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The interplay of dilatonic effects in dilaton cosmology and stochastic quantum space-time defects

within the framework of string/brane cosmologies is examined. The Boltzmann equation describes the

physics of thermal dark-matter-relic abundances in the presence of rolling dilatons. These dilatons affect

the coupling of stringy matter toD-particle defects, which are generic in string theory. This coupling leads

to an additional source term in the Boltzmann equation. The techniques of asymptotic matching and

boundary-layer theory, which were recently applied by two of the authors (Bender and Sarkar) to a

Boltzmann equation, are used here to find the detailed asymptotic relic abundances for all ranges of the

expectation value of the dilaton field. The phenomenological implications for the search for super-

symmetric dark matter in current colliders, such as the LHC, are discussed.
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I. INTRODUCTION

To evaluate candidates for cold dark matter (DM) it is
necessary to compute relic abundances including physics
beyond the standard model. String-theory considerations
provide a natural source of such physics.

Recently, a global asymptotic analysis was performed
on the (Riccati-type) Boltzmann differential equation that
describes the evolution of the thermal DM relic abundan-
ces in an expanding universe [1]. It was shown that
boundary-layer theory, which makes use of asymptotic
matching [2], can give a consistent approximate solution
to this Riccati equation in two physically interesting cases:
(i) standard Friedman-Robertson-Walker (FRW) cosmol-
ogy [3], and (ii) dilatonic string cosmology [4,5]. In case
(i) the freeze-out and post-freeze-out regions (we empha-
size that these are regions and not isolated points) for the
DM abundances were defined using this novel approach. In
case (ii) the Boltzman equation of case (i) is modified by
the addition of a rolling dilaton source term derivable from
string theory and proportional to the dilaton cosmic rate
d�
dt . The effects of the rolling dilaton on cold DM abun-

dances were calculated, and it was shown that there is a
large-time power-law decay of the DM abundance (with
calculable corrections). The latter results explain the find-
ings of Ref. [6] on the dilution of DM relic abundances in
the current epoch in supersymmetric theories with rolling
dilatons. This dilution may significantly affect the avail-
able parameter space (after the appropriate cosmological
constraints fromWMAP [7] are taken into account) and, in

turn, may affect the searches for supersymmetry at col-
liders such as the Large Hadron Collider (LHC) [8].
The analysis cited above does not include the effect of a

cosmological background due to effectively pointlike de-
fects (quantum space-time foam), which are generically
found in models based on string theory [9]. Dilatons are
coupled to the foam through the string coupling constant.
This foammodifies the effect of the dilaton in the evolution
of DM and can even dominate asymptotically in the ab-
sence of dilaton effects. In our model of space-time foam
the universe is represented as a brane, with three large
spatial longitudinal dimensions, embedded in a higher-
dimensional bulk space. The ‘‘foamy’’ structures are
provided by stringy membrane (D-brane) defects, compac-
tified appropriately along extradimensional manifolds.
From the point of view of a four-dimensional observer
the defects appear to be pointlike (D particles).1 As the
D-brane world moves in the bulk, the D particles cross it
and thus appear to the four-dimensional observer as sto-
chastic space-time structures, flashing on and off. The
stochasticity in target-space is attributed to quantum fluc-
tuations of the D particles, viewed as stringy dynamical
entities embedded in the bulk space. The dilaton� directly
affects this process because its vacuum expectation value
determines the string coupling gs. This paper investigates
the interplay between the dilaton and a background of
space-time defects and their effects on the asymptotic
behavior of relic abundances.
In Sec. II we review the main results of Ref. [1] con-

cerning the DM relic density for asymptotically long times
in standard and dilatonic cosmologies. This serves to
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1D particles are in the spectrum of some but not all string
theories; that is, they exist in the spectrum of type IIA but not
type IIB string theory. Even when D particles are not in the
spectrum, compactified higher dimensional branes may seem
like effective D particles for observers on the brane world.
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introduce the powerful technique of asymptotic matching
[2] used in Ref. [1]. In Sec. III we apply the analytical
methods of Ref. [1] to the case of D-particle stochastic
foam (D foam) in the presence of relaxing dilatons. The D
foam is characterized by a source that differs from the
source in dilatonic cosmology. Various classes of asymp-
totic behaviors are determined by the expectation value of
�. In Sec. IV we discuss the phenomenology of these
models. We address the combined effects of the running-
dilaton and D-foam sources on the thermal DM relic
abundances today and the associated constraints implied
by the current LHC phenomenology. Finally, a technical
discussion of the thermodynamic properties of the various
types of universes in the presence of sources, which are
examined in this article, is given in the Appendix. There,
we explain in detail how it is possible to define an entropy
function that is conserved in the presence of nontrivial
source terms in the Boltzmann equation; this function
allows a thermodynamic interpretation of the respective
cosmological equations.

