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We consider mesons composed of light and heavy quarks and discuss the construction of the

corresponding meson wave functions in soft-wall AdS/QCD. We specifically take care that constraints

imposed by chiral symmetry breaking and by the heavy quark limit are fulfilled. The main results are

(i) the wave functions of light mesons have a nontrivial dependence on the current quark mass, which

gives rise to a mass spectrum consistent with the one including explicit breaking of chiral symmetry;

(ii) the wave functions of heavy-light mesons generate their correct mass spectrum, the mass splittings of

vector and pseudoscalar states, and the correct scaling of leptonic decay constants fQ �q � 1=
ffiffiffiffiffiffiffi
mQ

p
; (iii) the

wave functions of heavy quarkonia produce their correct mass spectrum and lead to a scaling behavior of

the leptonic decay constants fQ �Q � ffiffiffiffiffiffiffi
mQ

p
and fc �b �mc=

ffiffiffiffiffiffiffi
mb

p
at mc � mb, consistent with potential

models and QCD sum rules.
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The last decade has been marked by significant pro-
gress in the development of AdS/QCD—a new class of
approaches based on gauge/gravity duality [1], which try
to model strong interactions in terms of fields propagating
in extradimensional curved manifolds, e.g., in anti–de
Sitter (AdS) space. Fields in AdSdþ1 space are classified
by unitary, irreducible representations of the SOðd; 2Þ
group [2,3], which is isomorphic to the conformal group
acting on the boundary of AdS space, where the dual
conformal field theory (CFT) is living. With some assump-
tions the CFT can be truncated to QCD, and therefore the
AdS fields could be holographically matched to QCD op-
erators and bound states. There are two main types of AdS/
QCD approaches: top-down (brane constructions in string
theories leading to low-energy gauge theories with proper-
ties of QCD) and bottom-up models (phenomenological
frameworks specifying the geometry of AdS space and
bulk fields in order to incorporate the basic properties of
QCD). In this paper we focus on one of the successful
examples of bottom-up approaches—the soft-wall model
(see e.g., Refs. [4–6]), which is based on a soft breaking of
conformal invariance via the introduction of a dilaton field
(holographic analogue of the gluon condensate [7]) in the
exponential prefactor or the effective potential. It leads to a
truncation of AdS space in the infrared and therefore pro-
vides confinement of bulk fields, which are expanded in a
tower of massive Kaluza-Klein modes identified with radial
excitations of hadrons. The dilaton field is also responsible
for the mechanism of spontaneous breaking of chiral
symmetry.

The profiles of bulk fields in extra dimension are
matched to hadronic wave functions. It has been shown
that the extradimensional coordinate can be identified with
the transverse impact variable characterizing the separation
of partons in a hadron in light-front QCD (light-front
holography) [8]. It is essential to use the quadratic profile
for the dilaton field to generate Regge trajectories for
hadron masses and to reproduce the correct scaling of
hadronic form factors at large values of Euclidean trans-
verse momentum squared. It is also helpful to use this
profile since most of the calculations can be performed
analytically. Of course, not all features of QCD have been
yet incorporated in the formalism of the soft-wall model.
The work on providing an accurate matching to QCD is in
progress. Therefore, some objections concerning the soft-
wall model seem premature.
This work is addressed to the problem of constructing

the hadronic wave functions using the AdS and light-
front QCD correspondence. Originally the idea of such
correspondence was proposed in Refs. [9]. It was shown
that, from the matching of matrix elements for physical
processes (e.g., from the electromagnetic or gravitational
form factors of hadrons), one can relate the string mode—
the bulk profile of the AdS field in a holographic dimension
and the transverse part of the hadronic light-front wave
function (LFWF) for the case of massless quarks. Later in
Ref. [10], in the case of a two-parton state the LFWF
was generalized by the explicit inclusion of the constituent
quark masses in the LF kinetic energy

P
iðk2

?i þm2
i Þ=xi.

In the LFWF this corresponds to the introduction of the
longitudinal WF corresponding to the so-called Brodsky-
Huang-Lepage (BHL) or Gaussian ansatz [11] (see also
discussion in Ref. [12]). In Refs. [13,14] we studied the
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problem of the longitudinal part of the LFWF. In particular,
in Ref. [13] following the ideas of Ref. [10], we derived the
longitudinal part of the LFWF using constraints of heavy
quark effective theory. It was based on the BHL ansatz,
where the dimensional parameter depends on the flavor of
the constituent quarks. Note that the BHL ansatz deals with
constituent quarks while the direct parameters of QCD are
the current quarks. The main objective of this paper is to
construct the longitudinal part of the LFWF in terms of
current quark masses instead of constituent ones. In particu-
lar, wewill show that this construction helps to introduce the
mechanism of explicit breaking of chiral symmetry. This
means that the explicit breaking of chiral symmetry is a
property of the longitudinal part of the hadronic LFWF.
The idea that explicit breaking of chiral symmetry is in-
duced via the current quark mass dependence of the longi-
tudinal LWFW was proposed in two-dimensional large Nc

QCD [15]. This mechanism was later used in the context of
the two-dimensional massive Schwinger model [16–18].
Recently this problem was reexamined in Refs. [19,20].

