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Recently, a lot of effort has been put into describing the thermalization of the quark-gluon plasma using

the gauge/gravity duality. In this context, we here present a full numerical solution of the early far-

from-equilibrium formation of the plasma, which is expanding radially in the transverse plane and is boost

invariant along the collision axis. This can model the early stage of a head-on relativistic heavy ion

collision. The resulting momentum distribution quickly reaches local equilibrium, after which it can be

evolved using ordinary hydrodynamics. We comment on general implications for these hydrodynamic

simulations, both for central and noncentral collisions, and including fluctuations in the initial state.
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I. INTRODUCTION

Describing the very early stage of a relativistic heavy ion
collision has remained challenging, in particular when the
state is far from equilibrium. In this stage, QCD is partially
strongly coupled and impossible to solve in general.
However, a lot of progress has been made by employing
a dual gravitational description (see Ref. [1] and its refer-
ences), the two seminal examples being fast thermalization
[2,3] and very small viscosity in the consequent hydro-
dynamic regime [4].

These dual descriptions have been studied for both near-
equilibrium [4–6] and (numerically) far-from-equilibrium
physics [3,7–12]. Yet these studies have always assumed
homogeneity in the transverse plane, which in particular
makes it impossible to study radial flow. Recently, Bantilan
et al. [13] have performed a simulation having both longi-
tudinal and radial expansion. However, in their setup, it
was not possible to have boost invariance in the longitudi-
nal direction, and more importantly, the evolution was
always in the hydrodynamic regime. In this paper, we
will present a numerical simulation having radial flow in
the transverse plane, boost invariance in the longitudinal
direction, and being far from equilibrium initially.

Essentially, we follow the numerical scheme worked out
in Ref. [8], but we assume boost invariance in the longitu-
dinal direction and allow for nontrivial radial dynamics in
the transverse plane. This keeps the gravitational problem
2þ 1 dimensional, which means it can be solved using
pseudospectral evolution. As initial conditions, we present
two simple models: the first starts with a blob of energy
with a diameter of approximately 14 fm in vacuum,
whereas the second has a blob of about 1 fm in a bath of
half the peak energy density. These initial states can model
the overall thermalization of a central collision and the
evolution of an initial fluctuation in such a collision.
(Fluctuations recently became a topic of much interest;

see, for instance, Ref. [14].) For the bulk metric, we started
with vacuum anti–de Sitter (AdS) but adapted the near-
boundary coefficients for the energy density and the pres-
sures according to the Glauber model.
The results of our simulations are both intuitive and

encouraging. Firstly, we find that our geometry thermalizes
very quickly, confirming previous studies. Secondly, our
radial velocity profile at the end of our evolution is similar
to typical initial conditions used for a hydrodynamical
evolution. So these radial velocities serve as a confirmation
that current hydrodynamic simulations do not have to be
modified dramatically, but they also provide an improve-
ment for hydrodynamic evolutions.

II. HOLOGRAPHIC MODEL

As our coordinates in the field theory, it is natural to use
proper time � and rapidity y, defined by t ¼ � cosh y and
xk ¼ � sinh y, and angular coordinates � and � in the

transverse plane. The assumptions of boost invariance
and rotational symmetry then imply that all functions are
independent of y and �. In these coordinates, the flat metric
of the field theory reads

ds2B ¼ �d�2 þ d�2 þ �2d�2 þ �2dy2: (1)

Given these symmetries and using generalized Eddington-
Finkelstein coordinates, we can write the dual bulk
metric as

ds2 ¼ �Ad�2 þ �2ðe�B�Cdy2 þ eBd�2 þ eCd�2Þ
þ 2drd�þ 2Fd�d�; (2)

where A, B, C, � and F are all functions of �, � and
the bulk radial coordinate r. Solving Einstein’s equations
(with cosmological constant � ¼ �6) order by order in r,
demanding that ds2jr¼1 ¼ r2ds2B, gives us the near-
boundary expansion of the bulk metric:*w.vanderschee@uu.nl
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where in these expressions we have fixed a residual gauge
freedom r ! rþ �ð�; �Þ by demanding @rAjr¼1 ¼ 2r.
The normalizable modes of the metric, a4, b4, c4 and f4,
depend on the full bulk geometry and cannot be determined
from a near-boundary expansion. Using the gauge/gravity
duality, we can now determine the stress tensor of the dual
field theory [15], which has five independent nonzero
components:
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all functions of � and �, where we set the number of colors
Nc ¼ 3. The conservation of the stress tensor implies that

