
Future asymptotic behavior of a nontilted Bianchi type IV viscous model

Ikjyot Singh Kohli1,* and Michael C. Haslam2,†

1Department of Physics and Astronomy, York University, 328 Petrie Science and Engineering Building,
4700 Keele Street, Toronto, Ontario M3J 1P3, Canada

2Department of Mathematics and Statistics, York University, S621 Ross, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
(Received 17 January 2013; revised manuscript received 25 February 2013; published 18 March 2013)

The future asymptotic behavior of a nontitled Bianchi type IV viscous fluid model is analyzed.

In particular, we consider the case of a viscous fluid without heat conduction and constant expansion-

normalized bulk and shear viscosity coefficients. We show using dynamical systems theory that the only

future attracting equilibrium points are the flat Friedmann-LeMaitre solution, the open Friedmann-

LeMaitre solution, and the isotropic Milne universe solution. We also show the bifurcations exist with

respect to an increasing expansion-normalized bulk viscosity coefficient. It is finally shown through an

extensive numerical analysis that the dynamical system isotropizes at late times.
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I. INTRODUCTION

Spatially homogeneous and anisotropic models of the
Universe have undergone great study and continue to
remain amongst the most popular areas of research in
cosmology. Early-universe cosmological models for the
most part have assumed the Universe to be spatially homo-
geneous and anisotropic, with the important exception
being the case of inhomogenous models such as the
LeMaitre-Tolman-Bondi and ‘‘Swiss-cheese’’ models.
However, if one begins with the idea of the early universe
being spatially homogeneous and anisotropic, then to tran-
sition to the present-day Friedmann-LeMaitre-Robertson-
Walker models requires the anisotropy in the former
models to decay. The process by which this anisotropic
decay occurs is arguably the most fundamental property of
any early-universe model that aims to transition to the
present-day models. For example, Belinskii et al. [1]
studied the oscillatory approach to a singular point in
relativistic cosmologies. Misner [2] studied the anisotropic
decay of the vacuum Bianchi type IX/mixmaster models of
the Universe. A very general approach to describing the
isotropization of Bianchi models was described by Salucci
and Fabbri [3]. Coley and van den Hoogen [4] studied
causal anisotropic viscous fluid models and described con-
ditions for such models to isotropize. As for very recent
work on this subject, Pradhan et al. [5] studied the Bianchi
type V bulk viscous models and showed that such models
do isotropize for specific functional forms of the aniso-
tropic scale factors.

Viscous models have become of general interest in early-
universe cosmologies largely in two contexts. Grøn and
Hervik ([6], Chap. 13) discuss these in some detail. The
first relates through the idea of inflation through bulk
viscosity. In models where bulk viscous terms are

permitted to dominate, they drive the Universe into a de
Sitter-like state. Because of these processes, the models
isotropize indirectly through the massive expansion. Shear
viscosity is found to play an important role in universe
models with dissipative fluids. The dissipative processes
that result from shear viscous terms are thought to be highly
effective during the early stages of the Universe. In particu-
lar, neutrino viscosity is considered to be one of the most
important factors in the isotropization of our Universe.
As for Bianchi type IV models specifically, Hervik et al.

[7] studied future asymptotic behavior of tilted vacuum
Bianchi type IV models, and found that such models do not
necessarily isotropize at late times. Uggla and Rosquist [8]
studied the orthogonal Bianchi type IV model near the
initial singularity with a vacuum or perfect-fluid source.
We chose to study the isotropization behavior of the
Bianchi type IV viscous model largely because such a
study has not been taken on extensively in the literature,
and perhaps, such a study will add to the already rich
landscape of spatially homogeneous and anisotropic mod-
els of the early universe.
We will use the Hubble-normalized dynamical systems

approach based upon the theory of orthonormal frames
pioneered by Ellis and MacCallum [9], which reduces
the Einstein field equations, a coupled set of ten hyperbolic
nonlinear partial differential equations to a system of au-
tonomous nonlinear first-order ordinary differential equa-
tions. We will also provide a fixed-point analysis of the
dynamical system and make connections with the global
dynamics through sophisticated numerical experiments.