II. REVIEW OFASYMPTOTIC SOLUTIONS
TO THE BOLTZMANN EQUATIONS FOR
RELIC ABUNDANCES IN STANDARD AND

DILATONIC COSMOLOGIES

For a DM species X of mass mX the evolution of YðxÞ �
N =s, the number density N per entropy density s, is
governed by the Boltzmann equation [3]

Y0ðxÞ ¼ ��x�n�2½Y2ðxÞ � Y2
eqðxÞ�; (2.1)

where x � mX=T is the dimensionless independent vari-
able and T is the temperature. This Riccati equation does
not include any dilatonic effects of string theory. We are
primarily interested in epochs of the universe for which
mX > T > T0, where T0 is the current temperature of the
universe. The integer n ¼ 0; 1; 2; . . . , comes from a partial-
wave analysis of the scattering of DM particles: n ¼ 0
refers to s-wave scattering, n ¼ 1 characterizes p-wave
scattering, and so on. The parameter � is a dimensionless
measure of the scattering of DM particles and is regarded
as a large number (� � 1). If we parametrize the thermally
averaged annihilation cross section h�vi ¼ �0x

�n with
n ¼ 0; 1; . . . , for (s; p; . . .)-wave DM annihilation, and
the Hubble parameter as H ¼ Hmx

�2, then � �
�0m

3
X=Hm [3]. For bosonic remnants the function YeqðxÞ

is the distribution [10]

YeqðxÞ ¼ A
Z 1

0
ds

s2

e
ffiffiffiffiffiffiffiffiffiffi
s2þx2

p
� 1

; (2.2)

where A ¼ 0:145g=g�, g is the degeneracy factor for the
DM species, and g� counts the total number of massless
degrees of freedom [3].

A closed-form analytical solution to the Riccati equation
(2.1) is unavailable, so an approximate heuristic approach

is customarily used to treat this equation: As the universe
cools and x increases, the nature of the solution YðxÞ to
(2.1) changes rapidly in the vicinity of a value x ¼ xf, the

so-called freeze-out point, and as x ! 1 the solution YðxÞ
approaches the constant Y1, called the relic abundance.
One approximation is made for x < xf and another is made

for x > xf. The solutions in the two regions are then

patched at x ¼ xf. The value xf is determined from equat-

ing the interaction rate of the DM particle and the expan-
sion rate of the universe, a sensible physical criterion.
This approach gives a reasonably accurate determination

of Y1 and, prior to the work of Ref. [1], it has been widely
adopted [3]. However, this splitting into two regions is only
a pragmatic convenience, and there is really no precise
value xf. Rather, there may be (in a sense to be specified) a

freeze-out region. Because the differential equation (2.1) is
first order, its solution is completely determined by one
initial condition, namely Yð0Þ. The usual method of split-
ting (2.1) into two approximate first-order equations, which
are valid in each of two regions, requires two conditions, an
initial condition and a patching condition. The value of xf
becomes explicitly involved in the determination of Y1
even though the mathematical theory of differential equa-
tions does not require this. To avoid this unsatisfactory
mathematical treatment (which is common in the litera-
ture), two of the current authors (Bender and Sarkar)
presented in Ref. [1] a detailed analysis of the associated
Riccati equations using applied mathematical methods
commonly used in fluid mechanics. A key concept is that
the freeze-out region can, at least in physically relevant
cases, be considered as a boundary layer. The solutions in
the two regions can then be matched asymptotically.
Before reviewing the solution of (2.1) for large x we
introduce the Boltzmann equation in the presence of a
dilaton background.
In the case of rolling dilaton cosmologies [4] the thermal

DM relic abundance is characterized by the presence of a
linear sink term, which is proportional to the rate of the

rolling dilaton field d�
dt [5]. The derivation of this sink term

is reviewed in the Appendix. We also explain there that the
‘‘physical’’ frame, relevant for cosmological observations,
is the so-called Einstein frame, obtained by an appropriate
redefinition of the metric tensor and a time-coordinate
transformation [cf. (A5)]. In that frame, the dilaton does
not couple to the Einstein-Hilbert scalar curvature term in
the gravitational part of the Lagrangian. We adopt the
Einstein frame for our computations.
In theories with scale-factor duality [4], we have in this

frame

�ðtÞ ¼ �0 log aðtÞ; (2.3)

where aðtÞ is the scale factor of the expanding universe. In
eras where the temperature T satisfies mX > T > T0,

Y0ðxÞ ¼ ��x�n�2½Y2ðxÞ � Y2
eqðxÞ� þ�0YðxÞ=x: (2.4)
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Here, �0 is a negative dimensionless constant of order 1
that appears in the general expression for the dilaton field
as a function of cosmic time t. For �0 ¼ ��< 0, the
string coupling gs ¼ e� becomes perturbatively small for
large times and vanishes asymptotically as t ! 1. Thus,
the �-model perturbative picture suffices to describe the
features of cosmology at large times. As shown in Ref. [1],
the presence of the particular dilaton source in (2.4) gives a
solution for YðxÞ whose behavior is qualitatively different
from the solution for YðxÞ in (2.1).

A. Boundary-layer theory

Since � is large, the highest derivative in both Eqs. (2.1)
and (2.4) is multiplied by a small parameter, which implies
that these equations may be treated by using boundary-
layer techniques [2] and leads to the concept of a freeze-out
region as opposed to a freeze-out point [1]. We rewrite
(2.4) as

1

�
Z0ðxÞ ¼ �x�n�2½x��Z2ðxÞ � x�Y2

eqðxÞ�; (2.5)

where

ZðxÞ � YðxÞx�: (2.6)

The coefficient 1=� of the highest-derivative term is very
small. The number of terms on the right side has been
reduced from three to two; this facilitates asymptotic
matching. Outside a boundary layer (the outer region),
ZðxÞ varies slowly. Inside a boundary layer, ZðxÞ varies
rapidly.

