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Tensor modes in the cosmic microwave background are one of the most robust signatures of inflation.

We derive theoretical bounds on the tensor fraction, as a generalization of the well-known Lyth bound.

Under reasonable assumptions, the new bounds are at least 2 orders of magnitude stronger than the

original one. We comment on a previously derived generalization, the so-called Efstathiou-Mack

relationship. We also derive a new absolute upper bound on tensors using de Sitter entropy bounds.
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I. INTRODUCTION

Understanding the initial conditions that led to structure
formation in our Universe is one of the most important
issues in modern cosmology. Among the variety of avail-
able scenarios, inflation occupies a special place. In addi-
tion to being a theoretically attractive paradigm, it is
compatible with all the available observational data. In its
simplest version, single field slow-roll inflation is realized
through a canonically normalized scalar field minimally
coupled to Einstein gravity. To match with observations,
the height and the slope of the potential have to obey
special relationships. However, in most of the models, the
excursion of the scalar field (inflaton) is at least of the

order of the reduced Planck scale1 MP ¼ ð8�GNÞ�1=2.
Such large excursions potentially undermine the validity
of effective field theory used to derive the predictions. This
is especially important when considering the fact that
quantum gravity corrections are likely to spoil the delicate
balance between the height and the slope of the potential
once the inflaton is allowed to travel over Planckian dis-
tances in field space.2 Inflation, in this sense, is unique
because it is doubly UV sensitive: first because of the mass
of the inflaton owing to its scalar nature, and second
because of the unavoidable proliferation of dangerous
UV-suppressed operators. Of course, supersymmetry
addresses the first issue; however, the fine-tuning of the
infinite tower of Planck-suppressed operators inevitably
remains.

On the other hand, inflation predicts a stochastic back-
ground of gravitational waves (GWs) whose magnitude is
related to the energy scale of inflation [1] and, more
importantly, to the inflaton excursion [2]. According to
the Lyth bound [2], positive detection of tensors would
mean super-Planckian values of the inflaton, which is
clearly interesting both from the model building standpoint
and from the observational one. This would also imply

serious conceptual rethinking about effective field theory.
Given the fact that inflation offers an unequal and unique
opportunity to access the Planck scale, and in the absence
of experimental guidance on that question, it is important
to use theoretical consistency to make some progress. In
this article, we scrutinize this issue and derive theoretical
bounds on the tensor fraction.

II. THE BOUNDS

We begin by recalling the necessary conditions under
which the bounds hold. First, we assume that gravity is
described by Einstein general relativity (GR) and that
inflation is of the slow-roll variety defined by the usual
flatness conditions

� � 1

2
M2

PjV 0=Vj2 � 1 and j�j � M2
PjV 00=Vj � 1;

(1)

together with the slow-roll approximations 3H _� ’
�V 0ð�Þ and 3H2M2

P ’ Vð�Þ, where H is the Hubble
rate. Second, we assume that the primordial curvature
perturbation � , which is constant on superhorizon scales,
is produced through the vacuum fluctuation of one or more
light scalar fields. Using this approximation we can com-
pute the spectrum of curvature perturbations produced by

the inflaton P � ðkÞ1=2 ¼ H2=2� _�. In the case of a single

field, which we assume from now on, the latter quantity
should be equated with the observed value �5� 10�5.
The scalar index ns is given in the slow-roll approximation
by ns ¼ 1þ 2�� � 6��, where the subscript � means
quantities are evaluated at horizon exit. The latest
Wilkinson Microwave Anisotropy Probe (WMAP) 7 yr
data set [3]

ns ¼ 0:963� 0:012 68%CL; (2)

excludes the Harrison-Zeldovich-Peebles spectrum by
more than 3� and strongly favors a red tilt. On the other
hand, the tensor-to-scalar ratio r � 16�� is subject to the
bound [3] r < 0:24 at 95% C.L. (WMAPþ BAOþH0).
As wewill see, these bounds are already quite constraining.