II. THE ENERGY-MOMENTUM TENSOR
FOR AVISCOUS FLUID

In this section, we will derive the form of the energy-
momentum tensor under concern, namely, for that of a
viscous fluid without heat conduction. Recall that the
energy-momentum tensor for a perfect fluid takes the form
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Tab ¼ ð�þ pÞuaub � ucucg
abp: (1)

For the moment, letting �þ p ¼ W , we obtain

Tab ¼ W uaub � ucucg
abp: (2)

Denoting the viscous contributions by V ab, we seek a
modification of Eq. (2) such that

Tab ¼ Wuaub � ucu
cgabpþV ab: (3)

To obtain the form of this additional tensor term, we note
that from classical fluid mechanics, the Euler equation is
given as

ð�uiÞ;t ¼ ��ik;k; (4)

where �ik is the momentum flux tensor. Also, recall
that for a nonviscous fluid, one has the fundamental
relationship

�ik ¼ p�ik þ �uiuk: (5)

We simply add a term to Eq. (5) that represents the viscous

momentum flux, ~�ik, to obtain

�ik ¼ p�ik þ �uiuk � ~�ik ¼ �Sik þ �uiuk: (6)

It is important to note that

Sik ¼ �p�ik þ ~�ik (7)

is the stress tensor, while ~�ik is the viscous stress tensor.
Note that, in what follows below, the viscous stress tensor
~�ik is not to be confused with �ik, the Hubble-normalized
shear tensor. The general form of the viscous stress tensor
can be formed by recalling that viscosity is formed when
the fluid particles move with respect to each other at differ-
ent velocities, so this stress tensor can only depend on
spatial components of the fluid velocity. We assume that
these gradients in the velocity are small, so that the mo-
mentum tensor only depends on the first derivatives of the

velocity in some Taylor series expansion. Therefore, ~�ik is
some function of the ui;k. In addition, when the fluid is in

rotation, no internal motions of particles can be occurring,
so we consider linear combinations of ui;k þ uk;i, which
clearly vanish for a fluid in rotation with some angular
velocity, �i. The most general viscous tensor that can be
formed is given by

~�ik ¼ �

�
ui;k þ uk;i � 2

3
�ikul;l

�
þ ��ikul;l; (8)

where� and � are the coefficients of shear and bulk/second
viscosity, respectively [10,11]. In Eq. (8), we note that
�ikul;l is an expansion rate tensor, and (ui;k þ uk;i �
2
3�ikul;l) represents the shear rate tensor. Since we would

like to generalize this expression to the general relativistic
case, we replace the partial derivatives above with
covariant derivatives, and the Kroenecker tensor with a

more general metric tensor, that is, �ik ! gik. We thus
have that

~�ik ¼ �

�
ui;k þ uk;i � 2

3
gikul;l

�
þ �gikul;l: (9)

Denoting the shear rate tensor as �ab, and the expansion
rate scalar as � � ua;a, Eq. (9) becomes

V ab ¼ �2��ab � ��hab: (10)

Since we are interested in the Hubble-normalized
approach, we will make use of the definition � � 3H,
where H is the Hubble parameter. This means that
Eq. (9) becomes

V ab ¼ �2��ab � 3�Hhab: (11)

Substituting Eq. (11) into Eq. (3) we finally obtain the
required form of the energy-momentum tensor as

Tab ¼ ð�þ pÞuaub � ucu
cgabp� 2��ab � 3�Hhab:

(12)

For simplicity, we shall let �ab ¼ �2��ab denote the
anisotropic stress tensor and commit to the metric signa-
ture ð�1;þ1;þ1;þ1Þ such that Eq. (12) takes the form

Tab ¼ ð�þ pÞuaub þ gabp� 3�Hhab þ �ab: (13)

III. BIANCHI TYPE IV UNIVERSE DYNAMICS

With the required energy-momentum tensor in hand, we
will now derive the Bianchi type IV dynamical equations.
The general evolution equations for any Bianchi type have
already been derived in Refs. [12–14], and we will simply
make use of their results in this section.
The general evolution equations in the expansion-

normalized variables are

�0
ij ¼ �ð2� qÞ�ij þ 2	kmði �jÞkRm � Sij þ�ij;

N0
ij ¼ qNij þ 2�k

ðiNjÞk þ 2	kmði NjÞkRm;

A0
i ¼ qAi ��j

iAj þ 	kmi AkRm;

�0 ¼ ð2q� 1Þ�� 3P� 1

3
�j

i�
i
j þ

2

3
AiQ

i;

Q0
i ¼ 2ðq� 1ÞQi ��j

iQj � 	kmi RkQm þ 3Aj�ij

þ 	kmi Nj
k�jm: (14)

These equations are subject to the constraints

Nj
i Aj ¼ 0; � ¼ 1� �2 � K;

