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Padmanabhan [arXiv:1206.4916] argues that the cosmic acceleration can be understood from the perspec-

tive that spacetime dynamics is an emergence phenomena. By calculating the difference between the surface

degrees of freedom and the bulk degrees of freedom in a region of space, he also arrives at the Friedmann

equation in a flat universe. In this paper, by modification of his proposal, we are able to derive the Friedmann

equation of the Friedmann-Robertson-Walker universewith any spatial curvature.We also extend the study to

higher-dimensional spacetime and derive successfully the Friedmann equations not only in Einstein gravity

but also in Gauss-Bonnet and more general Lovelock gravity with any spatial curvature. This is the first

derivation of Friedmann equations in these gravity theories in a nonflat Friedmann-Robertson-Walker universe

by using the novel idea proposed by Padmanabhan. Our study indicates that the approach presented here is

powerful enough and further supports the viability of Padmanabhan’s perspective of emergence gravity.

DOI: 10.1103/PhysRevD.87.061501 PACS numbers: 04.20.Cv, 04.50.�h, 04.70.Dy

I. INTRODUCTION

Physicists have been speculating on the nature and origin
of gravity for a long time. Newton believed that gravity was
just a force like other forces of nature and did not affect
space. This was a general belief until Einstein presented his
theory of general relativity in 1915. According to Einstein’s
theory, gravity is just the spacetime curvature. In this new
picture, the matter field tells space (geometry) how to curve,
and the geometry tells matter how to move. Also, according
to the equivalence principle of general relativity, gravity is
just the dynamics of spacetime. This implies that gravity is
an emergent phenomenon.

In the 1970s, thermodynamics of black holes were
studied. According to laws of black holes mechanics, a
black hole can be regarded as a thermodynamical system
which has temperature proportional to its surface gravity
and an entropy proportional to its horizon area. This in-
dicates that geometrical quantities such as horizon area and
surface gravity are closely related to the thermodynamic
quantities like temperature and entropy. Is there a direct
connection between gravitational field equations describ-
ing the geometry of spacetime and the first law of thermo-
dynamics? Jacobson [1] was indeed the first who answered
this question by disclosing that Einstein’s field equations
can be derived by applying the Clausius relation �Q ¼
T�S on the horizon of spacetime. Here, �S is the change in
the entropy and �Q and T are, respectively, the energy flux
across the horizon and the Unruh temperature seen by an
accelerating observer just inside the horizon.

The next great step toward understanding the nature of
gravity was put forward in 2010 by Verlinde [2] who
claimed that gravity was not a fundamental interaction
but should be interpreted as an entropic force caused by

changes of entropy associated with the information on the
holographic screen. Applying the first principles, namely,
the holographic principle and the equipartition law of
energy, Verlinde derived Newton’s law of gravitation, the
Poisson equation, and in the relativistic regime the Einstein
field equations.Although inRef. [3], Padmanabhanobserved
that the equipartition law of energy for the horizon degrees
of freedom combined with the thermodynamic relation
S ¼ E=2T lead to Newton’s law of gravity, the idea that
gravitywas not a fundamental force and can be interpreted as
the entropic force was first pointed out by Verlinde [2].
Following Ref. [2], some attempts have been done to inves-
tigate the entropic origin of gravity in different setups (see
Refs. [4–11] and references therein). Nevertheless, there are
some critical comments on Verlinde’s proposal [12]. Strong
criticism against the entropic origin of gravity was presented
by Visser [13] who claimed that the interpretation of gravity
as an entropic force was untenable. According to Visser’s
arguments [13], if one would like to reformulate classical
Newtonian gravity in terms of an entropic force, then the
fact that Newtonian gravity is described by a conservative
force places significant constraints on the form of the entropy
and temperature functions.
Although Verlinde’s proposal has changed our under-