1Throughout the paper, we are using natural units ℏ ¼ c ¼ 1.
2Notice that, in addition to spoiling the flatness of the poten-

tial, nonrenormalizable operators �n�
nþ4=Mn

P (with n � 1) will
make the energy density 	 M4

P once the inflaton takes super-
Planckian values.
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For instance, hybrid models based on Vð�Þ ¼ V0 þ
m2�2=2, with m2 > 0, are ruled out because of their blue-
tilted spectrum. Chaotic models based on V / �p, with
p � 4, are also ruled out by this bound, at least at the 3�
level. We will focus hereafter on models that are still not
excluded by WMAP, namely, chaotic models with p < 4
and hilltop models Vð�Þ ¼ V0 � �n�

n with n � 2.

A. Extended Lyth bounds

Our starting point to derive the bounds is the definition
of the classical3 number of e-folds

dN ¼ M�1
P d�=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2�ð�Þ
q

: (3)

The total number of e-folds is obtained as usual by inte-
grating Eq. (3) starting from horizon exit to the end of
inflation. The original bound [2] was derived by integrating
Eq. (3) for modes corresponding to the multipoles 2< ‘ &
100. The crucial point is that �, and thus r, does not change
too much during the last �N ’ 4 e-folds corresponding
to these modes. Under this reasonable assumption,
Eq. (3) gives

��4

MP

’
�

r

0:52

�

1=2
; (4)

where ��4 is the inflaton displacement during the last
4 e-folds. However, if one wants to extend that bound to
the whole N e-folds, one cannot assume negligible varia-
tion of the slow-roll parameters anymore. In the following,
we will derive bounds on the inflaton excursion, taking into
account the variation of � during inflation. Before doing so,
we will derive a general inequality which is valid for all
slow-roll models. Using the fact that the number of e-folds

N is just the area under the curve ð1=MP

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2�ð�Þp Þ between
�� and �end, we can write that4

��

MP

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2�max

p 
 N 
 ��

MP

1
ffiffiffiffiffiffiffiffiffiffiffiffi

2�min

p ; (5)

where �� � j�end ���j is the total inflaton excursion
during N e-folds and �min and �max are the minimum and
maximum values of � during that period. Equation (5) is
the first main result of this paper. In principle, �min could
be vanishingly small; however, for the validity of the
semiclassical description, the smallest possible value,
which corresponds to the phase transition to the eternal
inflation regime [4], is �c � 3ðH=MPÞ2=4�2. Plugging in
this value, we obtain N & ��=H. Typically, though, the
slow-roll parameter grows monotonically during inflation
from �� until the breakdown of slow-roll �end � 1. This is,

in fact, the case for hilltop and chaotic inflation scenarios
to which we will apply the bounds, Eq. (5).
Let us begin with hilltop inflation models, where �

increases monotonically as the Universe inflates. Using
the right-hand side of Eq. (5), we get a bound that can be
written in terms of the tensor-to-scalar ratio as

r < 0:002

�

��

MP

�

2
�

60

N

�

2
: (6)

Notice that Eq. (6) is stronger than the original bound
derived from Eq. (4) by a factor of�230. It is also stronger
than the variant derived in Ref. [5] by a factor 4. This
discrepancy is due to the fact that data at the time allowed
for a significantly larger negative value for ~� � d ln �=dN.
As a result, relatively low values Neff ’ 30 of the effective
number of e-folds defined in Eq. (5) of Ref. [5] were
allowed. This is no longer the case in light of present
observations. In particular, according to recent South
Pole Telescope results [6], ~�> 0 and Neff * 88.
Now, let us focus on quadratic hilltop models whose

potential is given by Vð�Þ ¼ V0 �m2�2=2þ � � � with
m2 > 0. The dots stand for higher order terms that will
make the potential bounded from below and which might
dominate after horizon exit. In this case, the tensor-
to-scalar ratio is given by5

r ¼ 2ð1� nsÞ2
�

�end

MP

�

2
e�Nð1�nsÞ: (8)

From Eq. (8), we can use the WMAP 7 yr bound on the
scalar spectral tilt 1� ns & 0:04 to derive a more stringent
bound on r, which reads6 [7]

r & 0:0003

�

��

MP

�

2
�

60

N

�

2
; (9)

which is 1 order of magnitude stronger than the previous
bound.
One can also consider variants of the hilltop scenario

where higher powers of � dominate at the top of the
potential. If there is no � ! �� symmetry, then the first
term in the potential will be cubic. However, and in addition
to the fact that the potential is not bounded from below, this
leads to a spectral index on the verge of the 3� WMAP
allowed region. If, on the other hand, there is a symmetry
� ! �� and the quadratic term is, for some reason, neg-
ligible,7 then the potential will be Vð�Þ ¼ V0 � ��4=4.
If inflation is responsible for the generation of density

3By classical number of e-folds, we mean N in the slow-roll
noneternal inflation regime.