Qi ¼ 3�k
i Ak � 	kmi �j

kNjm:
(15)

In Eqs. (14) and (15) we have made use of the following
notation:

IKJYOT SINGH KOHLI AND MICHAEL C. HASLAM PHYSICAL REVIEW D 87, 063006 (2013)

063006-2



ð�ij; R
i; Nij; AiÞ ¼ 1

H
ð�ij;�

i; nij; aiÞ;

ð�; P;Qi;�ijÞ ¼ 1

3H2
ð�;p; qi; �ijÞ:

(16)

In the expansion-normalized approach, �ab denotes the
kinematic shear tensor and describes the anisotropy in
the Hubble flow, Ai and Nij describe the spatial curvature,
while�i describes the relative orientation of the shear and
spatial curvature eigenframes. In addition, � and p denote
the total energy density and total effective pressure and are
found by evaluating

� ¼ uaubTab; p ¼ 1

3
habTab; (17)

where hab ¼ uaub þ gab denotes the projection tensor,
and ua the fluid four-velocity [13]. Since we are interested
in a nontilted cosmology, the fluid is taken to be geodesic
and irrotational and thus has four-velocity ua ¼ ð1; 0; 0; 0Þ.
We first note that the total energy density is indeed just �
as can be seen by applying the definition above. In addi-
tion, the total effective pressure is found from Eqs. (17) and
(13) to be

p ¼ 1

3
habTab ¼ ~p� 3�H; (18)

where ~p denotes the fluid pressure in the barotropic equa-
tion of state, such that ~p ¼ w�. This implies that

P ¼ w�� 3�0; (19)

where we have defined the equation of state

�

H
� 3�0; (20)

with �0 being a non-negative constant. Similarly, we find
that

�ab ¼ �2�0�ab; (21)

where �0 is a non-negative constant as defined by the
equation of state

�

H
¼ 3�0: (22)

From these definitions of the expansion-normalized shear
and bulk viscosity parameters, �0, �0, we would like to
stress that throughout the proceeding analysis, we consider
these parameters to be non-negative constants.

Since the fluid four-velocity is taken to be ua ¼
ð1; 0; 0; 0Þ, the quantity qa ¼ Qa3H

2 vanishes by
definition:

qa � �hbau
cTbc ¼ �ðuau0 þ �a

0ÞT00 ¼ 0: (23)

Our dynamical system evolves according to a dimen-
sionless time variable 
 such that

dt

d

¼ 1

H
; (24)

where H is the Hubble parameter. The deceleration
parameter q is very important in the expansion-normalized
approach, and through the evolution equation for H

H0 ¼ �ð1þ qÞH; (25)

one can show that q is defined as

q � 2�2 þ 1

2
ð�þ 3PÞ

¼ 1

3
ð�ab�

abÞ þ�

�
1

2
þ 3

2
w

�
� 9

2
�0;

(26)

where we have made use of Eq. (19) and the definition
�2 � 1

6 �
ab�ab.

Following the convention in Ref. [6], for the Bianchi
type IV models, we have

Ai ¼ A�i
3 � 0; N11 � 0; N22 ¼ N33 ¼ 0: (27)

Computing the evolution equations requires one to first
compute the Hubble-normalized spatial curvature
variables, Sij and K. According to (A.7) in Ref. [12],

we have that

Sab ¼ Bab � 1

3
Bu
u�ab � 2	uvða NbÞuAv;

K ¼ 1

12
Bu
u þ AuA

u;
(28)

where Bab � 2Nu
aNub � Nu

uNab. Evaluating these expres-
sions for the Bianchi IV model, we obtain

S11 ¼ 2

3
N11; S12 ¼ N11A;

S22 ¼ S33 ¼ �N2
11

3
; K ¼ A2 þ N2

11

12
:

(29)

The constraints in Eq. (15) imply that

�31 ¼ �32 ¼ 0; 3A�33 þ N11�21 ¼ 0; (30)

that is that �21 � 0. In addition, the �0
13 and �

0
23 equations

from Eqs. (14) imply that R1 ¼ R2 ¼ 0. Looking at theN0
12

equation from the same set implies that R3 ¼ �12. We have
therefore uniquely determined Ri in terms of �ij, and can

see that the independent expansion-normalized variables
are:�22,�33,�12, A, andN11. Taking advantage of the fact
that the shear tensor �ab is trace free, we will define new
variables as follows:

�þ ¼ ð�22 þ �33Þ; �� ¼ 1ffiffiffi
3

p ð�33 � �22Þ;