We have two outer regions where ZðxÞ ¼ Zð1ÞðxÞ and

ZðxÞ ¼ Zð2ÞðxÞ, respectively. In the left outer region

Zð1ÞðxÞ � ZeqðxÞ � x�YeqðxÞ. To be precise, we write

Zð1ÞðxÞ � X1
k¼0

��kZð1Þ
k ðxÞ: (2.7)

On substituting Zð1ÞðxÞ into (2.5), we find that

Zð1Þ
0 ðxÞ ¼ Ae�xx’þ3=2; Zð1Þ

1 ðxÞ ¼ x’þnþ2=2; (2.8)

and so on. The entity xf is defined to be the value of x for

which

Zð1Þ
0 ðxÞ ¼ Zð1Þ

1 ðxÞ (2.9)

and is a measure of where the equilibrium region ends.
Equation (2.9) implies that

xf � log ð2A�Þ � ðnþ 1=2Þ log ðxfÞ: (2.10)

This analysis is somewhat simplified (see Ref. [1]). The
higher order terms in (2.7) are not negligible, but they lead
to a series with alternating signs that is Borel summable.
The Borel sum of the series leads to a multiplicative
renormalization of A by a factor close to 1. To keep the
notation simple we have not distinguished A from the

renormalized A. Solving the equation obtained by replac-
ing in (2.10) the symbol � by the equality sign gives xf:

xf ¼ ðnþ 1=2ÞW
�ð2�AÞnþ1=2

nþ 1=2

�
; (2.11)

where WðzÞ is a Lambert function [11]. Hence the asymp-
totic behavior is fully determined in terms of constants
occurring in the Boltzmann equation.
The value xf lies in the transition region from equilib-

rium to freeze-out, which is interpreted as a boundary
layer. This interpretation can be justified by the method
of asymptotic matching. We define an inner variable X as
follows:

x ¼ xf þ �X: (2.12)

Then jXj can be large compared to 1 but small compared to
�. Now, for ZðXÞ we have
1

�
Z0ðXÞ ¼ ��x�n�2��

f ½Z2ðXÞ � A2x3þ2�
f e�2xf �

� ��x�n�2��
f Z2ðXÞ: (2.13)

The exponential term is negligible because xf � 25 for

typical values � � 1014 and A � 0:00145.
From the principle of dominant balance [2] we have

� ¼ xnþ2þ�
f =�: (2.14)

The solution to (2.13) is

ZðXÞ ¼ 1=ðX þDÞ; (2.15)

where D is a constant of integration. This is the solution in
the boundary-layer (or freeze-out) region.
To the right of this boundary layer there is a second outer

region. For large x in this region

Z0ðxÞ � ��x�n�2��Z2ðxÞ ðx � 1Þ; (2.16)

whose solution is

Zpost-freeze-outðxÞ� 1

1=C��x�n�1��=ðnþ1þ�Þ ; (2.17)

where C is an integration constant.
The behaviors in the equilibrium outer region, the

boundary-layer region, and the post-freeze-out outer re-
gion must be asymptotically matched. This matching de-
termines the constants of integration C and D. We first
match the solution in the equilibrium region to the
boundary-layer solution:

Zthermal-equilibriumðxÞ�2Ax3=2þ�e�x

�2Aðxfþ�XÞ3=2þ�e�xfe��X:

The factor of 2 is included because two lowest-order terms
of the expansion in (2.7) are considered. Noting that � and
X=xf are small, we get
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Zthermal-equilibriumðxÞ� xnþ2þ�
f

�ð1þ�XÞ�
1

Xþ�x�n�2��
f

(2.18)

on using (2.14). Hence, comparing with (2.15), we deduce
that

D ¼ �x�n�2��
f : (2.19)

Similarly, (2.17) leads to

Zpost-freeze-outðxÞ � 1
1
C � �

nþ1þ� ðxf þ �XÞ�n�1��
;

from which we deduce that

Zpost-freeze-outðxÞ � 1
1
C � �

ðnþ1þ�Þxnþ1þ�
f

þ X
: (2.20)

Comparing with (2.15), we get

D ¼ 1

C
� �

ðnþ 1þ�Þxnþ1þ�
f

: (2.21)

Finally, from (2.19) we deduce that

C ¼ ðnþ 1þ�Þxnþ2þ�
f

�ðnþ 1þ�þ xfÞ : (2.22)

The leading behavior for large x in the post-freeze-out
region is

YðxÞ � ðnþ 1þ�Þxnþ2þ�
f

�ðnþ 1þ�þ xfÞ x
��: (2.23)

We denote the solution to (2.1) as YnsðxÞ, where ns stands
for no source. Its asymptotic value for large x is obtained
from (2.23) by setting � ¼ 0. The specific solution for xf
in (2.11) is denoted by xf;ns.

The above calculation forms the basis of the following
analysis that will be given for various parameter ranges and
sources in the Boltzmann equation.

