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We investigate a way of circumventing the sign problem in lattice QCD simulations with a theta-

vacuum term, using the Polyakov-loop extended Nambu–Jona-Lasinio model. We consider the reweight-

ing method for the QCD Lagrangian after the UAð1Þ transformation. In the Lagrangian, the P-odd mass

term as a cause of the sign problem is minimized. In order to find a good reference system in the

reweighting method, we estimate the average reweighting factor by using the two-flavor Polyakov-loop

extended Nambu–Jona-Lasinio model and eventually find a good reference system.
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I. INTRODUCTION

Phenomena based on strong interaction have shown that
charge conjugation C, parity P, and time reversal T are
good symmetries of nature. This means that quantum
chromodynamics (QCD) should respect any combinations
of the discrete symmetries. Among the discrete symme-
tries, theCP symmetry is not necessarily respected in QCD
due to the instanton solution [1,2]. The instanton solution
allows the QCD Lagrangian LQCD to have a �-vacuum
term. The resulting Lagrangian is described as

LQCD ¼ �qfð��D� þmfÞqf þ 1

4g2
Fa
��F

a
��

� i�
1

64�2
�����F

a
��F

a
�� (1)

in Euclidean spacetime, where Fa
�� is the field strength of

the gluon. The vacuum angle � is a periodic variable with
period 2�. It was known to be an observable parameter [3].
The QCD Lagrangian is transformed as LQCDð�Þ !
LQCDð��Þ by the P transformation. Indicating that the P
and CP symmetries are preserved only at � ¼ 0 and ��,
note that � ¼ �� is identical with � ¼ �. In the � vac-
uum, therefore, we must consider the P and CP violating
interaction parameterized by �. Theoretically, we can take
any arbitrary value between�� and � for �. Nevertheless,
it has been found from the measured neutron electric dipole
moment [4] that j�j< 10�9 [5–7]. Why is � so small in
zero temperature (T)? This long-standing puzzle is called
the strong CP problem; see, for example, Ref. [8] for the
review.

Around the deconfinement transition at T ¼ Td, there
is a possibility that P-odd bubbles (metastable states)
arise and thereby regions of nonzero � are generated [9].
Thus � can become a function depending on spacetime
coordinates ðt; xÞ. If P-odd bubbles are really produced at

T � �QCD, P and CP symmetries can be violated locally

in high-energy heavy-ion collisions or the early Universe.
This finite value of � could be a new source of large
CP violation in the early Universe and a crucial missing
element for solving the puzzle of baryogenesis.
In the early stage of heavy-ion collision, the magnetic

field is formed, and simultaneously the total number of
particles plus antiparticles with right-handed helicity is
deviated from that with left-handed helicity by the effec-
tive �ðt; xÞ. In this situation, particles with right-handed
helicity move opposite to antiparticles with right-handed
helicity, and consequently an electromagnetic current is
generated along the magnetic field. This is the so-called
chiral magnetic effect [10–13]. The chiral magnetic effect
may explain the charge separations observed in the recent
STAR results [14]. Hot QCD with nonzero � is thus quite
interesting.
For zero T and zero quark-number chemical potential

(�), some important properties are showed on P symmetry.
Vafa and Witten proved for � ¼ 0 that the vacuum is
unique and conserves P symmetry [15]. This theorem
does not preclude the existence of P-odd bubbles.
At � ¼ �, QCD possesses P symmetry as mentioned
above, but it is spontaneously broken at low T [16,17].
The spontaneous violation of P symmetry is called the
Dashen mechanism [16]. Although the mechanism is a
nonperturbative phenomenon, the first-principle lattice
QCD (LQCD) is not applicable for finite � due to the
sign problem. The mechanism at finite T and/or finite �
was then investigated with effective models such as the
chiral perturbation theory [18–23], the Nambu–Jona-
Lasinio (NJL) model [24–27], and the Polyakov-loop
extended Nambu–Jona-Lasinio (PNJL) model [28–30].
LQCD has no sign problem at imaginary �. Very recently,
the region was analyzed with LQCD, and � dependence
of the deconfinement transition temperature was investi-
gated [31].
In the previous work [30], we proposed a way of

minimizing the sign problem on LQCD with finite �.
The proposal is as follows. For simplicity, we consider
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two-flavor QCD. The QCD Lagrangian (1) is transformed
into