In our approach the breaking of the conformal and chiral
symmetries is related to the presence of the dilaton field.
We show that both symmetries are broken dynamically due
to the interaction with a dilaton—background field living
in the z direction of AdS space; in other words, it does
not show up at the AdS boundary. The dilaton is a massless
zero mode. As it was mentioned before we use the
quadratic dilaton profile, which can be considered as the
expectation value of the scalar bulk field with dimension 2,
which is holographically dual to the dimension-2 gluon
operator OA2 ¼ hA2

�;min i [21]. In different types of AdS/

QCD approaches a few scenarios of chiral symmetry
breaking have been proposed due to the presence of spe-
cific background or scalar fields. These fields can be con-
sidered as duals to the dimension-4 gluon OG2 ¼ trðG2

��Þ
and the dimension-3 quark O �qq ¼ �qq operators. Their

couplings to the bulk fields integrated over z can be inter-
preted as holographic analogues of in-hadron condensates
of the operators OA2 , OG2 , and O �qq. The reason for this

assignment is the following: in AdS/QCD (especially in
the soft-wall model) matrix elements are defined by inte-
grals over profiles of bulk fields in the z direction, which
are holographic images of the hadronic wave functions.
The idea of in-hadron condensates was suggested in
Ref. [22] and developed in Refs. [23,24]. Notice that in-
hadron condensates can be related to vacuum condensates
(e.g., in the pion case via current algebra), and therefore
there is no contradiction or conflict with QCD and chiral
perturbation theory [25]. In particular, the main idea of
Refs. [22–24] is that the quark and gluon condensates,
holographically interpreted as spatial effects of bulk fields
in the z direction, can be interpreted according to the AdS/
QCD dictionary as finite-volume effects in hadrons. As
stressed in Ref. [23] the quark and gluon condensates have
spatial support within hadrons.

We will show that our approach is consistent with
model-independent relations and constraints valid in the
regime of explicitly and spontaneously broken chiral sym-
metry. The pion is massless only when the chiral symmetry
is spontaneously broken (for a vanishing current quark
mass m̂) while it becomes massive via the mechanism of
explicit breaking of chiral symmetry encoded in the longi-
tudinal part of its LFWF. In addition, we generate a finite
splitting of the axial-vector and vector meson masses and
reproduce the Weinberg relations between the masses of
�ð770Þ, a1ð1270Þ, and f0ð600Þ. When the current quark
masses are included in the formalism through the longitu-
dinal LFWF, the pion and other chiral pseudoscalar fields
(kaon and � meson) acquire a mass according to the
Gell-Mann-Okubo-Renner relations.
We would also like to mention that the classification of

the bulk fields propagating in AdS5 is similar to the clas-
sification of hadrons according to the chiral group [26,27].
As we stressed before, fields in AdS5 are classified by
unitary, irreducible representations of the SOð4; 2Þ group
[2,3]. The SOð4; 2Þ group is decomposed with respect to its
maximal subgroup SOð4Þ � SUð2Þ, where SOð4Þ is iso-
morphic to the group SUð2Þ � SUð2Þ. Thus, the bulk fields
are characterized by three quantum numbers—minimal
energy E0 and two spins J1 and J2—and belong to the
representations denoted by DðE0; J1; J2Þ, which have spe-
cific chiral properties, because SOð4Þ is also isomorphic to
the chiral group SULð2Þ � SURð2Þ. Because of the gauge/
gravity duality the energy of the bulk field E0 is identified
with�—the dimension of the corresponding CFToperator.
Masses of bulk fields are expressed in terms of their
energy. In particular, the scalar fields S belong to the
representation DðE0; 0; 0Þ with mass �2R2 ¼ E0ðE0 � 4Þ,
which also belongs to the chiral representation (0, 0) (here
R is the AdS radius). There are two independent possibil-
ities for a description of vector fields: in terms of vectors
V� transforming according to the ‘‘vectorial’’ representa-

tion DðE0;
1
2 ;

1
2Þ with mass �2R2 ¼ ðE0 � 1ÞðE0 � 3Þ,

which belong to the chiral representation ð1; 0Þ � ð0; 1Þ,
and in terms of antisymmetric tensors W�� transforming

according to the ‘‘tensorial’’ representation DðE0; 1; 0Þ �
DðE0; 0; 1Þ with mass �2R2 ¼ ðE0 � 2Þ2, which belong to
the chiral representation ð12 ; 12Þ. Finally, the fermions c with

spin 1=2 belong to the representation DðE0; 0;
1
2Þ �

DðE0;
1
2 ; 0Þ with mass �R ¼ E0 � 2. Fermions belong to

the chiral representation ð0; 12Þ � ð12 ; 0Þ. The classification of
chiral properties of bulk fields in AdS is identical to the
classification according to a chiral basis [26,27], including
two possible representations for vector fields, which cor-
respond to vector and pseudotensor operators in QCD. In
this sense, the case of exact chiral symmetry corresponds to
gauge invariance for massless bulk fields in AdS. The
chiral limit for vector mesons corresponds to conservation
of the interpolating vector currents on the AdS boundary of
AdS space. This means that their holographic analogues in
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AdS—vector bulk fields—should be massless or have
energy E0 ¼ 2þ J ¼ 3 (with J ¼ 1) for both representa-
tionsDðE0;