III. DM RELIC ABUNDANCES: THE CASE OFA
STOCHASTIC STRINGY SPACE-TIME FOAM

The background of stochastic D-particle foam leads [9]
to the inclusion of a positive source � (as opposed to the
sink in dilaton cosmology) in the standard Boltzmann
equation for the thermal relic abundance of the DM species
X of mass mX. In terms of the number density N it was
shown in Ref. [9] that the Boltzmann equation reads

dN
dt

þ 3HN ¼ �ðtÞN þ C½f�; (3.1)

where C½f� denotes the Boltzmann interaction terms and

�ðtÞ ¼ 2HmXa
4ðtÞ g

2
s

M2
s

Tð9þ 2mX=TÞhh�2ii; (3.2)

where Ms is the string mass scale. (The mass of a
D-particle defect in the foam is Ms=gs [9].) The quantity
hh�2ii is a dimensionless variable, which expresses
the variance in the recoil velocities of the D-particle de-
fects in the foam, during their collisions with the DM
particles [9].
The symbol hh� � �ii denotes the average over the popula-

tion of D particles on the three-dimensional-space brane
world in a given epoch of the universe. The no-force
(dustlike) behavior of theD particles implies the following
scaling of hh�2ii with the scale factor aðtÞ of the four-
dimensional (brane) universe:

hh�2ii ¼ h�2i0a�3ðtÞ ¼ h�2i0C�3
0 T3 ¼ h�2i0m3

XC
�3
0 x�3:

(3.3)

Here C0 ¼ aðt0ÞT0 is a dimensionful constant that appears
in the cooling law of the universe; that is,

aðtÞ ¼ C0=T ¼ aðt0Þ=ð1þ zÞ; (3.4)

where z is the redshift parameter. The values z ¼ 0, t ¼ t0,
and T ¼ T0 correspond to the current era. This source is
positive (in contrast to the sink of dilaton cosmology) and
is discussed in a more general framework in the Appendix.

We now discuss the collision term h�vi½ðN ð0ÞÞ2�N 2�
in (3.1), where N ð0Þ is the equilibrium value of the DM
number density. Equation (3.1) now becomes

Y0ðxÞ¼��x�n�2½Y2ðxÞ�Y2
eqðxÞ�

þ2C4
0g

2
s

m2
XM

2
s

hh�2iix2ð9þ2xÞYðxÞ: (3.5)

Hence, the Boltzmann equation (3.5) becomes

Y0ðxÞ ¼ ��x�n�2½Y2ðxÞ � Y2
eqðxÞ�

þ g2s
2C0mX

M2
s

h�2i0ð9þ 2xÞYðxÞ=x: (3.6)

There is an implicit dilaton dependence in (3.6) that
needs to be made explicit. The string coupling gs is the
exponential of the dilaton, gs ¼ g0 exp ðh�iÞ, and so

gs � g0a
�� ¼ g0ðC0=mXÞ��x��: (3.7)

Hence, for consistency we must incorporate both the dila-
ton sink and the source induced by D-particle foam in the
Boltzmann equation in a combined source. The resulting
Boltzmann equation is

Y0ðxÞ¼��x�n�2½Y2ðxÞ�Y2
eqðxÞ��Sðx;�ÞYðxÞ=x; (3.8)

where

Sðx;�Þ ¼ �� ��ð9þ 2xÞx�2� (3.9)

and

�� � 2g20C
1�2�
0 m1þ2�

X h�2i0=M2
s : (3.10)
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We are especially interested in the regime of tempera-
tures mX � T, that is, as x ! 1. However, the asymptotic
matching requires a knowledge of the solution for higher T
as well. From (3.9) it is clear that for the case � ¼ 1=2 the
x dependence of the source and sink coincide for large x.
Just as in (2.5), it is convenient to rewrite (3.8) in the form
of a differential equation with the nonlinear terms on the
right side. We introduce the function

gðx;�Þ � x� exp

�
��

�
9

2�
� 2x

1� 2�

�
x�2� þ 2��

1� 2�

�
;

(3.11)

which is smooth at � ¼ 1=2, and the function

fðx;�Þ � x�n�2=gðx;�Þ: (3.12)

We then define

Zðx;�Þ � gðx;�ÞYðxÞ;
which is the analog of (2.6), and

Zeqðx;�Þ � gðx;�ÞYeqðxÞ:
The Riccati equation satisfied by Zðx;�Þ is

dZðx;�Þ
dx

¼ ��fðx;�Þ½Z2ðx;�Þ � Z2
eqðx;�Þ�; (3.13)

which is similar in structure to (2.5). The explicit form of
fðx;�Þ is

fðx;�Þ¼x�n�2��exp

�
���

�
9

2�
� 2x

1�2�

�
x�2�� 2��

1�2�

�
:

(3.14)

The dominant asymptotic behavior of fðx;�Þ as x ! 1
changes according to the value of �; fðx;�Þ decays for
�> 1=2 and fðx; �Þ increases exponentially for large x for
�< 1=2. Note that the phenomenologically relevant quan-
tity is the Hubble-constant-free-relic abundance, �h2 ¼
mN =�c

0, where �
c
0 is the critical density today and N is

the number density of the DM species. This is the quantity
that is measured in experiments. For DM species X with
mass mX it is given by [3]

�Xh
2 ¼ m4

XYðxÞ=x3: (3.15)

The modification of�X can be compared to the standard
(source-free) relic density by considering the phenomeno-
logically interesting ratio

R � lim
x!1

�X

�source-free
X

� lim
x!1

YðxÞ
YnsðxÞ ; (3.16)

where �source-free
X denotes the relic density of the DM

species X in the standard cosmology case with constant
dilaton and no space-time foam. We now systematically
consider the behavior of the solution to the Boltzmann
equation for various values of �.