LQCD ¼ �q0Mð�Þq0 þ 1

4g2
Fa
��F

a
�� (2)

with

Mð�Þ � ��D�þmcos ð�=2Þþmi�5 sin ð�=2Þ (3)

by using the UAð1Þ transformation

q ¼ ei�5
�
4q0; (4)

where the quark field q ¼ ðqu; qdÞ has been redefined by
the new one q0. The determinant Mð�Þ satisfies

detMð�Þ ¼ ½detMð��Þ��; (5)

indicating that the sign problem is induced by the P-odd
(�-odd) term mi�5 sin ð�=2Þ. The difficulty of the sign
problem is minimized in (2), since the P-odd term with
the light quark mass m is much smaller than the dynamical
quark mass of order �QCD. Actually, it was found that the

P-even condensates �0
f ¼ h �q0fq0fi are much larger than the

P-odd condensates 	0
f ¼ h �q0fi�5q

0
fi. The P-even conden-

sates change little even if the �-odd mass term is neglected.
We then proposed the following reweighting method. The
vacuum expectation value of operator O is calculated by

hOi ¼
Z

DAO detMð�Þe�Sg (6)

¼
Z

DAO0 detMrefð�Þe�Sg (7)

with the gluon part Sg of the QCD action and

O0 � Rð�ÞO; (8)

Rð�Þ � detMð�Þ
detMrefð�Þ ; (9)

where Rð�Þ is the reweighting factor and detMrefð�Þ is the
fermion determinant of the reference theory that has no
sign problem. The simplest candidate of the reference
theory is the theory in which the �-odd mass is neglected.
We refer to this reference theory as reference A in this
paper. As discussed in Ref. [30], reference A may be a
good reference theory for small and intermediate �, but not
for large � near �. In reference A, the limit of � ¼ �
corresponds to the chiral limit that is hard for LQCD
simulations to reach.

The expectation value of Rð�Þ in the reference theory is
obtained by

hRð�Þi ¼ Z

Zref

; (10)

where Z (Zref) is the partition function of the original
(reference) theory. The average reweighting factor hRð�Þi

is a good index for the reference theory to be good; the
reference theory is good when hRð�Þi ¼ 1.
In this paper, we estimate hRð�Þiwith the PNJL model in

order to find a good reference theory. Lagrangian (2) does
not depend on � in the chiral limit. For the realistic case
closer to this limit rather than the pure gauge limit, an effect
of finite � is characterized by the current quark mass.
Hence, it is expected that the finite � effect is well described
by effective models such as the PNJL model. As shown in
Sec. III, reference A is good only for small �, so we propose
the good reference theory that satisfies hRð�Þi � 1.
This paper is organized as follows. In Sec. II, we reca-

pitulate the two-flavor PNJL model and show how to
calculate the pion mass and hRð�Þi for the case of finite
�. Numerical results are shown in Sec. III. Section IV is
devoted to a summary.