N1 ¼ N11; �3 ¼ 1ffiffiffi
3

p �12:
(31)

As mentioned in Refs. [12,14], the off-diagonal shear
component �3 determines the angular velocity of the
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spatial frame. The set of independent expansion-
normalized variables is then

ð�þ;��; N1; A;�3Þ: (32)

The evolution equations for these variables are

�0þ ¼ 2N2
1

3
� 4�2

3 þ �þ½�2þ q� 2�0�;

�0� ¼ 4�2
3ffiffiffi
3

p þ ��½q� 2ð1þ �0Þ�;

�0
3 ¼ �3

�
�ð2� qÞ þ 3

2
�þ �

ffiffiffi
3

p
2

�� � 2�0

�
� 1ffiffiffi

3
p N1;

N0
1 ¼ N1½q� 2�þ�; A0 ¼ A

�
q�

ffiffiffi
3

p
��
2

� �þ
2

�
;

(33)

where

q ¼ 2ð�2
3 þ�2� þ�2þÞ �

1

24
½12A2 þ N2

1

þ 12ð�1þ�2
3 þ�2� þ �2þÞ�ð1þ 3wÞ � 9�0

2
; (34)

with the constraint given by

gðxÞ ¼ 3

2
Að ffiffiffi

3
p

�� þ�þÞ þ
ffiffiffi
3

p
N1�3 ¼ 0: (35)

The state space is the subset of R5 defined by the physical
inequality � � 0, which is equivalent to

�2þ þ �2� þ�2
3 þ A2 þ 1

12
N2

1 � 1: (36)

This restriction indeed implies that the state space is
bounded.

We additionally find that the evolution equations (33)
have a transformation invariance such that

½�þ;��;�3; N1; A� ! ½�þ;��;�3;�N1;�A�: (37)

One can therefore assume without loss of generality that
N1 � 0 and A � 0.

IV. A LOCAL STABILITYANALYSIS

In this section, we consider the local stability of the
equilibrium points of the system (33) and (35). The critical
points are points x ¼ a that simultaneously satisfy

fðaÞ ¼ 0; gðaÞ ¼ 0; (38)

where f denotes the right-hand side of the system (33).
The local stability is determined by linearizing the system
(33) at x ¼ a, which leads to the relationship x0 ¼ DfðaÞx.
The stability of the system is then determined by finding
the eigenvalues and eigenvectors of the derivative matrix
DfðaÞ. Because of the constraint, we are to only
consider physical eigenvalues, that is, eigenvalues whose

corresponding eigenvectors are orthogonal to rgðaÞ.
The gradient of the constraint Eq. (35) is found to be

rgðxÞ ¼
�
3A

2
;
3

ffiffiffi
3

p
2

A;
ffiffiffi
3

p
N1;

ffiffiffi
3

p
�3;

3

2
ð ffiffiffi

3
p

�� þ�þÞ
�
:

(39)

A. Equilibrium point 1

The first equilibrium point is found to be

½�þ;��;�3; N1; A� ¼ ½0; 0; 0; 0; 0�: (40)

The cosmological parameters at this point take the form

� ¼ 1; q ¼ 1

2
ð1þ 3w� 9�0Þ; �2 ¼ 0; (41)

where

�0 � 0; �0 � 0; �1 � w � 1: (42)

The eigenvalues corresponding to this critical point are

�1 ¼ �2 ¼ 1

2
½1þ 3w� 9�0�;

�3 ¼ �4 ¼ �5 ¼ 1

2
½�3þ 3w� 4�0 � 9�0�:

(43)

This equilibrium point is a local sink (all of the eigenvalues
have negative real parts) if �0 � 0, and
��
0 � �0 � 4

9

�
^
�
�1 � w<

1

3
ð�1þ 9�0Þ

��

_
��
�0 >

4

9

�
^ ½�1 � w< 1�

�
: (44)

Based on the cosmological parameters (41), we see that
this equilibrium point represents a nonvacuum, flat
Friedmann-LeMaı̂tre (FL) universe [12,15]. An important
point to note is that q ¼ �1 when 0 � �0 � 2

3 and w ¼
3�0 � 1; thus, the equilibrium point in the domain defined
by these values of �0, �0, and w does not correspond to a
self-similar solution. In particular, if one chooses �0 ¼ 0
such that w ¼ �1, the corresponding model is locally the
de Sitter solution [14].