standing of the origin and nature of gravity, it considers the
gravitational field equations as the equations of emergent
phenomenon and leaves the spacetime as a background
geometric that already exists. Is it possible to regard the
spacetime itself as an emergent structure? Recently, by
calculating the difference between the surface degrees of
freedom and the bulk degrees of freedom in a region of
space, Padmanabhan [14] argued that spacetime dynamics
can be emerged. As a result, he was able to explain the
origin of the acceleration of the Universe expansion from
his new perspective [14]. According to Padmanabhan,
the spatial expansion of our Universe can be regarded as*asheykhi@shirazu.ac.ir
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the consequence of the emergence of space and the cosmic
space was emergent as the cosmic time progressed. Using
this new idea, Padmanabhan [14] derived the Friedmann
equation of a flat Friedmann-Robertson-Walker (FRW)
universe. Following Ref. [14], Cai obtained the
Friedmann equation of a higher-dimensional FRW uni-
verse. By properly modifying the effective volume and
the number of degrees of freedom on the holographic
surface from the entropy formulas of static spherically
symmetric black holes, he also derived successfully the
corresponding dynamical equations of the Universe in
Gauss-Bonnet and more general Lovelock cosmology
[15]. Similar derivations were also made by the authors
of Ref. [16]. They obtained the Friedmann equations of
a flat FRW universe in Gauss-Bonnet and Lovelock cos-
mology from the generalized law governing the emergence
of space [16]. Instead of modifying the number of degrees
of freedom on the holographic surface of the Hubble
sphere and the volume increase, the authors of Ref. [16]
assumed that (dV=dt) was proportional to a function
fð4NÞ. Here 4N ¼ Nsur � Nbulk, where Nsur is the num-
ber of degrees of freedom on the boundary, and Nbulk is the
number of degrees of freedom in the bulk. When the
volume of the spacetime is constant, the function fð4NÞ
is equal to zero. It is worth mentioning that the authors of
Refs. [15,16] only derived the Friedmann equations of
the spatially flat FRW universe in Gauss-Bonnet and
Lovelock gravities, and failed to arrive at Friedmann equa-
tions with any spatial curvature in these gravity theories.
For this purpose, they proposed the Hawking temperature
associated with the Hubble horizon to be T ¼ H=2� and
the volume of the Universe V ¼ 4�H�3=3.

In this paper, by modifying the original proposal of
Padmanabhan [14], we are able to derive the Friedmann
equation of the FRW universe with any spatial curvature.
Note that in a nonflat universe, the Hawking temperature
and the volume are usually taken as T ¼ 1=2�~rA and
V ¼ 4�~r3A=3, respectively, where ~rA is the apparent hori-

zon radius [17]. We also generalize the study to the higher-
dimensional spacetime and higher order gravities, and
derive the corresponding dynamical equations governing
the evolution of the Universe with any spatial curvature
not only in Einstein gravity but also in Gauss-Bonnet
and more general Lovelock gravity. For consistency, in
all cases we set the integration constant equal to zero. In
the next section we extract the Friedmann equation by
properly modifying the proposal of Ref. [14]. In Sec. III,
we extend our study to higher order gravity theory in
arbitrary dimension. We summarize our results in Sec. IV.

II. FRIEDMANN EQUATION IN 4D
EINSTEIN GRAVITY

We assume the background spacetime is spatially
homogeneous and isotropic, which is described by the
line element

ds2 ¼ habdx
adxb þ ~r2ðd�2 þ sin 2�d�2Þ; (1)

where ~r ¼ aðtÞr, x0 ¼ t, x1 ¼ r, and the two-dimensional
metric is hab ¼ diagð�1; a2=ð1� kr2ÞÞ. Here k denotes
the curvature of space with k ¼ 0, 1, �1 corresponding
to flat, closed, and open universes, respectively. The dy-
namical apparent horizon, a marginally trapped surface
with vanishing expansion, is determined by the relation
hab@a~r@b~r ¼ 0. For a dynamical spacetime, the apparent
horizon has been argued to be a causal horizon and is
associated with the gravitational entropy and surface grav-
ity [18]. A simple calculation gives the apparent horizon
radius for the FRW universe as [19]

~rA ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ k=a2

p ; (2)

where H ¼ _a=a is the Hubble parameter. It is widely ac-
cepted that the apparent horizon is a suitable boundary of
our Universe from a thermodynamic viewpoint, for which
all laws of thermodynamics are held. Thermodynamical
properties of the apparent horizon has been studied in differ-
ent setups [20–22]. Following Ref. [14], we assume the
number of degrees of freedom on the spherical surface of
apparent horizon with radius ~rA is proportional to its area
and is given by