II. MODEL SETTING

The two-flavor PNJL Lagrangian with the �-dependent
anomaly term is obtained in Euclidean spacetime by

L ¼ �qð��D� þm0Þq�G1

X3
a¼0

½ð �q
aqÞ2 þ ð �qi�5
aqÞ2�

� 8G2½ei� det �qRqL þ e�i� det �qLqR� þUðT;�;��Þ;
(11)

where D� ¼ @� � i��4A
a
4=�a=2 with the Gell-Mann ma-

trices �a. The current quark mass m0 satisfies m0 ¼ mu ¼
md, and 
0 and 
aða ¼ 1; 2; 3Þ are the 2� 2 unit and Pauli
matrices in the flavor space, respectively. The parameter
G1 denotes the coupling constant of the scalar and
pseudoscalar-type four-quark interaction, while G2 stands
for that of the Kobayashi-Maskawa-’t Hooft determinant
interaction [2,32] where the matrix indices run in the flavor
space.
The gauge field A� is treated as a homogeneous and

static background field in the PNJL model [28–30,33–39].
The Polyakov-loop� and its conjugate�� are determined
in the Euclidean space by

� ¼ 1

3
trcðLÞ; �� ¼ 1

3
trcð �LÞ; (12)

where L ¼ exp ðiA4=TÞ with A4=T ¼ diagðr;g;bÞ in
the Polyakov gauge; note that �a is traceless and hence
r þg þb ¼ 0. Therefore we obtain

� ¼ 1

3
ðeir þ eig þ eibÞ

¼ 1

3
ðeir þ eig þ e�iðrþgÞÞ;

�� ¼ 1

3
ðe�ir þ e�ig þ e�ibÞ

¼ 1

3
ðe�ir þ e�ig þ eiðrþgÞÞ: (13)
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We use the Polyakov potential U of Ref. [37]:

U ¼ T4

�
�aðTÞ

2
���þ bðTÞ ln ð1� 6���

þ 4ð�3 þ��3Þ � 3ð���Þ2Þ
�

(14)

with

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2
; bðTÞ ¼ b3

�
T0

T

�
3
:

(15)

The parameter set inU is fitted to LQCD data at finite T in
the pure gauge limit. The parameters except T0 are sum-
marized in Table I. The Polyakov potential yields a first-
order deconfinement phase transition at T ¼ T0 in the pure
gauge theory. The original value of T0 is 270 MeV deter-
mined from the pure gauge LQCD data, but the PNJL
model with this value of T0 yields a larger value of the
pseudocritical temperature Tc of the deconfinement tran-
sition at zero chemical potential than Tc � 173� 8 MeV
predicted by full LQCD [40–42]. Therefore we rescale T0

to 212 MeV so as to reproduce the LQCD result. Under the
UAð1Þ transformation (4), the quark-antiquark condensates
are transformed as

� � �qq ¼ cos ð�=2Þ�0 þ sin ð�=2Þ	0; (16)

	 � �qi�5q ¼ � sin ð�=2Þ�0 þ cos ð�=2Þ	0; (17)

ai � �q
iq ¼ cos ð�=2Þa0i þ sin ð�=2Þ�0
i; (18)

�i � �qi�5
iq ¼ � sin ð�=2Þa0i þ cos ð�=2Þ�0
i; (19)

where the condensates f�0; 	0; a0i; �0
ig are defined by the

same form as f�;	; ai; �ig but q is replaced by q0. The
Lagrangian density is then rewritten with q0 as

L¼ �q0ð��D�þmð�ÞÞq0 �G1

X3
a¼0

½ð �q0
aq0Þ2þð �q0i�5
aq
0Þ2�

�8G2½det �q0Rq0Lþdet �q0Lq0R�þU (20)

¼ �q0ð��D� þmð�ÞÞq0 �Gþ½ð �q0q0Þ2 þ ð �q0i�5 ~
q
0Þ2�

�G�½ð �q0 ~
q0Þ2 þ ð �q0i�5q
0Þ2� þU; (21)

where G� ¼ G1 �G2 and

mð�Þ ¼ m0 cos ð�=2Þ þm0i�5 sin ð�=2Þ: (22)

Making the mean-field approximation and the path integral
over the quark field, one can obtain the thermodynamic
potential � (per volume) for finite T:

�¼UþU�2
X
�

Z d3p

ð2�Þ3
�½3E�þT ln½1þ3�e��E� þ3��e�2�E� þe�3�E��
þT ln½1þ3��e��E� þ3�e�2�E� þe�3�E��� (23)

with

E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ C� 2

ffiffiffiffi
D

pq
; (24)

C ¼ M2 þ N2 þ A2 þ P2; (25)

D ¼ ðM ~Aþ N ~PÞ2 þ ð ~A� ~PÞ2 � 0; (26)

M ¼ m0 cos ð�=2Þ � 2Gþ�0; (27)

N ¼ m0 sin ð�=2Þ � 2G�	0; (28)

~A ¼ �2G� ~a0; ~P ¼ �2Gþ ~�0; (29)

A ¼
ffiffiffiffiffiffiffiffiffiffiffi
~A 	 ~A

q
; P ¼

ffiffiffiffiffiffiffiffiffiffiffi
~P 	 ~P

q
; (30)

U ¼ Gþð�02 þ ~�02Þ þG�ð	02 þ ~a02Þ; (31)

where the momentum integral is regularized by the three-
dimensional momentum cutoff�. Following Refs. [25,26],
we introduce a parameter c as G1 ¼ ð1� cÞGþ and G2 ¼
cGþ, where 0 
 c 
 0:5 and Gþ > 0. The present model
thus has four parameters of m0, �, Gþ, and c. Assuming
m0 ¼ 5:5 MeV, we have determined � and Gþ from the
pion decay constant f� ¼ 93 MeV and the pion mass
M� ¼ 138 MeV at vacuum. Although c is an unknown
parameter, we set c ¼ 0:2 here, since it is known from the
model analysis on the 	� 	0 splitting that c � 0:2 is
favorable [43].
For finite �, parity is broken explicitly, so it is not a

good quantum number anymore. Hence P-even and P-odd
modes are mixed with each other for each meson.
The ‘‘pion’’ mass ~M� is defined by the lowest pole mass
of the inverse propagator in the isovector channel. It agrees
with the ordinary pion mass when � ¼ 0. Under the ran-
dom phase approximation [44], the inverse propagator is
described by

det ½1� 2G�ð ~M2
�Þ� ¼ 0; (32)

where

TABLE I. Summary of the parameter set in the Polyakov-
potential sector determined in Ref. [37]. All parameters are
dimensionless.

a0 a1 a2 b3

3.51 �2:47 15.2 �1:75
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G ¼ G� 0

0 Gþ

 !
; (33)

�ð!2Þ ¼ �SSð!2Þ �SPð!2Þ
�PSð!2Þ �PPð!2Þ

 !
(34)

with

�PP ¼ 4NfNcI1 � 2NfNcðq2 � 4N2ÞI2ð!2Þ; (35)

�SS ¼ 4NfNcI1 � 2NfNcðq2 � 4M2ÞI2ð!2Þ; (36)

�SP ¼ �PS ¼ �8NfNcMNI2ð!2Þ; (37)

I1 ¼
Z
�

d3p

ð2�Þ3
1� fþ�ðEpÞ � f��ðEpÞ

2Ep

; (38)

I2ð!2Þ ¼
Z
�

d3p

ð2�Þ3
1� fþ�ðEpÞ � f��ðEpÞ

Epð!2 � 4E2
pÞ

; (39)

and

fþ� ¼ ð�� þ 2�e��EpÞe��Ep þ e�3�Ep

1þ 3ð�� þ�e��EpÞe��Ep þ e�3�Ep
; (40)

f�� ¼ ð�þ 2��e��EpÞe��Ep þ e�3�Ep

1þ 3ð�þ��e��EpÞe��Ep þ e�3�Ep
: (41)

In this form, we can set ~a0 ¼ ~�0 ¼ 0, since we do not
consider the isospin chemical potential.