1
2 ;

1
2Þ andDðE0; 1; 0Þ �DðE0; 0; 1Þ. Therefore in

the case of exact chiral symmetry the twist dimension of
interpolating operators of vector mesons must be � ¼ 2þ
J ¼ 3 (with J ¼ 1). However, this is only true for a
conformal field theory. In order to guarantee the correct
scaling of hadronic form factors in QCD the assignment
E0 � � must be connected with the twist � of the
corresponding interpolating operator expressed in terms
of L ¼ max jLzj—the maximal value of the z component
of the quark orbital angular momentum in the LF wave
function [5,28]. In the case of two-parton states (mesons)
�M ¼ �M ¼ 2þ L, while in the case of three-parton states
(baryons)�B ¼ �B þ 1=2 ¼ 7=2þ L. This means that the
scaling of operators in QCD depending on L corresponds
to the picture of both broken conformal and chiral symme-
tries, and hadrons can be classified according to the non-
relativistic scheme 2Sþ1LJ. Conformal invariance is broken
to the symmetry of the Poincaré group due to the dilaton
field present (living) in the extra z dimension, which is dual
to the gluon condensate [7]. The chiral group SUð2ÞL �
SUð2ÞR is broken to the vector isospin group SUð2ÞV due
to the coupling of bulk fields with the dilaton.

In a series of papers two versions of soft-wall models
based on the use of positive [5,28,29] and negative [13,30]
dilaton profiles were developed. We showed that these
models are equivalent in the case of the bound state prob-
lem due to a specific dilaton field-dependent redefinition of
the bulk field. It could be shown that after such a redefini-
tion the action for the bulk field �J ¼ �M1���MJ

ðx; zÞ with
spin J reads [5,13,28–30]

SJ ¼
Z

ddxdz
ffiffiffi
g

p ½@M�J@
M�J � ð�2

J þ VJðzÞÞ�J�
J�;

(1)

where the AdSmetric is specified as ds2¼e2AðzÞðdx�dx��
dz2Þ, g ¼ e5AðzÞ, AðzÞ ¼ log ðR=zÞ, and R is the AdS radius.
Here �J is the symmetric, traceless tensor classified by
the representation DðE0; J=2; J=2Þ with energy E0 ¼ � ¼
2þ L, which is related to the bulk mass �J as �2

JR
2 ¼

ðE0 � JÞðE0 � 4þ JÞ ¼ L2 � ð2� JÞ2. This action is
most convenient in order to study the bound state problem.
Versions of the soft-wall model with so-called positive
or negative dilaton profiles are just different manifestations
of the action (1) after an appropriate dilaton-dependent

redefinition of the bulk field �J ! �Je
	’ðzÞ=2. VJðzÞ is

the effective dilaton potential, which has an analytical ex-
pression in terms of the field ’ðzÞ and the ‘‘metric’’ field
AðzÞwithout referring to any specific form of their z profiles:

VJðzÞ ¼ e�2AðzÞð’00ðzÞ þ ðd� 1� 2JÞ’0ðzÞA0ðzÞÞ: (2)

The potential VJðzÞ breaks both conformal and chiral
invariance spontaneously. It was originally suggested in

Ref. [4] to use a quadratic profile for the dilaton field
(more precisely its z profile) ’ðzÞ ¼ �2z2, where � is a
scale parameter, and the conformal metric AðzÞ ¼ log ðR=zÞ
in order to obtain Regge behavior for the hadronic mass
spectra. Note that such a form of the profile arises immedi-
ately if one considers the free action for the dilaton in the
following form:

S� ¼
Z
ddxdz

ffiffiffi
g

p ½@M�ðx;zÞ@M�ðx;zÞ��2
��

2ðx;zÞ�; (3)

where �2
� ¼ �ð�� 4Þ ¼ �4 is the bulk mass of the

dilaton with � ¼ 2 (therefore, the dilaton field is the pure
scalar field). We propose that the Kaluza-Klein expansion
for the dilaton field is trivial:

�ðx; zÞ ¼ ’ðzÞ; (4)

where ’ðzÞ is the dilaton z profile, and therefore the dilaton
is only living in the z direction. The dilaton should be
massless (it does not appear in the observable hadronic
mass spectra). Solving the equation of motion for ’ðzÞ
with �2

�R
2 ¼ �4 and AðzÞ ¼ log ðR=zÞ and assuming the

power behavior of ’ðzÞ, we find ’ðzÞ � z2 which confirms
the conjecture of Ref. [4].
As we stressed before, the quadratic dilaton can be

considered as the expectation value of the scalar bulk field
with dimension 2, which is holographically dual to the
dimension-2 gluon operator hA2

�;min i [21]—a nonlocal

gauge-invariant gluon condensate coinciding with the
gauge-noninvariant gluon condensate of the same dimen-
sion hA2