Nsur ¼ 4S ¼ 4�~r2A
L2
p

; (3)

where Lp is the Planck length, A ¼ 4�~r2A represents the

area of the apparent horizon, and S is the entropy which
obeys the area law. Assume the temperature associated with
the apparent horizon is the Hawking temperature [17]

T ¼ 1

2�~rA
; (4)

and the energy contained inside the sphere with volume
V ¼ 4�~r3A=3 is the Komar energy

EKomar ¼ jð�þ 3pÞjV: (5)

According to the equipartition law of energy, the bulk
degrees of freedom obey

Nbulk ¼ 2jEKomarj
T

: (6)

Through this paper we set kB ¼ 1 ¼ c ¼ ℏ for simplicity.
The novel idea of Padmanabhan is that the cosmic expan-
sion, conceptually equivalent to the emergence of space, is
being driven towards holographic equipartition, and the
basic law governing the emergence of space must relate
the emergence of space to the difference between the num-
ber of degrees of freedom in the holographic surface and the
one in the emerged bulk [14]. He proposed that in an
infinitesimal interval dt of cosmic time, the increase dV of
the cosmic volume in flat universe was given by
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dV

dt
¼ L2

pðNsur � NbulkÞ: (7)

In general, one may expect dV=dt to be some function of
(Nsur � Nbulk) which vanishes when the latter does. In this
case one may regard Eq. (7) as a Taylor series expansion of
this function truncated at the first order [14]. This approach
was studied recently [16].

Motivated by (7), we propose the volume increase in a
nonflat FRW universe is still proportional to the difference
between the number of degrees of freedom on the apparent
horizon and in the bulk, but the function of proportionality is
not just a constant, and it is equal to the ratio of the apparent
horizon and Hubble radius. Therefore, we write down

dV

dt
¼ L2

p

~rA
H�1

ðNsur � NbulkÞ: (8)

It is well known that for pure de Sitter spacetime the number
of degrees of freedom in a bulk and the number of degrees
of freedom on the boundary surface are equal, namely,
Nsur ¼ Nbulk [14]. Since our Universe is not exactly de
Sitter but is asymptotically de Sitter, Padmanabhan thus
proposed [14] for our Universe

dV

dt
/ ðNsur � NbulkÞ: (9)

In order to arrive at the desired dynamical equations for
the FRW universe in Einstein gravity, he assumed that
the constant of proportionality was L2

p. For a nonflat uni-

verse and other gravity theories, the assumption (7) does not
work, and we found out that it should be modified as in
Eq. (8). One may regard the assumption (8) to the status of a
postulate and verify whether it can lead to the correct
Friedmann equations describing the evolution of the
Universe. In this paper, we will show that with this modifi-
cation, we are able to extract the Friedmann equations with
any spatial curvature in Einstein, Gauss-Bonnet, and more
general Lovelock gravity. This may justify the correctness
of our assumption in (8). For a spatially flat universe,
~rA ¼ H�1, and one recovers the proposal (7).
Taking the time derivative of the cosmic volume

V ¼ 4�~r3A=3, we have

dV

dt
¼ 4�~r2A _~rA: (10)

Substituting the cosmic volume V and the temperature (4)
in Eq. (6), we find the numbers of degrees of freedom in the
bulk as

Nbulk ¼ � 16�2

3
ð�þ 3pÞ~r4A: (11)

In order to have Nbulk > 0, we take �þ 3p < 0 [14].
Substituting Eqs. (3), (10), and (11) into (8), we arrive at

4�~r2A _~rA ¼ L2
p

~rA
H�1

"
4�~r2A
L2
p

þ 16�2

3
ð�þ 3pÞ~r4A

#
: (12)

Rearranging the terms, we obtain

4�~r2Að _~rAH�1 � ~rAÞ ¼
16�2L2

p

3
ð�þ 3pÞ~r5A; (13)

which can be simplified as

~r�3
A ð _~rAH�1 � ~rAÞ ¼

4�L2
p

3
½3ð�þ pÞ � 2��: (14)

Using the continuity equation, _�þ 3Hð�þ pÞ ¼ 0, we
reach

~r�3
A ð _~rAH�1 � ~rAÞ ¼ � 4�L2

p

3
½ _�H�1 þ 2��: (15)

Multiplying both sides of (15) by factor 2 _aa, and using the
fact that H�1 ¼ a= _a, we get