Applying the saddle-point approximation to the path
integral in the partition function, one can get

hRð�Þi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detHref

detH

s
e��Vð���ref Þ; (42)

where � ¼ 1=T, � (�ref) is the thermodynamic potential
of the original (reference) theory in the mean-field
level, and H (Href) is the Hessian matrix in the original
(reference) theory defined by [45,46]

Hij ¼ @2�

@0
i@

0
j

; (43)

fig ¼ f�0; 	0; a0i; �0
i;�;��g: (44)

For later convenience, the average reweighting factor
hRð�Þi is divided into two factors RH and R�:

hRð�Þi ¼ RHR� (45)

with

RH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detHref

detH

s
; (46)

R� ¼ e��Vð���ref Þ: (47)

For anN3
x � N
 lattice, the four-dimensional volume�V is

obtained by

�V ¼
�
Nx

N


�
3 1

T4
: (48)

Here we consider Nx=N
 ¼ 4 as a typical example, follow-
ing Refs. [45,46].
We consider the following reference theory that has no

sign problem:

L ¼ �q0ð��@� þmrefð�ÞÞq0 �Gþ½ð �q0q0Þ2 þ ð �q0i�5 ~
q
0Þ2�

�G�½ð �q0 ~
q0Þ2 þ ð �q0i�5q
0Þ2� þU: (49)

Here mrefð�Þ is �-even mass defined below. We consider
three examples as mrefð�Þ.
(A) The first example is reference A defined by

mrefð�Þ � mAð�Þ ¼ m0 cos ð�=2Þ: (50)

In this case, the P-odd mass is simply neglected
from the original Lagrangian (21).

(B) The second example is reference B defined by

mrefð�Þ � mBð�Þ
¼ m0 cos ð�=2Þ þ 1

�
fm0 sin ð�=2Þg2: (51)

In this case, we have added the m2
0-order correction

due to the P-odd quark mass. Here � is a parameter
with mass dimension, so we simply choose � ¼
M�. The coefficient of the correction term is
m2

0=M� ¼ 0:129 MeV.
(C) The third case is reference C defined by

mrefð�Þ � mCð�Þ

¼ m0 cos ð�=2Þ þm0M
2
�

M2
	0

sin 2ð�=2Þ: (52)

This case also has the m2
0-order correction, but � is

different from reference B. The coefficient of the
correction term is m0M

2
�=M

2
	0 ¼ 0:114 MeV.

Reference C is justified as follows. The pion mass
~M�ð�Þ at finite � is estimated from the chiral Lagrangian
as [23]

~M2
�ð�Þ ¼ m0j�0j

f2�
j cos ð�=2Þj þ 2l7m

2
0�

2
0

f6�
sin 2ð�=2Þ; (53)

where �0 is the chiral condensate at T ¼ � ¼ 0 and the
coefficient l7 is evaluated by the 1=Nc expansion as

l7 � f2�
2M2

	0
: (54)

The right-hand side of (53) is reduced to
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~M2
�ð�Þ ¼ j�0j

f2�

�
m0j cos ð�=2Þj þm0M

2
�

M2
	0

sin 2ð�=2Þ
�
: (55)

Equation (55) supports (52).

III. NUMERICAL RESULTS

A. Mean-field approximation

If some reference system satisfies the condition that
hRð�Þi � 1, one can say that the reference system is
good. As a typical example of the condition, we consider
the case of 0:5 & hRð�Þi & 2. This condition seems to be
the minimum requirement. The discussion made below is
not changed qualitatively, even if one takes a stronger
condition.

First we consider reference A. Figure 1(a) shows �
dependence of hRð�Þi at T ¼ 100 MeV. The solid line
stands for hRð�Þi, while the dashed (dotted) line corre-
sponds to RH (R�). This temperature is lower than the
chiral transition temperature in the original theory, that is,
212 MeVat � ¼ 0 and 204 MeV at � ¼ �. As � increases
from zero, hRð�Þi also increases and exceeds 2 at � � 1:2.
Reference A is thus good for � & 1:2. The increase
of hRð�Þi stems from that of R� that depends on T. This
means that the reliable � region in which 0:5 & hRð�Þi & 2
becomes large as T increases.