@�a4 ¼ � 12�4ð�ð�@�f4 þ a4 þ b4 þ c4Þ þ �f4Þ � 4�
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�
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Our model basically contains two scales: the initial energy
density and the characteristic scale in the radial direction.
We can, however, make use of the scale invariance of
the field theory to rescale our coordinates such that at
� ¼ 0:6 fm the energy density at the origin equals
"0 ¼ 187 GeV=fm3 [16]. We choose this combination to
reproduce the final multiplicities of central heavy-ion col-
lisions at LHC [18]. For the radial profile, we then consider
two types of initial conditions, specified at some small time
�in � 0:12 fm [19]. The first is a model for a head-on
collision, where the shape of the energy density is provided
by the Glauber model, having an approximate radius of
6.5 fm. The second energy density profile models one
fluctuation in the initial state of such a collision. We take
a Gaussian of width 0.5 fm for this profile (see Fig. 1). For
both initial conditions, we assume that initially there is no
radial momentum, such that f4ð�in; �Þ ¼ 0.

Importantly, we must also specify the metric functions
Bðr; �in; �Þ and Cðr; �in; �Þ on a full time slice of the bulk

AdS geometry. These two functions, together with a4, f4
and the Einstein equations, specify the complete metric
and its time derivative on a time slice [8]. In principle,
these functions should follow from a model describing the
very first weakly coupled stage after the collision, such
as the Glauber model or the Color Glass Condensate.
However, these models themselves contain significant
uncertainties and, more importantly, it is not clear how to
map them to this gravitational setting. Therefore, we made
a simple choice, whereB andC are the same functions as in
vacuum AdS, but with modified b4 and c4, such that the
longitudinal pressure py vanishes initially.

Having specified the initial and boundary conditions, we
can solve Einstein’s equations numerically [20], using
essentially the same scheme as in Ref. [8]. One small
difference is in the required boundary conditions in the �
direction, which in this case means smoothness at the
origin and at infinity. As in Ref. [8], we added a small
(3%) regulator energy density and checked that our results
do not depend on this regulator.

III. RESULTS

After determining the stress tensor, one can extract the
radial velocity, defined by the boost after which there is no
momentum flow. Figure 2 shows this velocity times the
energy density, which gives a good measure of the mo-
mentum flow. The radial velocity, together with the stress
tensor in the local rest frame, can be used to compute the
stress tensor according to hydrodynamics. Although ini-
tially there will not be local equilibrium, at late times a
hydrodynamic expansion is expected to be valid. It is
therefore interesting to compare the actual pressures
with the pressures which follow from a hydrodynamic
expansion [21,22].
In Fig. 3, we plot the difference of p� and the corre-

sponding first-order hydrodynamic prediction of our model
of a nucleus. The stress tensor is excellently described by

FIG. 1 (color online). The initial energy density profiles at
�in ¼ 0:12 fm as a function of the distance to the origin. The
wide blue curve models a central heavy-ion collision; the narrow
red curve models a fluctuation in such a collision.
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hydrodynamics as soon as � ¼ 0:35 fm. At the border of
our nucleus this is slightly subtler, since the stress tensor is
rather small there, and it becomes comparable to our
regulator energy density. We therefore cannot say too
much about this, but the agreement with hydrodynamics
there is also encouraging. We note that in previous studies
[10,11], somewhat larger thermalization times (with re-
spect to the local temperature) were found, so we expect
more exotic initial conditions in our bulk AdS to give
somewhat later thermalization.
In Fig. 4(b), we plot the radial acceleration of our model

of a fluctuation. We notice the acceleration already de-
creases considerably during our simulation, in contrast
with the model for the nucleus. Also, the acceleration
increases rapidly near the origin, whereas for the nucleus
it is rather narrowly peaked near the boundary of the
nucleus. This means that fluctuations are expected to
spread out rather quickly. Perhaps surprisingly, the stress
tensor for the fluctuation is also governed by hydrodynam-
ics within 0.35 fm.