B. Equilibrium point 2

The second equilibrium point is found to be

½�þ;��;�3; N1; A� ¼
�
0; 0; 0; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3w� 9�0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3w

p
�
: (45)

The cosmological parameters at this point take the form

� ¼ 9�0

1þ 3w
; q ¼ 0; �2 ¼ 0: (46)

This equilibrium point represents a Bianchi type V
model if
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�0 � 0;

�
0� �0<

4

9

�
^
�
1

3
½�1þ 9�0�<w< 1

�
: (47)

The eigenvalues corresponding to this critical point are

�1 ¼ 0; �2 ¼ �3 ¼ �2ð1þ �0Þ;
�4 ¼ �1� 3wþ 9�0:

(48)

We see that this equilibrium point is a nonisolated
equilibrium point, in general, because �1 ¼ 0. Whether it
is a sink or a source depends on the signs of the other
eigenvalues. Note that, �2 ¼ �3 ¼ �2ð1þ �0Þ< 0,
8 �0 � 0, so the equilibrium classification depends on
�4 alone. In particular,

�4 ¼ �1� 3wþ 9�0 < 0

,
�
0 � �0 <

4

9

�
^
�
1

3
½�1þ 9�0�<w< 1

�
: (49)

Therefore, we see that, if and only if �4 < 0, this equilib-
rium point is a local sink (Sec. 4.3.4 [15]). One can also
show that given the restrictions in (47), �4 � 0, and �4.0.

An interesting point is that if one chooses �0 ¼ 0, then
A ¼ 1, � ¼ q ¼ �2 ¼ 0, and this equilibrium point rep-
resents the Milne universe.

C. Other possible equilibrium points

We should note that in addition to the equilibrium points
found above, there are additional ones that are purely
mathematical. We are forced to ignore these points on
physical grounds, because in order for � � 0, we would
have to have eitherN < 0, A < 0, �0 < 0,�0 < 0,w<�1,
or w> 1. The first pair violate the Bianchi type IV require-
ments, the second pair violate the requirement that any fluid
must have non-negative viscosity coefficients, and the last
pair violate the well-known equation of state restrictions in
cosmology. As a particular example, a fluid having an
equation of state for which w> 1 implies that the matter
under consideration has the speed of sound exceeding the
speed of light, which would violate relativity theory.

As argued by Hervik et al. [7], since we are only con-
cerned with the future asymptotic behavior of the Bianchi
type IV model, we will not be concerned with type I
vacuum equilibrium points for which N1 ¼ A ¼ � ¼ 0,
since for these models all of the equilibrium points are
Kasner circles of which none are stable in the future, that
is, they all represent local sources [7,15].

D. Bifurcation behavior

The physical equilibria found above are related to each
other by a sequence of bifurcations, which can be under-
stood as follows. The linearizations of the equations for N1

and A at the flat FL point are

N0
1 ¼

1

2
ð1þ 3w� 9�0ÞN1; A0 ¼ 1

2
ð1þ 3w� 9�0ÞA;

(50)

which show that N1 and A destabilize the flat FL point if
�0 ¼ 1

9 ð1þ 3wÞ, and that there is a bifurcation from the

Bianchi type V/open FL point to the Bianchi type I/flat FL
point, which can been seen from the ranges of �0 in Table I.
Further, the linearization of the A0 equation at the Bianchi
type V point is found to be

A0 ¼
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3w� 9�0

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3w

p
�
�þ �

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 9w� 27�0

p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3w

p
�
��

þ ð�1� 3wþ 9�0ÞA; (51)

which destabilizes the Bianchi type V point if �0 ¼
1
9 ð1þ 3wÞ and � 1

3 <w< 1. It is clear then that with

respect to this analysis, the line

�0 ¼ 1

9
ð1þ 3wÞ (52)

is very important as it governs the bifurcations of the
system. We give in Fig. 1 a useful summary diagram of
the bifurcation regions in terms of the viscosity
coefficients.

0

BI - Flat FL

0 4 9

BI - Flat FL

BV - Open FL
w

w
1 3 1 9 0

w = -1 + 3 0

de Sitter Solution

U i
Milne 

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

FIG. 1. Schematic view of the viscosity coefficients as related
to specific Bianchi type regions. Large white arrows indicate
bifurcation transitions in terms of increasing expansion-
normalized bulk-viscosity coefficient, where �0 is assumed to
be non-negative in general. Note how the different regions are
bounded by the lines w ¼ 1

3 ½�1þ 9�0� and �0 ¼ 4
9 . Also in-

dicated on the diagram by a thick black line is the line �0 ¼ 0 in
the Bianchi Type V (BV) region, which indicates Milne universe
solutions. For completeness, we have included the line w ¼
�1þ 3�0, which for 0 � �0 � 2

3 represents non-self-similar

solutions. In particular, the point �0 ¼ 0, w ¼ �1 represents
the de Sitter solution.
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V. LATE-TIME ASYMPTOTIC BEHAVIOR

The goal of this section is to complement the preceding
stability analysis of the equilibrium points with extensive
numerical experiments in order to confirm that the local
results are in fact global in nature.