2 _aa~r�2
A � 2a2 _~rA~r

�3
A ¼ 8�L2

p

3
½ _�a2 þ 2� _aa�: (16)

The above equation can be further rewritten as

d

dt
ða2~r�2

A Þ ¼ d

dt

�
a2
�
H2 þ k

a2

��
¼ 8�L2

p

3

d

dt
ð�a2Þ; (17)

where we have also used relation (2). Integrating, we
obtain

H2 þ k

a2
¼ 8�L2

p

3
�; (18)

where we have set the integration constant equal to zero.
In this way we derive the Friedmann equation of the FRW
universe with any spatial curvature by calculating the differ-
ence between the number of degrees of freedom in the bulk
and on the apparent horizon. Let us stress here the difference
between our derivation and ones presented in Refs. [15,16].
The authors of Refs. [15,16] arrived at (18) by using proposal
[14] given byEq. (7) and interpreting the integration constant
as the special curvature, whilewe arrive at the same result by
modifying the proposal of Ref. [14] in the form of (8) and
setting the integration constant equal to zero.

III. FRIEDMANN EQUATION IN GAUSS-BONNET
AND LOVELOCK GRAVITY

In this section, we apply the approach developed in the
previous section to derive the Friedmann equations inGauss-
Bonnet and more general Lovelock gravity with any spatial
curvature. This is the first derivation of Friedmann equations
in these gravity theories in a nonflat FRW universe by using
the novel idea presented in Ref. [14]. We first extend the
approach of the previous section to the (nþ 1)-dimensional
spacetime. In this case the number of degrees of freedom on
the apparent horizon turn out to be [15]

Nsur ¼ �
A

L2
p

; (19)
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whereA ¼ n�n~r
n�1
A and� ¼ ðn� 1Þ=2ðn� 2Þ, where�n

is thevolume of a unitn-sphere.We alsomodify our proposal
in (8) a little as

�
dV

dt
¼ Ln�1

p

~rA
H�1

ðNsur � NbulkÞ; (20)

where the volume of the n-sphere is V ¼ �n~r
n
A. The bulk

Komar energy in (nþ 1) dimensions is given by [23]

EKomar ¼ ðn� 2Þ�þ np

n� 2
V; (21)

and hence the bulk degrees of freedom is obtained as

Nbulk ¼ �4��n~r
nþ1
A

ðn� 2Þ�þ np

n� 2
; (22)

wherewe take ðn� 2Þ�þ np < 0 in order tohaveNbulk > 0
[14]. Substituting Eqs. (19) and (22) in relation (20), one gets

~r�2
A � _~rAH

�1~r�3
A ¼ � 8�Ln�1

p

nðn� 1Þ ½ðn� 2Þ�þ np�: (23)

Multiplying both sides by factor 2 _aa after using the continu-
ity equation in (nþ 1) dimensions as

_�þ nHð�þ pÞ ¼ 0; (24)

we arrive at

d

dt

�
a2
�
H2 þ k

a2

��
¼ 16�Ln�1

p

nðn� 1Þ
d

dt
ð�a2Þ: (25)

Integrating, we find

H2 þ k

a2
¼ 16�Ln�1

p

nðn� 1Þ �; (26)

wherewe have set the integration constant equal to zero. This
is the Friedmann equation of (nþ 1)-dimensional FRW
universe with any spatial curvature [17].

Up to now we only considered Einstein gravity and
derived the corresponding Friedmann equations in a uni-
verse with spatial curvature. Now we want to see whether
or not the above procedure works in other gravity theories
such as the Gauss-Bonnet and more general Lovelock
gravity. Lovelock gravity is the most general Lagrangian
which keeps the field equations of motion for the metric of
second order as the pure Einstein-Hilbert action [24]. Let
us first consider the Gauss-Bonnet theory. The key point
which should be noticed here is that in Gauss-Bonnet
gravity the entropy of the holographic screen does not
obey the area law. Static black hole solutions of Gauss-
Bonnet gravity have been found and their thermodynamics
have been investigated in ample details [25,26]. The en-
tropy of the static spherically symmetric black hole in
Gauss-Bonnet theory has the following expression [26]:

S ¼ Aþ
4Ln�1

p

�
1þ n� 1

n� 3

2~�

r2þ

�
; (27)

where Aþ¼n�nr
n�1þ is the horizon area and rþ is the

horizon radius. In the above expression, ~�¼ðn�2Þ�
ðn�3Þ�, where � is the Gauss-Bonnet coefficient which
is positive [25]. For n ¼ 3we have ~� ¼ 0; thus, the Gauss-
Bonnet correction term contributes only for n � 4. We
assume the entropy expression (27) also holds for the
apparent horizon of the FRW universe in Gauss-Bonnet
gravity. The only change we need to apply is the replace-
ment of the horizon radius rþ with the apparent horizon
radius ~rA, namely,

S ¼ A

4Ln�1
p

�
1þ n� 1

n� 3

2~�

~r2A

�
; (28)

where A ¼ n�n~r
n�1
A is the apparent horizon area. We

define the effective area of the holographic surface corre-
sponding to the entropy (28) as

~A ¼ n�n~r
n�1
A

�
1þ n� 1

n� 3

2~�

~r2A

�
: (29)

Now we calculate the increase in the effective volume as

d ~V

dt
¼ ~rA

ðn� 1Þ
d ~A

dt
¼ n�n

_~rA~r
n�1
A ð1þ 2~�~r�2

A Þ (30)

¼ � n�n~r
nþ2
A

2

d

dt
ð~r�2

A þ ~�~r�4
A Þ: (31)

Inspired by (31), we propose that the number of degrees of
freedom on the apparent horizon in Gauss-Bonnet gravity
is given by

Nsur ¼ �n�n~r
nþ1
A

Ln�1
p

ð~r�2
A þ ~�~r�4

A Þ: (32)

The bulk degrees of freedom is still given by (22). Inserting
Eqs. (22), (30), and (32) in relation (20), with replacing
V ! ~V, we obtain

ð~r�2
A þ ~�~r�4

A Þ � _~rAH
�1~r�3

A ð1þ 2~�~r�2
A Þ (33)

¼ � 8�Ln�1
p

nðn� 1Þ ½ðn� 2Þ�þ np�: (34)

Multiplying both sides of (34) by factor 2 _aa, with the help
of continuity equation (24) and relation (2), we get

d

dt

�
a2
�
H2 þ k

a2
þ ~�

�
H2 þ k

a2

�
2
��

¼ 16�Ln�1
p

nðn� 1Þ
d

dt
ð�a2Þ:

(35)

Integrating, we find

H2 þ k

a2
þ ~�

�
H2 þ k

a2

�
2 ¼ 16�Ln�1

p

nðn� 1Þ �; (36)

where again we have set the integration constant equal
to zero. This is indeed the corresponding Friedmann equa-
tion of the FRW universe with any spatial curvature in
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Gauss-Bonnet gravity [17]. Note that the authors of
Refs. [15,16] could derive the above equation only in a
flat FRW universe, while we derive it with arbitrary spatial
curvature. This may show the viability of our proposal (20).

Finally, we consider the more general Lovelock gravity.
The entropy of the spherically symmetric black hole solu-
tions in Lovelock theory can be expressed as [27]

S ¼ Aþ
4Ln�1

p

Xm
i¼1

iðn� 1Þ
ðn� 2iþ 1Þ ĉir

2�2iþ ; (37)

where m ¼ ½n=2� and the coefficients ĉi are given by

ĉ0 ¼ c0
nðn� 1Þ ; ĉ1 ¼ 1;

ĉi ¼ ci
Y2m
j¼3

ðnþ 1� jÞ i > 1:

(38)

We further assume the entropy expression (37) is valid for
a FRW universe bounded by the apparent horizon in the
Lovelock gravity, provided we replace the horizon radius
rþ with the apparent horizon radius ~rA, namely,

S ¼ A

4Ln�1
p

Xm
i¼1

iðn� 1Þ
ðn� 2iþ 1Þ ĉi~r

2�2i
A : (39)

It is easy to show that the first term in the above expression
leads to the well-known area law. The second term yields
the apparent horizon entropy in Gauss-Bonnet gravity. We
suppose from the entropy expression that the effective area
of the apparent horizon in Lovelock gravity is given by