A. The case of � near 1=2

To investigate the behavior near�¼1=2we let�¼1=2�
� and treat � as small. We write Z�ðxÞ�Zðx;1=2��Þ. The
Riccati equation satisfied by Z�ðxÞ in (3.13) is

Z0
�ðxÞ ¼ ��f�ðxÞ½Z2

�ðxÞ � Z2
eq;�ðxÞ�; (3.17)

where Zeq;�ðxÞ � Zeqðx; 1=2� �Þ for small � and

f�ðxÞ � x�n�5=2þ�þ2�� exp ð�9��=xÞ (3.18)

with �� � �1=2��. Moreover, we have

Zeq;�ðxÞ � Ax2���2��e�x: (3.19)

As we did in Sec. II, we argue that for large x in the post-

freeze-out outer region, Z�ðxÞ � Zpost-freeze-out
� ðxÞ, where

d

dx
Zpost-freeze-out
� ðxÞ¼��f�ðxÞ½Zpost-freeze-out

� ðxÞ�2: (3.20)

The solution to (3.20) is

Z� ¼ 1

C�1
� � � x�n�3=2þ�þ2��

nþ3=2���2��

; (3.21)

and C� is an integration constant to be determined.
In the equilibrium outer region, following (2.5), (2.7),

and (2.9), we substitute

Z�ðxÞ �
X1
k¼0

��kZk;�ðxÞ (3.22)

into (3.17). This leads to Z0;�ðxÞ ¼ Zeq;�ðxÞ and

Z1;�ðxÞ ¼ � 1

2f�ðxÞ
d

dx
logZeq;�:

The value x ¼ xf, which characterizes the freeze-out re-

gion, is determined by Z0;�ðxÞ ¼ Z1;�ðxÞ, and we again

obtain (2.10).
In the inner (freeze-out) region we introduce X as in

(2.12). The resulting equation for Z�ðXÞ is
1

�

d

dX
Z�ðXÞ ¼ ��x

�n�5=2þ�þ2��

f ½Z2
�ðXÞ

� A2x
4�2��4��

f e�2xf �: (3.23)

The criterion of dominant balance requires that

1

�
¼ �x

�n�5
2þ�þ2��

f : (3.24)

Following earlier arguments [see (2.13)], in the inner re-
gion we have

d

dX
Z�ðXÞ � �Z2

�ðXÞ:

The solution to this equation is

Z�ðXÞ ¼ 1=ðX þD�Þ; (3.25)
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where D� is a constant of integration. Matching (3.21)
with (3.25) gives

D�¼ 1

C�
� �

ðnþ3=2���2��Þxnþ3=2���2��

f

: (3.26)

As in (2.19), the matching of the solutions in the equi-
librium and freeze-out regions determines that

D� ¼ �x
�n�5=2þ2��þ�
f : (3.27)

The analog of (2.22) is

1

C�
¼�

nþ3=2�2����þxf
nþ3=2�2����

x
�n�5=2þ2��þ�
f : (3.28)

Here, xf ¼ xf;ns. Consequently, for � ¼ 1=2� � and �

small, the large-x asymptotic behavior of YðxÞ is
YðxÞ � C�x

�1=2þ2��þ�: (3.29)

In such a case C� and the freeze-out region are determined
from (3.28) and from (2.10), while the freeze-out point is
given by (2.11). We note that the limit � ! 0 is smooth.

B. The case of general � > 0 with � not near 1=2

By the arguments given in Sec. II for large x in the post-
freeze-out region the approximate solution to (3.13) is
Zðx;�Þ � Zpost-freeze-outðx;�Þ, where
d

dx
Zpost-freeze-outðx;�Þ ¼ ��fðx;�Þ½Zpost-freeze-outðx;�Þ�2:

(3.30)

The solution to this equation is

Zpost-freeze-outðx; �Þ ¼ 1

C�1
� þ �

R
dxfðx; �Þ ; (3.31)

where C� is a positive constant. Equation (3.31) is valid for

general �> 0.
It is convenient to rewrite (3.11) and (3.14) using the

function

hðx;�Þ � ð1� x1�2�Þ=ð1� 2�Þ: (3.32)

We then have

gðx;�Þ ¼ x� exp

�
9��
2�

x�2�

�
exp ½2��hðx;�Þ�

and

fðx;�Þ ¼ x�n�2�� exp

�
� 9��

2�
x�2�

�
exp ½�2��hðx;�Þ�:

In the limit as x ! 0

hðx;�Þ !
� 1
1�2� ; for �< 1=2;

� 1
2��1 ; for �> 1=2;

and so fðx; �Þ ! 0. Furthermore as x ! 1, Zeqðx;�Þ is
negligible because in this limit

hðx; �Þ !
��1 for �< 1=2;
� 1

2��1 for �> 1=2:

1. The case 0<��<��1=2

Next, we consider the case for which ��=��Oð1Þ and
��xf 	 1. This case illustrates the competition between

space-time foam and dilaton sources in their effect on the
relic abundance. In this case

gðx;�Þ�x�exp

�
9��
2�

�
; fðx;�Þ�x�n�2��exp

�
9��
2�

�
;

(3.33)

for x in the freeze-out region and x � xf. The analog of

(2.5) is similar except that � is replaced by � exp ð� 9��
2� Þ.