IV. DISCUSSION

The main motivation for this study is to provide a
description of the far-from-equilibrium stage of heavy-
ion collisions, including nontrivial dynamics in the trans-
verse plane. While we kept rotational symmetry in the
transverse plane, we believe our study can be used more
generally. One reason for this is an old result in asymptoti-
cally flat space [23], recently studied in asymptotically
AdS [11], that during black hole formation gravity can
be well approximated by linearizing around the final state.
We therefore believe that an initial energy profile with
many fluctuations could be well approximated by super-
posing the result of our fluctuation presented above.
Also, it should be possible to use our results for non-

central collisions. This can be seen by comparing with

FIG. 3 (color online). The difference between the full non-
equilibrium p� and the pressure given by first-order hydro-

dynamics. Although hydrodynamics applies very quickly, the
viscous contribution is still large (shown by red lines). The
relatively high values for � > 7 fm are a consequence of
the very small energy density. For the model of a fluctuation,
the graph is similar, with equally quick thermalization.

FIG. 4 (color online). (a) The radial acceleration of our nucleus model. The acceleration decreases after some time, which is mainly
a consequence of the decrease in radial pressure, due to the isotropization. Thereafter, the acceleration is quite steady and mainly
localized near the boundary of the nucleus. (b) The radial acceleration of our fluctuation model. Since the bump of energy is much
smaller, one can clearly see the spreading out and the decrease in acceleration. As will also be clear from Fig. 5, this model reaches a
lower radial speed than the model for the nucleus.

FIG. 2 (color online). The radial velocity times the energy
density as a function of proper time � and distance to the origin
� for ourmodel of a nucleus. Note that at late times, the increasing
velocity is almost exactly compensated by the decreasing energy
density (which is due to the longitudinal expansion). The slope at
the origin at the end of our simulation equals 0:66 GeV=fm4.
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Ref. [24]. There, they assume that the anisotropy is inde-
pendent of �, that the transverse pressures are equal and
that the velocity is approximately linear in time. Without
using any hydrodynamics, they used the conservation of
the stress tensor to arrive at the following local formula for
the transverse momentum of the stress tensor:

~s=" � �
~r?"0
2"0

ð�� �inÞ; (6)

where "0 is the initial energy density. This formula (see
Fig. 5) works remarkably well at early times, and also later
on, for the nucleus model. At later times, the transverse
velocities of fluctuations are smaller, which is due to the
decreasing acceleration [displayed in Fig. 4(b)]. This result
therefore increases confidence in the result of Ref. [24],

which can be used in less symmetric situations. When
including fluctuations, however, one should use hydrody-
namics as soon as � ¼ 0:4 fm to get more accurate results.
Apart from the well-known fact that the gauge/gravity

duality in our setting describes a supersymmetric theory at
infinite coupling and a large number of colors, there is
another reason why one should take care in applying our
results directly to experimental settings. Our initial bulk
metric should, in principle, follow from the way the ex-
perimental state was created. It is not clear how to do this,
and we therefore adopted a simple model, where the metric
is basically close to vacuum. In future work, we plan to
study the dependence of the outcomes on this initial state,
but preliminary findings suggest that the results do not
depend strongly on the initial bulk metric.
Even though our model is much simpler than a real

heavy-ion collision in QCD, we carried out a far-
from-equilibrium calculation at strong coupling with non-
trivial dynamics in the transverse plane. These results can
therefore be very useful as initial conditions for the hydro-
dynamic modeling of heavy-ion collisions. In particular,
the radial velocity at this initial time was basically un-
known, and it is hence usually taken to be zero. Our radial
velocities would be a more natural start for a hydro-
dynamic simulation. Although the final effect on experi-
mental observables would be rather moderate at the
moment, it will become increasingly important as the
experimental data improve.
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