exp ð ffiffiffi

�
p

HtÞ.
This choice of vacuum and self-consistent backreaction

is perhaps relevant to the very early universe which con-
sists primarily of radiation and no matter. In fact, at the
very earliest times,H is presumably set by the Planck time
tp ¼ 1=Ep, which is a much larger scale than H0 by many

orders of magnitude. In fact, since the only scale in �vac is
kc, we expect that higher orders in the adiabatic expansion
give H=kc of order 1 [34]. For kc near the Planck scale,
then H is roughly of the right scale for inflation. When
vacuum energy dominates, aðtÞ then grows exponentially
on a time scale consistent with the inflationary scenario
[35–37]. Here this is accomplished without invoking an
inflaton field. Many models of inflation typically suffer
from the ‘‘graceful exit problem,’’ i.e., inflation must
come to an end in a relatively short period of time. Based
on our work, we suggest the following scenario. Initially
there is only radiation and vacuum energy, which consis-
tently leads to inflation. However as matter is produced,
perhaps by particle creation from the vacuum energy, the

SCRUTINIZING THE COSMOLOGICAL CONSTANT . . . PHYSICAL REVIEW D 87, 063010 (2013)

063010-9



above solution is no longer consistent. Thus, jdvaci is no
longer a consistent vacuum, which suggests that �cvac
should somehow relax to zero. In support of this idea, we
numerically solved Eq. (41) with an additional matter con-
tribution on the right-hand side equal to�m=a

3. As expected
� bvac is no longer constant, but decreases in time as shown in

Fig. 2. Of course, we are already aware that Eq. (41) with an
additional�m � 0 is not consistent with Eq. (10) since for a
time varying � bvac the pressure p bvac � �� bvac; however this
plot does indeed show that � bvac decreases.

IV. DISCUSSION AND CONCLUSIONS

In this work we have proposed a different point of view
on the cosmological constant problem. In analogy with the
Casimir effect, we proposed the principle that empty
Minkowski space should be gravitationally stable in order
to fix the zero-point energy which is otherwise arbitrary.

In a FLRW cosmological geometry, this leads to a pre-
scription for defining a physical vacuum energy �vac which
depends on _a and €a. In the current era, this leads to a �vac

that is constant in time with �vac � k2cH
2
0 , which is the

correct order of magnitude in comparison to the measured
value if the cutoff kc is on the order of the Planck scale.
We described two different choices of vacua, and studied

the self-consistent backreaction of this vacuum energy on
the geometry. One choice of vacuum is consistent with the
current matter and dark energy dominated era. Another
choice of vacuum is consistent with the early universe
consisting of only radiation and vacuum energy, and we
suggested that this perhaps describes inflation, and also a
resolution to the graceful exit problem. Although our pro-
posals could certainly be further improved, their conse-
quences have at least survived a few checks. The role of
higher orders of the adiabatic expansion on the backreac-
tion should be better deciphered.
Both these consistent solutions require a relation be-

tween the cutoff kc and Newton’s constant G, and we
speculated above on possible interpretations of this rela-
tion. It remains unclear how to apply the ideas of this work
to the time period intermediate between inflation and the

current era, where in our scenario, jdvaci would somehow
evolve to jvaci, and this is clearly beyond the scope
of this paper.
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