The analog of (2.10) is

xf� log

�
2A�exp

�
�9��

2�

��
�ðnþ1=2Þ logðxfÞ

¼ logð2A�Þ�ðnþ1=2Þ logðxfÞ�
9��
2�

: (3.34)

The previous analysis then implies that for large xwe have
the following asymptotic behavior for YðxÞ:

YðxÞ � ðnþ 1þ�Þxnþ2þ�
f

�ðnþ 1þ�þ xfÞ x
��; (3.35)

where

xf¼ðnþ1=2ÞW
��

2�Aexp

�
�9��

2�

��
nþ1=2

�
ðnþ1=2Þ

�
:

(3.36)

We denote this value of xf by xf;1. The scaling (3.35) is

formally similar to the pure time-dependent dilaton case in
(2.23), but the effects of the D-foam are incorporated only
in the shifted value of the freeze-out point xf in (3.36).

2. The case ��1=2

For � � 1=2 and x � xf we have

1

Z
¼ �� exp

�
2��

2�� 1

�
x�n�1��

nþ 1þ�
þ 1

C
; (3.37)

where C is a constant. To leading order the analog of (2.9)
for this case is independent of � and ��, so xf is deter-

mined by (2.10). In the inner (boundary-layer) region we
again write x ¼ xf þ �X and ZðXÞ ¼ ZðXF þ �XÞ.
Hence,

1

�

dZ
dX

’ ��ðxfþ �XÞ�n�2��


 exp

�
2��

2�� 1

�
½Z2ðXÞ � Z2

eqðxfÞ�;
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where Z2
eqðxfÞ ¼ 1

4�2 x
4þ2�þ2n
f exp ð� 4��

2��1Þ. The principle

of dominant balance then implies that

1

�
¼ �x�n�2��

f exp

�
2��

2�� 1

�
:

Hence, dZ
dX ¼ �Z2 with the solution ZðXÞ ¼ 1=ðxþDÞ,

where D is a constant.
Matching the equilibrium region to the boundary layer

gives

2Zeqðxf þ �XÞ � 1=ðxþDÞ:
This implies that

D ¼ �x�n�2��
f exp

�
2��

2�� 1

�
: (3.38)

Matching the freeze-out-region solution to the post-freeze-
out-region solution (3.37), we find that

1

C
¼ � exp

�
2��

2�� 1

�
x�n�2��
f

�
1þ xf

nþ 1þ�

�
: (3.39)

Finally, we find that as x ! 1,

YðxÞ� 1

�
exp

�
� 2��
2��1

�


 x��

x�n�2��
f þðx�n�1��

f �x�n�1��Þ=ðnþ1þ�Þ ;

(3.40)

and xf ¼ xf;ns.

3. The approach to �¼0

The integrating factor in (3.11) is singular as � ! 0þ.
However, the function g is only determined up to an
x-independent factor. To study the limit � ! 0 we con-
sider a modified gðx;�Þ and an associated fðx;�Þ, which
we denote ~gðx;�Þ and ~fðx;�Þ, respectively. These func-
tions have the following form:

~gðx;�Þ¼x�exp½2��h1ðx;�Þ�exp½9��h2ðx;�Þ�; (3.41)

where

h1ðx;�Þ�1�x1�2�

1�2�
; h2ðx;�Þ�x�2��1

2�
�2

9
; (3.42)

and, as before, we have the relation

~fðx;�Þ � x�n�2=~gðx;�Þ:
The limits x ! 1 and� ! 0 do not commute (a feature

that is common to other limits involving x). Parallel to the
discussion of Ref. [9], we take the limit � ! 0 first. It is
straightforward to show that for large x but �x still small
one obtains

1=C ¼ Dþ �x�n�1þ9�
f =ðnþ 1� 9�Þ: (3.43)

By matching the equilibrium region to the freeze-out re-
gion we obtain

D ¼ �x�n�2þ9�
f : (3.44)

These formulas are similar to the case of dilaton cos-
mology in the absence of space-time foam with the crucial
difference that � is now replaced by �9� . Finally, we
obtain

YðxÞ � x9�

C�1 � �x�n�1þ9�=ðnþ 1� 9�Þ ; (3.45)

which indicates the role of D foam as a source of particle
production in this case, in the sense that Y increases as x
increases. Also, in this case xf ¼ xf;ns. Notice that the

behavior (3.44), which indicates an increase of the DM
thermal relic abundance with decreasing temperature, is
compatible with our earlier numerical investigations in
Ref. [9]. For x � xf (as in the current universe) the abun-

dance (3.45) can be approximated by

YðxÞ � ��1xnþ2
f ðx=xfÞ9� ðx � xfÞ; (3.46)

which we use in Sec. IV to discuss the phenomenology of
these models.

IV. PHENOMENOLOGICAL IMPLICATIONS

As mentioned earlier, the phenomenologically relevant
quantity that can be compared directly with experiments
is the Hubble-constant-free relic abundance, �h2 ¼
mN =�c