By the Hartman-Grobman theorem for hyperbolic equi-
librium points, and the invariant manifold theorem for non-
isolated equilibrium points [15], we know that for any local
sink, any orbit that enters a sufficiently small neighborhood
of the sink approaches the sink as 
 ! 1 [12]. The numeri-
cal solutions to the dynamical system presented below also
provide strong evidence that for the given values of �0 and

w, the local sinks are the future attractors of the evolution
equations. For each numerical solution, we chose the initial
conditions such that the constraints (15) and (35), were
satisfied and are indicated by asterisks in the figures below.
For completeness, we have listed the initial conditions used
in Table I in the Appendix.

Although numerical integrations were done from

0 � 
 � 1000, for demonstration purposes, we presented

solutions for shorter time intervals. We completed numeri-

cal integrations of the dynamical system for physically

interesting cases of w equal to 0 (dust), 0.325 (a dust/

radiation mixture), and 1
3 (radiation).

A. �0 ¼ 4
9 , �0 ¼ 1, w ¼ 0 (dust)

−0.2
0

0.2
0.4

0.6

−0.2
−0.1

0
0.1

0.2
0.3

−0.05

0

0.05

0.1

0.15

0.2

Σ+Σ−

A

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Σ+

Σ−

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.05

0

0.05

0.1

0.15

0.2

Σ+, Σ−

A

Σ+
Σ−

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

τ

Σ+
Σ−

FIG. 2 (color online). Dynamical system behavior for �0 ¼ 4
9 , �0 ¼ 1, and w ¼ 0. The plus sign indicates the equilibrium point.

Notice how the equilibrium point in this case, the Bianchi type I/flat FL point, is indeed the local sink. The model also isotropizes as
can be seen from the last figure, where �� ! 0 as 
 ! 1.
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B. �0 ¼ 0:30, �0 ¼ 1, w ¼ 0:325 (dust/radiation mixture)
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FIG. 3 (color online). Dynamical system behavior for �0 ¼ 0:30, �0 ¼ 1, and w ¼ 0:325. The plus sign indicates the equilibrium
point. Notice how the equilibrium point in this case, the Bianchi type I/flat FL point, is indeed the local sink. The model also
isotropizes as can be seen from the last figure, where �� ! 0 as 
 ! 1.
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C. �0 ¼ 2, �0 ¼ 1
2 , w ¼ 1

3 (radiation)
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FIG. 4 (color online). Dynamical system behavior for �0 ¼ 2, �0 ¼ 1
2 , and w ¼ 1

3 . The plus sign indicates the equilibrium point.
Notice how the equilibrium point in this case, the Bianchi type I/flat FL point, is indeed the local sink. The model also isotropizes as
can be seen from the last figure, where �� ! 0 as 
 ! 1.
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D. �0 ¼ 0:05, �0 ¼ 1, w ¼ 0 (dust)
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FIG. 5 (color online). Dynamical system behavior for �0 ¼ 0:05, �0 ¼ 1, and w ¼ 0. The plus sign indicates the equilibrium point.
Notice how the equilibrium point in this case, the Bianchi type V/open FL point, is indeed the local sink. The model also isotropizes as
can be seen from the last figure, where �� ! 0 as 
 ! 1.
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E. �0 ¼ 0:15, �0 ¼ 1, w ¼ 0:325 (dust/radiation mixture)
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FIG. 6 (color online). Dynamical system behavior for �0 ¼ 0:15, �0 ¼ 1, and w ¼ 0:325. The plus sign indicates the equilibrium
point. Notice how the equilibrium point in this case, the Bianchi type V/open FL point, is indeed the local sink. The model also
isotropizes as can be seen from the last figure, where �� ! 0 as 
 ! 1.
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F. �0 ¼ 0, �0 ¼ 1, w ¼ 1
3 (radiation)

−0.4
−0.2

0
0.2

0.4
0.6

−0.2
−0.1

0
0.1

0.2
0.3

0

0.2

0.4

0.6

0.8

1

Σ+Σ−

A

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Σ+

Σ −

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Σ+, Σ−

A

Σ+
Σ−

0 50 100 150 200 250 300 350 400 450 500
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

τ

Σ+
Σ−

FIG. 7 (color online). Dynamical system behavior for �0 ¼ 0, �0 ¼ 1, and w ¼ 1
3 . The plus sign indicates the equilibrium point.