�i in the Landau gauge. The dimension-2 gluon

condensate has been discussed in the literature (see e.g.,
Refs. [6,21,31]). Note, the interpretation of the dilaton as
the quantity dual to the condensate of the dimension-2
operator has been given in the framework of the soft-wall
model [6] where the dilaton was introduced in the warping
factor, breaking the conformal-invariant background met-
ric. Inclusion of a more complicated form of the dilaton
potential (e.g., taking into account self-interaction terms)
can be viewed as a further extension of the soft-wall
models based on the quadratic dilaton profile.
Notice that a quadratic form of the z profile of the dilaton

is not unique. Fore example, in the Liu-Tseytlin model
(a type of top-down AdS/QCD approach) [32] the confor-
mal invariance was violated by the dilaton taken in the

form e’ðzÞ ¼ 1þ qz4, where the parameter q, according
to the AdS/QCD dictionary [33], was related to the matrix
element of a QCD operator: the scalar htrðG2

��Þi and pseu-

doscalar htrðG��
~G��Þi gluon condensates. On the other hand,

the scalar dimension-4 gluon condensate is connected to the
quark vacuum condensate via the decoupling relation [34]

h0j �qqj0i ’ � 1

12m
h0j�s

	
trðG2

��Þj0i (5)

derived in the leading order of a 1=m expansion, where m is
the mass of a heavy quark or the constituent mass in the case
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of light quarks. Therefore, nonzero dimension-4 gluon con-
densates signal the existence of nonzero dimension-6 quark
condensates, which are manifestations of the spontaneous
breaking of chiral symmetry. Therefore we see that the break-
ing of conformal symmetry is connected with the breaking of
chiral symmetry. Actually, this idea is not new (see e.g.,
discussion in Ref. [35]).

Next we explain why the dilaton is also responsible for
the spontaneous breaking of chiral symmetry. With the
quadratic z profile of the dilaton field ’ðzÞ ¼ �2z2 the
meson spectrum is given by the master formula [13]

M2
nJ ¼ 4�2

�
nþ Lþ J

2

�
; (6)

where � is the dilaton parameter, which signals the
spontaneous breaking of conformal and chiral symmetry
and leads to a discrete mass spectrum of hadrons. An
additional mechanism of spontaneous breaking of chiral
symmetry is encoded in the bulk mass�2

J, which explicitly
depends on L and forbids parity doubling (e.g., between
vector and axial mesons). The corresponding breaking
term in the mass formula is 
M2 ¼ 2�2ðL� JÞ. It means
that we can interpret Eq. (6) as

M2 ¼ �M2 þ 
M2; (7)

where �M2 ¼ 4�2ðnþ JÞ is the term corresponding to the
parity doubling limit.

The hadronic wave functions are identified with the
profiles of AdS modes �nðzÞ in the z direction,

�nLðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðnþ 1Þ

�ðnþ Lþ 1Þ

s
�Lþ1z2þLe��2z2=2LL

n ð�2z2Þ;

(8)

which have the correct behavior in both the ultraviolet
and infrared limits,

�nLðzÞ ! z2þL at small z;

�nLðzÞ ! 0 at large z;
(9)

and are normalized according to the condition

Z 1

0

dz

z3
�2

nLðzÞ ¼
Z 1

0
dz�2

nLðzÞ ¼ 1; (10)

where �nLðzÞ ¼ z3=2�nLðzÞ. At z ! 0 the scaling of the
bulk profile is identified with the scaling of the correspond-
ing mesonic interpolating operator � ¼ 2þ L. As we
mentioned in the Introduction, � depends on L (instead
of J as in CFT) because we model QCD and should
reproduce the scaling of hadronic form factors. As we
stressed before, dependence on L means spontaneous
breaking of chiral invariance, which is expected because
after the introduction of the dilaton field we broke the
conformal or gauge invariance acting in AdS space.

As we noted before, the chiral group is isomorphic to the
subgroup of SOð4; 2Þ.
Let us discuss the consistency of the mass formula (6).

First of all, we reproduce the massless pion M2
	 ¼ 0 for

n ¼ L ¼ J ¼ 0, which is consistent with the picture of
spontaneous breaking of chiral symmetry. Also, at z ¼ 0
all bulk profiles vanish, which corresponds to pointlike
hadrons (zero scale limit) and we restore conformal, chiral,
and gauge invariance associated with the AdS group
SOð4; 2Þ. In this sense we do not have any contradictions
with chiral invariance as mentioned in Ref. [27], because
for z ¼ 0 it is restored for harmonics with any L and for
finite z we live in the phase of spontaneously broken chiral
invariance (see further details in Ref. [36]). For finite z the
profile for the ground state � meson is defined by their
leading twist corresponding to L ¼ 0, which is consistent
with the statement of Ref. [27] that the ground state �
meson is almost a pure Swave in the infrared. On the other
hand, the bulk profile dual to the ground state � meson is
defined in the extra dimension. Therefore it has no corre-
spondence to the chiral-invariant superposition of Fock
states with L ¼ 0 (S wave) and L ¼ 2 (D wave) discussed
in Ref. [27]. Note that both the electromagnetic field and
J ¼ L ¼ 1 vector mesons have the same interpolating
twist-3 operator. They also have the same dual field in
AdS space—a massless vector bulk field and the bulk-to-
boundary propagator of the electromagnetic field in the
timelike region [28,37], which has the poles corresponding
to the excited states with J ¼ L ¼ 1:

p2 ¼ M2 ¼ 4�2ðnþ 1Þ (11)

as expected in the chiral-invariant limit.
Let us mention other interesting results deduced from

the meson mass formula (6). There are two relations be-
tween the masses of the ground states of vector �ð770Þ,
axial-vector a1ð1270Þ, and scalar f0ð600Þ mesons,