~A ¼ n�n~r
n�1
A

Xm
i¼1

iðn� 1Þ
ðn� 2iþ 1Þ ĉi~r

2�2i
A ; (40)

and the increase of the effective volume is then given by

d ~V

dt
¼ ~rA

ðn� 1Þ
d ~A

dt
¼ n�n~r

nþ1
A

�Xm
i¼1

iĉi~r
�2i
A

�
_~rA (41)

¼ � n�n~r
nþ2
A

2

d

dt

�Xm
i¼1

ĉi~r
�2i
A

�
: (42)

In this case, we assume from (42) that the number of
degrees of freedom on the apparent horizon in Lovelock
gravity is

Nsur ¼ �n�n

Ln�1
p

~rnþ1
A

Xm
i¼1

ĉi~r
�2i
A : (43)

Substituting (22), (41), and (43) into (20), we reach

Xm
i¼1

ĉi~r
�2i
A � _~rAH

�1
Xm
i¼1

iĉi~r
�2i�1
A (44)

¼ � 8�Ln�1
p

nðn� 1Þ ½ðn� 2Þ�þ np�: (45)

Multiplying both sides by factor 2 _aa, after using the con-
tinuity equation (24) as well as definition (2), we obtain

d

dt

"
a2

Xm
i¼1

ĉi

�
H2 þ k

a2

�
i
#
¼ 16�Ln�1

p

nðn� 1Þ
d

dt
ð�a2Þ: (46)

After integrating and setting the constant of integration
equal to zero, we find the corresponding Friedmann equa-
tion of the FRW universe with any spatial curvature in
Lovelock gravity,

Xm
i¼1

ĉi

�
H2 þ k

a2

�
i ¼ 16�Ln�1

p

nðn� 1Þ �: (47)

This is exactly the result obtained in Ref. [17] by applying
the first law of thermodynamics on the apparent horizon
of the FRW universe in Lovelock gravity. Here we arrived
at the same result by using a quite different approach. This
indicates that given the entropy expression at hand, one is
able to reproduce the corresponding dynamical equation
with any spatial curvature by applying the proposal (20).

IV. SUMMARYAND DISCUSSION

We have investigated the novel idea recently proposed
by Padmanabhan [14], which stated that the emergence of
space and universe expansion can be understood by calcu-
lating the difference between the number of degrees of
freedom on the Hubble horizon and the one in the emerged
bulk. Applying this idea to a flat FRW universe with
Hubble horizon, he derived the dynamical equation de-
scribing the evolution of the Universe [14]. In this paper,
by proper modification his idea, we derived the Friedmann
equation of a FRWuniverse with any spatial curvature. Our
approach not only worked in Einstein gravity but also
worked very well in Gauss-Bonnet and more general
Lovelock gravity. The key assumption here was that in a
nonflat universe, the volume increase was still proportional
to the difference between the number of degrees of free-
dom on the apparent horizon and in the bulk, but the
function of proportionality was not just the constant L2

p;

instead, it equaled the ratio of the apparent horizon radius
and the Hubble radius, i.e., L2

p~rA=H
�1.

It is important to note that Padmanabhan’s proposal (7)
can lead to the Friedmann equation with spatial curvature
only in Einstein gravity [15,16]. The main result of the
present work was that the modified proposal (8) can lead to
the Friedmann equations of the FRW universe with any
spatial curvature in higher order gravity theories. Indeed,
while the authors of Refs. [15,16] interpreted the integra-
tion constant as the spatial curvature k in Einstein gravity,
they failed to interpret the constant of integration as the
spatial curvature in the cases of Gauss-Bonnet and Lovelock
gravities. As a result, in Gauss-Bonnet and Lovelock gravity,
with proposal (7), they could only derive the Friedmann
equations of the flat universe. This was due to the fact that in
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Einstein gravity, the de Sitter universe can be described
either by k ¼ 0 or k ¼ 1.

In summary, given the entropy expression at hand, one
can reproduce the corresponding dynamical equation of the
FRWuniverse with any spatial curvature by calculating the
difference between the horizon degrees of freedom and
the bulk degrees of freedom in a region of space and apply
the proposal (8). The results obtained in this paper together
with those of Refs. [15,16] further supported the new
proposal of Padmanabhan [14] and its modification as (8)
and showed that this approach was powerful enough to

apply for deriving the dynamical equations describing the
evolution of the Universe in other gravity theories with any
spatial curvature.
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