4We are using the following basic property of definite inte-
grals: if a function fðxÞ is bounded on an interval a 
 x 
 b,
i.e., A 
 fðxÞ 
 B, then ðb� aÞA 
 R

b
a dxfðxÞ 
 ðb� aÞB.

5If the potential does not steepen after horizon exit, the tensor-
to-scalar ratio will satisfy a more relaxed bound [2],

r ¼ 8ð1� nsÞe�Nð1�nsÞ & 0:03ð60=NÞ: (7)
6One can use the property that ane�a < bne�b for any a >

b > n � 0.
7Notice that, apart from shift symmetries � ! �þ c, there is

no symmetry that can consistently forbid the quadratic term.
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perturbations, then � ’ 10�12 regardless of the value of V0.
This tiny value of the coupling can be justified if one
thinks of � as a modulus described by the potential
V0ð1� �4�

4=M4
PÞ, with �4 � 1 and V0 � 1015 GeV. In

the following we will consider general values of V0, allow-
ing both sufficient reheating and the use of standard QFT
and GR methods, MeV4 � V0 � M4

P. The bound Eq. (6)
still applies in this case; however, one can derive a tighter
relationship between �� and r, which can be written as

��

mP

¼ N3=4

2
ffiffiffiffi

�
p r1=4; (10)

where mP ¼ G�1=2
N is the Planck mass. For N ¼ 60,

Eq. (10) gives, indeed, the Efstathiou-Mack relationship

��=mp � 6r1=4 which was derived empirically in Ref. [8].

Actually, Eq. (10) is a special case of a more general
relationship,8

��

mP

¼ r
p�2
2p
½pðp� 2ÞN1=p

ffiffiffiffiffiffiffi

8�
p

�

Nðp� 2Þ
2

ffiffiffi

2
p

�p�2
p
; (11)

which holds for general hilltop models described by the
potential Vð�Þ ¼ V0½1� �pð�=�Þp, where p > 2 and

MP >�> 0 regardless of the values of the parameters of
the potential, i.e., V0,� and �p. Therefore, there is a whole

family of models that satisfy this relationship. Next, let us
consider chaotic models which are characterized by a
power-law potential Vð�Þ / �p. As hilltop models, they
have the property that � increases monotonically during
inflation. Therefore, the bound on the tensor-to-scalar ratio
Eq. (6) still holds, as in the case of hilltop inflation.
However, replacing �� ’

ffiffiffiffiffiffiffiffiffiffi

2pN
p

MP, the resulting bound

r & 0:27pð60=NÞ (12)

is hardly constraining, even for p ¼ 1.
What about natural inflation?Natural inflation is the only

known field theoretically consistent implementation of cha-
otic inflation. The inflaton is a pseudo Nambu-Goldstone
boson, with a symmetry breaking scale f 	 MP. In
general, the potential can be written as Vð�Þ / ½1þ
cos ð�=fÞ, where f � MP=

ffiffiffiffiffiffiffiffiffiffiffi

2j�0j
p

; �0 < 0 is the second
slow-roll parameter at the top of the potential, and it reduces
to a quadratic hilltop potential for small angles. ForN ¼ 60,
using the WMAP 7 yr bound on ns, we can constrain (see,
e.g., Sec. 6 of Ref. [7] for details) j�0j & 0:017. This, in
turn, gives a range of tensor fractions, 0:04 & r & 0:13, that
is compatible with the later bound.