Notice how the equilibrium point in this case, the isotropic Milne universe, is indeed the local sink. The model also isotropizes as can
be seen from the last figure, where �� ! 0 as 
 ! 1.
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G. Interpretation of numerical results

In Figs. 2–4 we chose values for �0, �0, and w that
satisfied Eq. (44), such that we could model physically
interesting situations of dust, a radiation/dust mixture, and
radiation. It was clear from these figures that the dynamical
system had a local sink at the origin, corresponding
to the flat FL solution. It is also of interest to note that
the models isotropized asymptotically, as one would expect
from any models that asymptotically approach the FL
solutions.

In Figs. 5–7 we chose values for �0, �0, and w
that satisfied Eq. (49), such that we could model the physi-
cally interesting situations of dust, a radiation/dust mixture,
and radiation. It is clear from the numerical simulations that
were done over sufficiently long time scales that the models
had the Bianchi typeV/open FL solution as a local sink. The
models also were found to asymptotically isotropize.
Interestingly, in Fig. 7, where we chose �0 ¼ 0, which is
according to Eq. (49), then set A ¼ 1, the equilibrium point
represented the isotropic Milne universe. As one can see
from the numerical simulations, it is clear that isotropic
Milne universe is a local sink, which we will elaborate on
further in what follows.

In their detailed study of the asymptotic behavior of
Bianchi type class B models, Hewitt and Wainwright
[16] state two interesting conjectures that apply to our
present work. Both conjectures have to do with asymptotic
stability in a global sense. The first conjecture states that a
Bianchi type IV perfect fluid model with equation of state
parameter w satisfying�1<w<� 1

3 is asymptotic at late

times to the flat FL model. Looking at our inequality in
Eq. (44), we said that the viscous fluid Bianchi type IV
model has the flat FL solution as a local sink if 0 � �0 � 4

9

and �1 � w< 1
3 ð�1þ 9�0Þ. It is our assumption that

Hewitt and Wainwright’s conjecture only considered invis-
cid perfect fluid models, such that �0 ¼ �0 ¼ 0, as it is
well known that a perfect fluid can indeed include a bulk
viscous pressure. If one sets �0 ¼ �0 ¼ 0, the inequality in
Eq. (44) becomes �1 � w<� 1

3 , which would match the

findings of Hewitt and Wainwright. Of course, the second
inequality in Eq. (44) where �0 >

4
9 is not considered by

Hewitt and Wainwright, but the flat FL model is a local
sink in this region as well.

Hewitt and Wainwright’s second conjecture is that a
Bianchi type IV perfect fluid model with equation of state
parameter w satisfying � 1

3 <w< 1 is asymptotic at

late times to a plane-wave model. Once again, setting
�0 ¼ �0 ¼ 0 in Eq. (49), the inequality reduces to � 1

3 <

w< 1, which is precisely the domain under consideration
and Hewitt and Wainwright’s work. Our model, according
to Eq. (49), has a Bianchi type V model as a local sink
in this domain. Interestingly, the local sink represents an
open FL model if 0<A< 1, which is true if 0< �0 <

4
9 ,

and represents the Milne model if �0 ¼ 0, where A ¼ 1.

The Milne model is the isotropic limit of the Bianchi
type IV plane wave solutions [7], and so Hewitt and
Wainwright’s second conjecture is satisfied in this case
as well.
Therefore, there is strong evidence that Hewitt and

Wainwright’s conjectures for perfect, inviscid fluids can
be extended to models having viscous fluids, at least for the
viscous fluids considered in this paper with constant
expansion-normalized bulk and shear viscosity coeffi-
cients. Indeed, looking at the auxiliary equation for �0 in
Eqs. (14), we obtain

�0 ¼ ð2q� 1Þ�� 3w�þ 9�0

þ 2

3
�0

�
3�2

3 þ
9

2
�2� þ 1

2
�2þ

�
: (53)

Applying Eq. (26), we see that our equation for �0
becomes

�0 ¼ 1

3
½�0ð6�2

3 þ 9�2� þ�2þÞ þ 27�0 þ�ð�3þ 12�2
3

þ 12�2� þ 12�2þ � 9w� 27�0Þ þ�2ð3þ 9wÞ�:
(54)

Let us consider for the time being inflationary models
where �1 � w<� 1

3 and �> 0 as is done in Ref. [16].