Figure 1(b) shows � dependence of ~M� at T ¼
100 MeV. The solid (dashed) line denotes ~M� in the
original (reference A) system. At � ¼ �, ~M� is
finite in the original system, but zero in reference A.

As a consequence of this property, RH and hRð�Þi vanish
at � ¼ �; see Fig. 1(a). This indicates that reference A
breaks down at � ¼ �, independently of T.
The same analysis is made for reference B in Fig. 2.

~M� in reference B well reproduces that in the original
theory for any �, and hRð�Þi satisfies the condition
0:5 & hRð�Þi & 2 for all �. Since RH � 1 in the most
region of �, hRð�Þi is governed by R�. Around � ¼ �,
RH becomes small but still has a nonzero value because
~M� � 0 even at � ¼ � in reference B. Therefore, the
simple estimation for mrefð�Þ (51) gives an available
reference.
Finally, we consider reference C through Fig. 3. ~M� in

reference C well simulates that in the original theory, and
hRð�Þi satisfies the condition 0:5 & hRð�Þi & 2 for all �.
This result is better than that in reference B. Therefore we
can think that reference C is a good reference system for
any �. This is true for any temperature larger than
100 MeV.

B. Effect of mesonic fluctuation

Beyond the mean-field approximation, we estimate an
effect of dynamical pion fluctuations by modifying the
thermodynamic potential to

� ¼ �MF þ�DF; (56)

where �MF is the thermodynamic potential (23) with the
mean-field level. �DF is the potential due to dynamical
pion fluctuations [46],

 0
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 0  0.5  1  1.5  2
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FIG. 1 (color online). � dependence of (a) the average
reweighting factor and (b) ~M� at T ¼ 100 MeV for the case
of reference A.
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FIG. 2 (color online). � dependence of (a) the average
reweighting factor and (b) ~M� at T ¼ 100 MeV for the case
of reference B.

PRACTICAL APPROACH TO THE SIGN PROBLEM AT . . . PHYSICAL REVIEW D 87, 056003 (2013)

056003-5



�DF ¼ 3
Z d3p

ð2�Þ3 T ln ð1� e��E�Þ; (57)

where E� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2 þ ~M2

�

q
, with ~M� determined by

solving (32).
Figure 4 shows � dependence of hRð�Þi at T ¼

100 MeV for the case of reference C. The solid and dashed
lines correspond to results with and without dynamical
pion fluctuations, respectively. The effect makes hRi a little
smaller, and hence reference C becomes slightly worse.
However, the modification is small, indicating that hRi is
well evaluated by the mean-field approximation.

IV. SUMMARYAND DISCUSSION

We have investigated a way of circumventing the sign
problem in LQCD simulations with finite �, using the
PNJL model. We have considered the reweighting method
for the transformed Lagrangian (2). In the Lagrangian, the

sign problem is minimized, since the P-odd mass is much
smaller than the dynamical quark mass of order �QCD.

Another key is which kind of reference system satisfies
the condition hRð�Þi � 1. We have then estimated hRð�Þi
by using the two-flavor PNJL model and have found
that reference C may be a good reference system in the
reweighting method.
Since the present proposal is based on the model analy-

sis, it is then not obvious whether the proposal really works
in lattice simulations. Therefore, the proposal should be
directly tested by lattice simulations. A similar test was
made for two-flavor QCD with finite quark chemical
potential � [46,47] where lattice simulations have the
sign problem. The average reweighting factor, i.e., the
average phase factor, was evaluated by lattice simulations
at �=T < 1 for T around the critical temperature of the
deconfinement transition [47]. The PNJL model well
reproduces the lattice result, when the dynamical correc-
tion due to mesonic fluctuations is made to the mean-field
model calculation [46]. It is thus interesting that the present
proposal is directly tested by lattice simulations.
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