B. de Sitter entropy bounds

Let us now consider de Sitter entropy bounds. The
second law of thermodynamics states that the entropy
of any closed system never decreases with time. The

expanding Universe during slow-roll inflation does not
escape this rule [9]. The entropy of de Sitter spacetime is
given by SdS ¼ 8�2M2

P=H
2, and it varies during N e-folds

of slow-roll as

dSdS
dN

¼ 16�2 M
2
P�

H2
¼ 2h�2i�1; (13)

where we used h�2i � H2=8�2M2
P�. The second law in

this case boils down to the requirement _H < 0 during
inflation. It is easy to show that the integral of Eq. (13) is
bounded as follows:

h�2max i�1 
 �SdS=2N 
 h�2min i�1: (14)

This inequality is valid independently of the variation of
the slow-roll parameter in the noneternal inflation regime.
Neglecting the Hubble parameter variation during inflation
and taking �min ¼ �c for noneternal inflation, the left-hand
side of Eq. (14) yields the well-known bound on e-folds
from de Sitter entropy [10], N 
 SdS=12. On the other
hand, the right-hand side of Eq. (14) leads to the trivial
and model-independent lower bound on the number of
e-folds, N � 1=2. Now, specializing to the typical case
of monotonically increasing �, i.e., �min ¼ ��, the left-
hand side of Eq. (14) yields N 
 h�2� i�SdS=2, which, in
turn, can be written as a general model-independent bound
on the tensor fraction

r & 0:13ð60=NÞ½ðH�=HendÞ2 � 1: (15)

This is the second main result of this paper. Due to the
prefactor ðH�=HendÞ2, Eq. (15) is more stringent for models
where H ’ constant. On the other hand, once r is mea-
sured, one can straightforwardly turn Eq. (15) into an upper
bound on the Hubble rate at the end of inflation.

III. OBSERVATIONAL CONSTRAINTS

Let us now discuss the observational situation which is
really promising. The Planck mission [11] is aiming to
reach r & 0:1, in which case the simplest quadratic chaotic
inflation scenario will be probed. In addition, a variety
of experimental setups [12–14] are targeting the range
10�3 & r & 0:1. The lowest detectable tensor fraction
through CMB polarization is probably r ’ 10�4, both
from polarized dust foregrounds substraction [15] and
contamination from E- to B-mode conversion through
lensing [16]. In Fig. 1, we represent the various models
in the plane �� versus r, instead of the traditional r versus
ns plot, together with our bound Eq. (6), and experimental
reaches of the planned observations. We do not represent
the family of models that satisfy Eq. (11), as they lie close
to the magenta line representing the Efstathiou-Mack
relationship. As expected, natural inflation appears to
interpolate between quadratic hilltop and quadratic chaotic
models. It is also noteworthy, though well known, that none
of the single-field scenarios compatible with observation
has a sub-Planckian inflaton excursion.8Here, we are assuming reasonably that �� � �.
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IV. CONCLUSIONS

In conclusion, we reiterate the truism that the tensor
fraction is a very important observable to test the initial
conditions of the Universe. We derived two theoretical
bounds on that quantity. The first bound Eq. (6) means
that (for sub-Planckian inflaton excursion and thus con-
sistent field theory description) r & 0:002, placing it
beyond the reach of Planck but within reach of COrE
and PIXIE [14]. On the other hand, the fact that both
single-field benchmark scenarios that are consistent with
current data have �� * 10MP make their tensor frac-
tion within reach of CMBPol. The second bound, aris-
ing from de Sitter entropy bounds, implies an upper
bound on tensors, Eq. (15), independently of the mag-
nitude of inflaton excursion, which is within reach of
Planck and future observations. The detection of B
modes would promote inflation from an attractive para-
digm to a predictive theory. However, this is not the
end of the story, as any realization of slow-roll inflation

will have to face the issue of a consistent UV
completion.
We end up with some speculations. It would be interest-

ing to explore the relationship between the entropy of the
inflaton and r. For instance, in Ref. [17] it was argued that
the entropy of the inflaton is proportional to ð��=HÞ2,
which, by the de Sitter entropy bound, would censor any
attempt to have super-Planckian inflaton excursion, and
thus observable inflationary GWs, in a consistent UV-
complete theory. This is in agreement with the conclusions
reached in Ref. [18], where it was shown that attempts to
build natural inflation models in string theory with a decay
constant f 	 MP are doomed to failure.
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