Ma1 ¼ M�

ffiffiffi
2

p ¼ 2�; Mf0 ¼ M� ¼ ffiffiffi
2

p
�; (12)

which are consistent with the predictions done in Ref. [38]
in the same limit when chiral symmetry is spontaneously
broken. Also, the vector and axial-vector multiplets are not
degenerate in our approach (even for higher values of J),
because of the finite mass splitting of axial-vector and
vector mesons states:

�VA ¼ M2
A �M2

V ¼ 2�2: (13)

This means that we do not have parity doubling. An
amazing fact is that the same prediction relating the masses
of � and a1 mesons was also obtained [39] on the basis
of spectral function sum rules at M	 ¼ 0 and using
the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin for-
mula [40] for the �		 coupling.
For the value � ¼ 500 MeV used in this paper the

masses of the � and a1 mesons are well reproduced in
comparison to data
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M� ¼ 721 MeV; ðdata: 775:49	 0:34 MeVÞ;
Ma1 ¼ 1010 MeV; ðdata: 1230	 40 MeVÞ; (14)

while our result for the f0 mass should be considered
as a prediction. We get Mf0 ¼ 721 MeV, which perfectly

agrees with a model-independent result based on analytic-
ity and unitarity of the S matrix [41]: Mf0 ¼ 735:0	
6:1 MeV. But also note that a recent compilation [42]
indicates a mass of Mf0 ¼ 446	 6 MeV as deduced

from the pole position in the process amplitude.
Next we consider the inclusion of the longitudinal part

of the LFWF. We will show that this extension is important
to include in our formalism the dependence on the current
quark masses and therefore explicit breaking of chiral
symmetry. As we stressed before, the first step in this
direction was done in Refs. [10]. The authors proposed to
write down the mesonic two-parton wave function in a
factorized form, as a product of transverse �nLð�Þ, longi-
tudinal fðx;m1; m2Þ, and angular eim� modes. In Ref. [13]
we further proposed to do such separation in a more

convenient form, factorizing in addition
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

—the
Jacobian of the � ! jb?j coordinate transformation:

c q1 �q2ðx; �; m1; m2Þ ¼ �nLð�Þffiffiffiffiffiffiffi
2	�

p fðx;m1; m2Þeim�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp

:

(15)

In Ref. [13] we used a Gaussian ansatz for the longitudinal
part of the LFWF and treated the quark masses m1 and m2

as constituent quark masses. Here we follow Refs. [15,16]
and consider current quark masses, and by an appropriate
choice of the longitudinal wave function fðx;m1; m2Þ we
get consistency with QCD in both sectors of light and
heavy quarks. We generate the masses of light pseudosca-
lar mesons in agreement with the picture resulting from
explicit breaking of chiral symmetry—in the leading order
of the chiral expansion the masses of pseudoscalar mesons
are linear in the current quark mass. In this vein we also
guarantee that the pseudoscalar meson masses satisfy the
Gell-Mann-Oakes-Renner (GMOR) relation for the pion
mass

M2
	 ¼ 2m̂B (16)

and the Gell-Mann-Okubo (GMO) relation between the
masses of pion, kaon, and � meson:

4M2
K ¼ M2

	 þ 3M2
�; (17)

In previous equations m̂ ¼ ðmu þmdÞ=2 is the average
mass of u and d quarks (we work in the isospin limit
mu ¼ md), B ¼ jh0j �uuj0ij=F2

	 is the quark condensate
parameter, and F	 is the leptonic decay constant. Note,
the condensate parameter B is related to the coupling
constant of the pseudoscalar density to the pion G	 [25]
(or in-hadron condensate of pion [23,24]):

B ¼ G	

2F	

; h0j �qi5�
iqj	ki ¼ 
ikG	: (18)

In the sector of heavy quarks we get agreement with heavy
quark effective theory and potential models for heavy
quarkonia. In the heavy quark mass limit mQ ! 1 we

obtain the correct scaling of the leptonic decay constants
for both heavy-light mesons fQ �q � 1=

ffiffiffiffiffiffiffi
mQ

p
and heavy

quarkonia fQ �Q � ffiffiffiffiffiffiffi
mQ

p
and fc �b �mc=

ffiffiffiffiffiffiffi
mb

p
at mc � mb.