0, where �c
0 is the current critical density and N

is the number density of the DM species. For DM species X
with mass mX this quantity is given by (3.15) [3]. The
behavior of �X is then readily obtained for all cases
studied in this work.
The analysis in the previous sections indicates that time-

dependent sources in our cosmological models lead to
modified relic abundances for DM species, as compared
to those computed within the standard cosmology. This
modification can be quantified by considering the ratio
(3.16) in which the numerator and denominator may
involve different freeze-out temperatures. Since both ex-
pressions are known theoretically, the ratio (3.16) is com-
putable explicitly for all cases studied above.
Before proceeding with the phenomenology of the vari-

ous sources discussed in this article, we make some generic
remarks. If the sources are such that there is dilution of DM
relic abundance relative to the prediction of standard cos-
mology, this can have important phenomenological impli-
cations for new physics, such as supersymmetry (SUSY) at
colliders [5,6,8]. In such a case there is a larger portion of
the available parameter space of the SUSY model, which
is compatible with the WMAP and other cosmological/
astrophysical data [7].
More room for supersymmetry implies heavier partners,

which in turn may have interesting signatures at colliders,
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such as the LHC. If the relic density of the neutralino ~	0
1,

which is the dominant DM in SUGRA-like models, is
diluted by a factor of about 1=10 in the presence of sources,
then the final states expected at the LHC consist of Z
bosons, Higgs bosons, and 
 leptons. Such states are pro-
duced when one looks at the decay chains of the dominant
SUSY production mechanism of squark ~q and gluino ~g
pairs at the LHC:

~q!q~	0
2!q
~
1!q

~	0

1; ~	0
2!h0 ~	0

1; ~	0
2!Z~	0

1;

where ~	0
2 is the next-to-lightest neutralino, and h0 is the

Higgs particle. In Ref. [8] a detailed analysis in the stan-
dard parameter space m1=2, m0 (where m1=2 and m0 are the

gaugino and scalar masses) of mSUGRA models has been
performed. In this analysis the parametric regions for the
dominant decay patterns at the LHC:

(1) Higgsþ jetsþmissing transverse energy,
(2) Zþ jetsþmissing transverse energy,
(3) 2
þ jetsþmissing transverse energy,

have been predicted. Dilution factors of about 1=100 or
more are compatible with the analysis in this paper for
reasonable values of the parameters. Such dilutions may
even push the parameter spaces of minimal supersymmet-
ric models beyond the reach of the LHC (assuming
standard-model-like Higgs particle masses of about
125 GeV). For instance, in the constrained minimal super-
symmetric standard model (CMSSM) with Higgs-mass
range 123–128 GeV and tan� of about 50, Lahanas and
Spanos discussed the dilaton-induced dilution factor [6].
On including the effect of the dilution factor, they showed
that the constraints placed on the parameter space of
CMSSM, from the current ATLAS and CMS SUSY
searches for DM, were not sufficient to exclude the model.

We proceed to discuss the phenomenology of the cases
discussed above by giving the corresponding values of the
ratio (3.16) today. We assume that the freeze-out points
xf;ns in the absence of sources are about 30, as expected in

typical phenomenological models in which the DM is
identified as a supersymmetric partner, such as a neutralino.

The temperature of the universe, which is used in
the definition of x today x0, is that of the cosmic microwave
background (CMB) temperature TCMB � 2:35

10�13 GeV. Thus, for DM masses in the range mX �
300 GeV–1 TeV, we have

x0 � mX=TCMB � 1015–1016: (4.1)

Moreover, we assume that the source-free relic abundance
YnsðxÞ currently, which approaches a constant as x ! 1
[3], as the boundary-layer analysis of Ref. [1] confirms, is
given by

lim
x!1Yns �

ðnþ 1Þxnþ2
f;ns

�ðnþ 1þ xf;nsÞ : (4.2)

Recall that the freeze-out point in the source-free case
xf;ns indicates a range of values of x in the vicinity of (2.10)

with A � 0:000145 [1]. For all but the case 0< �� <� 	
1=2 the freeze-out point xf ¼ xf;ns. However, as is evident

from (3.34), even in the case 0< �� <� 	 1=2, the

freeze-out point is shifted by an amount less than 9=2:

x�	1=2
f �xf;ns� 9��

2� . In the models we consider here

xf;ns�30, so such a shift is not significant. Thus, from

now on we treat xf � xf;ns in all cases. This simplifies

the arguments and allows an easy estimate of the ratio
R in (3.16).
As a starting point, we take the case of a time-dependent

dilaton source of the form (2.3) in the absence of D foam;
that is, �� ¼ 0. This case was discussed in Refs. [5,6] and

was revisited in Ref. [1] using asymptotic matching tech-
niques. From (2.23) and (4.2) the ratio (3.16) becomes
(upon setting xf � xf;ns)

R dilatonðx¼x0Þ�nþ1þ�

nþ1

nþ1þxf;sn
nþ1þ�þxf;ns

ðxf;ns=x0Þ�

(4.3)

with x0 given in (4.1).
From (3.35) we then notice that (4.3) also applies to the

case of nontrivial D foam but with 0< �� < � 	 1=2.

For xf;sn about 30 and for s-wave scattering (n ¼ 0) the

approximate thermal DM relic dilution factor (4.3) is de-
termined by ðxf;ns=x0Þ� � 10�16� for DM masses mx in

the range 0.3–1 TeV. Thus, to obtain a dilution factor of
order 1=10, which is relevant for LHC phenomenology, we
need values of � near 1=16, which is small compared with
1=2 and which is consistent. However, the case of phenom-
enologically significant dilution requires that ��xf 	 1

and thus �� 	 �. For the pure dilation case, in the absence

of D foam, one may have larger values of � that lead to
acceptable phenomenology; for instance, a dilution of
about 10�2 can be obtained with � � 1=8.
On the other hand, in the case where the space-time

defect (D-foam defect) dominates the time-dependent di-
laton effect, that is, when the strength of the foam fluctua-
tions is such that � � � ! 0, we have an enhancement of
the DM relic abundances rather than a dilution as the
temperature decreases. This becomes clear from (3.45) and
(3.46). In such cases there is less room for supersymmetry
available in the relevant parameter space as compared with
the source-free case after cosmological (WMAP) con-
straints [7] are taken into account.
The enhancement factor scales like