We will also make the general assumption that �0 � 0,
�0 � 0. We see from Eq. (54) that

1

3
½�0ð6�2

3 þ 9�2� þ�2þÞ þ 27�0

þ�ð�3þ 12�2
3 þ 12�2� þ 12�2þ � 9w� 27�0Þ

þ�2ð3þ 9wÞ� ¼ 0; (55)

if � ¼ 1. We therefore can extend Hewitt and
Wainwright’s conjecture for inflationary models as fol-
lows. If �1 � w< 1

3 , �0 � 0, �0 � 0, and �> 0, then

for any orbit �, !ð�Þ ¼ PðIÞ, where PðIÞ characterizes the
flat FL point. We see from the calculation above that the
right side of Eq. (54) vanishes if� ¼ 1, which is precisely
the conclusion reached by Hewitt and Wainwright for
inviscid perfect fluids. Therefore, by the LaSalle invariance
principle, !ð�Þ � f� ¼ 1g. Since � was assumed to be
strictly increasing and � ¼ 1 denotes PðIÞ, it follows that
the nonvacuum Bianchi IV model under consideration here
is asymptotic in the future to the flat FL model and hence,
isotropizes.
For the case where � 1

3 <w< 1, the proof of the exis-

tence of asymptotic sinks is much more difficult. All we
have been able to do is provide some strong evidence for a
local sink through our computations of the eigenvalues in
Eqs. (47)–(49), which is further supported by the long-time
numerical solutions presented in Figs. 5–7.
As mentioned in the Introduction, Hervik, van den

Hoogen, and Coley studied the future asymptotic behavior
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of titled Bianchi type IV models with a perfect fluid.
We therefore find it appropriate to compare our results to
theirs in the limits of no viscosity and tilt. In this regard,
they also found as equilibrium points the following: the
Bianchi type I/flat FL solution, the Bianchi type V/open FL
solution, and as a special case of the Bianchi type IV, the
isotropic Milne solution. Indeed, they also found that for
� 1

3 <w< 1, the isotropic Milne solution is a stable future

attractor in the isotropic limit of the plane-wave equilib-
rium points of Bianchi type IV. They also confirmed that
for inflationary fluids, where �1<w<� 1

3 , the flat

Friedmann solution is indeed a stable future attractor [7],
which was also a conclusion reached by Hewitt, Bridson,
and Wainwright in their study of the titled Bianchi type II
models [12].

VI. CONCLUSIONS

We have used a dynamical systems approach combined
with a sophisticated numerical analysis to analyze the
future asymptotic behavior of a nontilted Bianchi type IV
viscous fluid model with constant non-negative expansion-
normalized shear and bulk viscosity coefficients. After
deriving the equations of motion, we proceeded with a
fixed-point analysis and found the corresponding equilib-
rium points. The future asymptotic behavior of the non-
titled Bianchi IV viscous fluid models can be summarized
as follows:

(1) �0 � 0, f½0��0 � 4
9�^ ½�1�w< 1

3ð�1þ9�0Þ�g_
f½�0>

4
9�^ ½�1�w<1�g: asymptotically flat FL.

(2) �0 � 0, f0< �0 <
4
9g ^ f13 ½�1þ 9�0�<w< 1g:

asymptotically open FL.
(3) �0 � 0, f�0 ¼ 0g ^ f� 1

3 <w< 1g: asymptotically

isotropic Milne universe (which is an isotropic limit
of the plane-wave equilibrium points of Bianchi
type IV [7]).

We also established that bifurcations exist such that
the spatial curvature destabilizes the flat FL point if

�0 ¼ 1
9 ð1þ 3wÞ and destabilizes the Bianchi type V point

if �0 ¼ 1
9 ð1þ 3wÞ and � 1

3 <w< 1.

Finally, we showed that for each numerical solution, our
Bianchi type IV model with constant viscous coefficients
isotropized at late times for the regions corresponding to
the flat FL, open FL, and isotropic Milne equilibrium
points.
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APPENDIX: TABLE OF INITIAL CONDITIONS

For completeness, we present in this section a table of
the initial conditions used in the preceding numerical
experiments.
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