In this limit we also generate the correct expansion of
heavy meson masses

MQ �q ¼ mQ þ ��þOð1=mQÞ;
MQ �Q ¼ 2mQ þ EþOð1=mQÞ;

(19)

where �� is the approximate difference between the masses
of the heavy-light meson and the heavy quark, E is the
binding energy in heavy quarkonia, and their splittings,
e.g., between vector and pseudoscalar states of heavy-light
mesons, become

MV
Q �q �MP

Q �q �
1

mQ

: (20)

We choose the longitudinal wave function in the form

fðx;m1; m2Þ ¼ Nx�1ð1� xÞ�2 ; (21)

where N is the normalization constant fixed from

1 ¼
Z 1

0
dxf2ðx;m1; m2Þ; (22)

and �1, �2 are parameters that will be fixed in order to get
consistency with QCD.
In the present paper the physical quantities of interest

are the mass spectrum M2
nJ and lepton decay constants

fM of mesons, which are given by the expressions [13]

M2
nJ ¼ 4�2

�
nþ Lþ J

2

�

þ
Z 1

0
dx

�
m2

1

x
þ m2

2

1� x

�
f2ðx;m1; m2Þ; (23)

fM ¼ �

ffiffiffi
6

p
	

Z 1

0
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
fðx; m1; m2Þ: (24)

Using our ansatz for the longitudinal wave function (21)
we calculate the leptonic decay constant and the correction
to the mass spectrum analytically [13]:

M2
nJ ¼ 4�2

�
nþLþ J

2

�
þ ð1þ 2�1 þ 2�2Þ

�
m2

1

2�1

þ m2
2

2�2

�
;

fM ¼ �

ffiffiffi
6

p
	

�ð32þ�1Þ�ð32þ�2Þ
�ð3þ�1 þ�2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2þ 2�1 þ 2�2Þ

�ð1þ 2�1Þ�ð1þ 2�2Þ

s
:

(25)

Next we analyze different types of mesons. We start with
the light pseudoscalar mesons. Here wewant to incorporate
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a mechanism for explicit breaking of chiral symmetry in
order to reproduce the GMOR and GMO relations in the
leading order of the chiral expansion. For this purpose we
set �i ¼ mi=ð2BÞ, which is consistent with the ideas and
results of Refs. [15,16] and which means that �i vanishes
in the chiral limit mi ! 0. The leptonic decay constants of
both the pion and kaon are finite and degenerate in the
chiral limit [9,13]:

fP ¼ �
ffiffiffi
6

p
8

: (26)

Concerning the longitudinal wave functions of other light
mesons, the choice of the �i parameters does not neces-
sarily coincide with the one used for the pseudoscalar
mesons. But for simplicity we will use the same universal
longitudinal wave function for all light mesons. In this case
the leptonic decay constants of 	, K, and �0 mesons are
degenerate and the corresponding constants for ! and �
mesons are related via the SUð3Þ flavor conditions:

f	 ¼ fK ¼ f� ¼ 3f! ¼ 3f�ffiffiffi
2

p ¼ �

ffiffiffi
6

p
8

: (27)

Next we consider the heavy-light mesons. Here we
should reproduce the heavy quark mass expansion of the
heavy-light meson masses, the mass splitting of vector and
pseudoscalar states, and the 1=

ffiffiffiffiffiffiffi
mQ

p
scaling of the leptonic

decay constants. All these constraints are fulfilled if the �i

parameters are fixed as �Q ¼ �, a flavor-independent

constant, while the parameter �q must be

�q ¼
2�Q

mQ

�
1þ

��

2mQ

�
� 1

2
: (28)

For this choice the results for the mass spectrum and
leptonic decay constants, in the leading order of the chiral
expansion, and the leading and next-to-leading order of
the heavy quark mass expansion, are

M2
Q �q ¼ 4�2

�
nþ Lþ J

2

�
þ ðmQ þ ��Þ2; (29)

fQ �q ¼ �
ffiffiffi
6

p
	

2
ffiffiffiffi
�

p
�þ 3

2

ffiffiffiffiffiffiffi
��

mQ

vuut �
ffiffiffiffiffiffiffi
1

mQ

s
: (30)

Finally, for heavy quarkonia we fix the parameters �Qi
as

�Qi
¼ mQi

4E

�
1� E

2ðmQ1
þmQ2

Þ
�
þO

�
1

mQi

�
; (31)

and then we get the following results for the spectrum:

M2
Q1

�Q2
¼ 4�2

�
nþ Lþ J

2

�
þ ðmQ1

þmQ2
þ EÞ2: (32)

It was shown in Ref. [43] that the trajectories of bottomia
states deviate from linearity as we also discussed in
Ref. [13]. This effect can be related to the one-gluon

exchange term, which results in an additional Coulomb-
like interaction between quarks VðrÞ ¼ �4�s=3r, where
�s is the strong coupling constant. Its contribution to the
mass spectrum M2 is negative and proportional to the
quark mass squared [43]. For light and heavy-light mesons
this term can be safely neglected, while this is not the case
for heavy quarkonia (especially for bottomia states).
Extending the results of Refs. [43] to the general case of
a meson containing constituent quarks with masses mQ1

and mQ2
, we get the following expression for the shift

of M2 due to the color Coulomb potential:

�M2
Q1Q2

¼ � 64�2
smQ1

mQ2

9ðnþ Lþ 1Þ2 ; (33)

where �s is the strong coupling considered as a free
parameter. Therefore, the final expression for the heavy
quarkonia spectra is given by the master formula:

M2
Q1

�Q2
¼ 4�2

�
nþ Lþ J

2

�
þ ðmQ1

þmQ2
þ EÞ2

� 64�2
smQ1

mQ2

9ðnþ Lþ 1Þ2 : (34)

For the leptonic decay constants of unflavored quarkonia
we get the following result in leading order of the 1=mQ

expansion:

fQ �Q ¼ �
ffiffiffi
6

p

ð2	Þ3=4
�
E

mQ

�
1=4

; (35)

and for the decay constant of Bc meson:

fc �b ¼ 2�
ffiffiffi
6

p

	3=4

ðmc=EÞ3=4
ðmb=EÞ : (36)

In the case of the Bc meson we additionally apply
the condition mc � mb. Equtations (35) and (36) can be
combined into a general formula for the leptonic decay of
heavy quarkonia:

fQ1
�Q2
¼ 2�

ffiffiffi
6

p

	3=4

ð�Q1Q2
=EÞ3=4

ðM0=EÞ ; (37)

where�Q1Q2
¼ mQ1

mQ2
=ðmQ1

þmQ2
Þ is the reduced mass

of heavy quarkonia and M0 ¼ mQ1
þmQ2

. In order to get

the correct scaling [44] of the leptonic decay constants of
heavy quarkonia we propose the following: in the case of
heavy quarkonia the dilaton parameter � should be flavor

dependent and scale as �1=4
Q1Q2

�M1=2
0 . Note that different

dilaton parameters for light mesons and heavy quarkonia
were also considered before (see e.g., Ref. [45]). Here we
use the following ansatz for �:

� ¼ �

�
�Q1Q2

E

�
1=4

�
M0

E

�
1=2

; (38)

where � ¼ Oðm0
QÞ. For unflavored quarkonia the final

result for the leptonic decay constant reads:
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fQ �Q ¼ �

ffiffiffi
3

p

	3=4

ffiffiffiffiffiffiffi
mQ

E

r
: (39)

For the Bc meson we get

fc �b ¼ 2�

ffiffiffi
6

p

	3=4

mc=Effiffiffiffiffiffiffiffiffiffiffiffi
mb=E

p : (40)

Finally we present the numerical results. The parameters
are fixed to the following values. For the current quark
masses we use

mu ¼ md ¼ m̂ ¼ 7 MeV; ms ¼ 24m̂ ¼ 168 MeV;

mc ¼ 1:275 GeV; mb ¼ 4:18 GeV: (41)

For the strong coupling constants �s we use the following
set of parameters:

�sðc �cÞ¼ 0:45; �sðc �bÞ¼ 0:383; �sðb �bÞ¼ 0:27: (42)

Note that for the light and heavy-light mesons we use the

universal parameter � ¼ 500 MeV. The parameters �� for
heavy-light mesons are fixed from the mass difference of
the experimental values of ground state of D, Ds, B, Bs

mesons and corresponding heavy quark mass as

��cq ¼ 0:595 GeV; ��cs ¼ 0:695 GeV;

��bq ¼ 1:1 GeV; ��bs ¼ 1:19 GeV:
(43)

The binding energies for heavy quarkonia are fixed as

Ecc ¼ 0:795 GeV; Ecb ¼ 1:25 GeV; Ebb ¼ 1:45 GeV:

(44)

The set of � couplings, defining the heavy flavor
dependence of the dilaton parameter �, is fixed in the
case of heavy quarkonia as

�ðc �cÞ ¼ 0:36 GeV; �ðc �bÞ ¼ 0:32 GeV;

�ðb �bÞ ¼ 0:41 GeV:
(45)

These parameters are nearly the same for all quarkonia
states, which is consistent with proposed scaling
� ¼ Oðm0

QÞ. In Tables I, II, III, IV, V, and VI we present

the numerical results both for the mass spectrum and

TABLE I. Masses of light mesons.

Meson n L S Mass [MeV]

	 0, 1, 2, 3 0 0 M	ð140Þ ¼ 140 M	ð1300Þ ¼ 1010 M	ð1800Þ ¼ 1421 M	ð4sÞ ¼ 1738
K 0 0, 1, 2, 3 0 MK ¼ 495 MK1ð1270Þ ¼ 1116 MK2ð1770Þ ¼ 1498 MK3

¼ 1801
� 0, 1, 2, 3 0 0 M�ð1sÞ ¼ 566 M�ð2sÞ ¼ 1149 M�ð3sÞ ¼ 1523 M�ð4sÞ ¼ 1822
f0½ �nn� 0, 1, 2, 3 1 1 Mf0ð1pÞ ¼ 721 Mf0ð2pÞ ¼ 1233 Mf0ð3pÞ ¼ 1587 Mf0ð4pÞ ¼ 1876
f0½�ss� 0, 1, 2, 3 1 1 Mf0ð1pÞ ¼ 985 Mf0ð2pÞ ¼ 1404 Mf0ð3pÞ ¼ 1723 Mf0ð4pÞ ¼ 1993
�ð770Þ 0, 1, 2, 3 0 1 M�ð770Þ ¼ 721 M�ð1450Þ ¼ 1233 M�ð1700Þ ¼ 1587 M�ð4sÞ ¼ 1876
!ð782Þ 0, 1, 2, 3 0 1 M!ð782Þ ¼ 721 M!ð1420Þ ¼ 1233 M!ð1650Þ ¼ 1587 M!ð4sÞ ¼ 1876
�ð1020Þ 0, 1, 2, 3 0 1 M�ð1sÞ ¼ 985 M�ð2sÞ ¼ 1404 M�ð3sÞ ¼ 1723 M�ð4sÞ ¼ 1993
a1ð1260Þ 0, 1, 2, 3 1 1 Ma1ð1pÞ ¼ 1010 Ma1ð2pÞ ¼ 1421 Ma1ð3pÞ ¼ 1738 Ma1ð4pÞ ¼ 2005

TABLE II. Masses of heavy-light mesons.

Meson JP n L S Mass [MeV]

Dð1870Þ 0� 0 0, 1, 2, 3 0 1870 2000 2121 2235

D
ð2010Þ 1� 0 0, 1, 2, 3 1 2000 2121 2235 2345

Dsð1969Þ 0� 0 0, 1, 2, 3 0 1970 2093 2209 2320

D

sð2107Þ 1� 0 0, 1, 2, 3 1 2093 2209 2320 2425

Bð5279Þ 0� 0 0, 1, 2, 3 0 5280 5327 5374 5420

B
ð5325Þ 1� 0 0, 1, 2, 3 1 5336 5374 5420 5466

Bsð5366Þ 0� 0 0, 1, 2, 3 0 5370 5416 5462 5508

B

sð5413Þ 1� 0 0, 1, 2, 3 1 5416 5462 5508 5553

TABLE III. Masses of heavy quarkonia c �c, b �b, and c �b.

Meson JP n L S Mass [MeV]

�cð2980Þ 0� 0, 1, 2, 3 0 0 2975 3477 3729 3938

c ð3097Þ 1� 0, 1, 2, 3 0 1 3097 3583 3828 4032

�c0ð3415Þ 0þ 0, 1, 2, 3 1 1 3369 3628 3843 4038

�c1ð3510Þ 1þ 0, 1, 2, 3 1 1 3477 3729 3938 4129

�c2ð3555Þ 2þ 0, 1, 2, 3 1 1 3583 3828 4032 4219

�bð9390Þ 0� 0, 1, 2, 3 0 0 9337 9931 10224 10471

�ð9460Þ 1� 0, 1, 2, 3 0 1 9460 10048 10338 10581

�b0ð9860Þ 0þ 0, 1, 2, 3 1 1 9813 10110 10359 10591

�b1ð9893Þ 1þ 0, 1, 2, 3 1 1 9931 10224 10471 10700

�b2ð9912Þ 2þ 0, 1, 2, 3 1 1 10048 10338 10581 10808

Bcð6277Þ 0� 0, 1, 2, 3 0 0 6277 6719 6892 7025

TABLE IV. Decay constants fP of pseudoscalar mesons in
MeV.

Meson Data [42] Our

	� 130:4	 0:03	 0:2 153

K� 156:1	 0:2	 0:8 153

Dþ 206:7	 8:9 207

Dþ
s 257:5	 6:1 224

B� 193	 11 163

B0
s 253	 8	 7 170

Bc 489	 5	 3 [46] 489
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the leptonic decay constants of light, heavy-light, and
heavy quarkonia in leading order of the chiral and heavy-
quark mass expansion. Results are for most of the part in
reasonable agreement with data. We would like to stress
that we significantly improved the description of mesonic
properties in comparison to our previous efforts [13].

In conclusion, we demonstrated that in the soft-wall
model, where conformal or SOð4; 2Þ gauge invariance is
broken, the same applies for chiral invariance which is also
broken (spontaneously). This is manifested in the L depen-
dence of twists of interpolating operators of hadrons and in
their observables such as mass spectra and form factors. In
the limit of chiral invariance one could expect a dependence
on J. However, the J dependence is specific for conformal
field theories and not for QCD. Namely, the L dependence
is dictated by the scaling of hadronic form factors at higher
Q2. A restriction to a specific L (in our case to the minimal
L for a specific hadron) is a manifestation of spontaneous
breaking of chiral symmetry. Chiral symmetry is restored in
the exact limit z ¼ 0 (not for small z), which is trivial and
corresponds to the restoration of chiral symmetry for all
hadrons having components with an adjustable value of L.
We demonstrated explicitly that the present approach is

consistent with model-independent predictions obtained
in the case of spontaneous broken chiral symmetry: (i) a
massless pion, (ii) theWeinberg sum rule relating masses of
�, a1, and f0 mesons. In the chiral limit the hadron eigen-
states are superpositions of components with different
values of L. Finally, we demonstrated how to consistently
construct the longitudinal LFWF and include the current
quark mass dependence. The latter is consistent, in the light
quark sector, with the mechanism of explicit breaking of
chiral symmetry, and in the heavy quark sector with the
heavy quark spin-flavor symmetry.
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