R ðx ¼ x0Þ �
nþ 1þ xf

nþ 1
ðx0=xfÞ9� : (4.4)

For s-wave scattering and with x0 given by (4.1) this

implies that R� ð10Þð136–154Þ� . Such models lead to
more severe constraints on the available supersymmetry
parameter space if the enhancement is observable.
Therefore, for these models to be phenomenologi-

cally viable today, this requires R to be Oð1Þ within
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experimental error, so that the increase compared to the
source-free (standard) case is not appreciable. This re-
quires that � < 10�3, so that the error in calculating abun-
dances would match the per mil level of the current errors
in experimental astrophysical measurements [7]. Because
of (3.10), this implies that

� ¼ 2x0ðg0mX=MsÞ2h�2i0 < 10�3: (4.5)

For the range of x0 in (4.1) this is satisfied for heavy D
particles of masses Ms=g0 � ð1011–1013Þ=h�2i0 GeV, and
mX in the range 0.3–1 TeV and h�2i0 � 1.

Next, we discuss the case of a time-dependent dilaton
with � � 1=2 in (3.40). Since we always assume weak
foam fluctuations, �� < 1, this case is also dilaton domi-

nated, and hence we expect a significant dilution of the
relic abundance. Indeed, because of (3.40) and (4.2), in this
case we obtain the following expression in the limit
x ! x0 � xf ¼ xf;ns for the ratio R in Eq. (3.16):

R�exp

�
� 2��
2��1

��
nþ1þ�

nþ1

��
nþ1þxf;ns

xf;ns

�


ðxf=xf;nsÞnþ1ðxf=xÞ�; (4.6)

where we assume that the freeze-out points xf � xf;ns are

about 30 or more. Thus, we have significant dilution
of the DM relic densities at late epochs of the universe.
For instance, in the present era and for DM masses in the

range mX � 300 GeV, the ratio is R � exp ð� 2��
2��1Þ 


ð� 200Þ 
 10�15� for s- or p-wave scattering (n ¼ 1; 2).
Thus, we see that for � 	 1, which is natural in the case of
D foam with D particles whose masses are higher than a
tera-electron volt [9], the main factor that drives the dilu-
tion is the value of the dilaton parameter �.

In the case � � 5, for instance, the dilution factor is
already enormous (it is of order 10�75), so in such models
practically all DM today will have disappeared. This may
rule these models out phenomenologically, although the
situation with DM and its nature is currently unclear, as
there is no concrete evidence for it apart from the galactic
motion. For this reason alternative theories with no dark
matter but modified gravity at galactic scales have been
considered extensively in the literature. We do not consider
them here, since in our opinion the evidence against them,
especially from galactic lensing measurements, is signifi-
cant. Thus, all we can say is that this type of supersymmetric
DM (satisfying xf � 30) would be diluted in this model,

and it would be practically absent today. Other types of DM
that would not couple to the dilaton might survive.

Next we discuss the cases for which� is near 1=2. Now,
using (3.28) and (3.29), we obtain for x ! x0 � xf � xf;ns:

R� nþ 3=2� 2�1=2�� � �

nþ 3=2� 2�1=2�� þ xf;ns

nþ 1þ xf;ns
nþ 1


 ðxf;ns=xÞ1=2�2�1=2����: (4.7)

We observe that for � ! 0 and �1=2 <� ¼ 1=2, the main

dilution comes from the dilaton effects and scales with x as

ðxf;ns=xÞ1=2��1=2 . Thus the dilution due to the dilaton is

compensated by foam fluctuation effects, so for �1=2¼
�=2¼1=4<�¼1=2 there is no appreciable dilaton-driven
dilution, and the ratio (4.7) tends to one (R�1=2¼1=4�1) for

any n > 0.
We observe from (3.10) that �1=2 is independent of x0:

�1=2 ¼ 2g20h�2i0m2
X=M

2
s (4.8)

and the condition �¼1=4 implies that h�2i0¼M2
s=

ð8g20m2
XÞ<1, where the inequality on the right side ensures

naturalness in the fluctuations of a weak foam, which we
have assumed throughout. The latter condition necessitates
mX � Ms=gs. We stress that in this case the result for the
relic abundance today turns out to be equal to the standard
source-free case independent of the actual freeze-out point,
and hence in principle mX is only constrained to be of the
same order of magnitude as the D-particle mass Ms=g0.
Finally, we mention that one may consider a � � 1=8 to

produce dilution of orderR � 10�2 in the relic abundance
(4.7), thereby opening the possibility of pushing this
class of supersymmetric models out of the reach of the
LHC, according to the analysis in Ref. [6]. However, in this
case, (3.10) implies that the condition 1=4 ¼ �� �
2g20x

��
0 h�2i0m2

X=M
2
s for x0 in the region (4.1) can be

satisfied for g20m
2
X=M

2
s � ð1=8Þ1015�h�2i0. To ensure that

mX � Ms=g0 this would imply naturally small fluctuations
in the foam h�2i0 � 10�15� with � � 1=8.
The above predictions are quite generic and hence they

are largely independent of the details of the underlying
microscopic model. Nevertheless, the cosmology of the
models, in particular the precise dependence of the dilaton
on the cosmic time at various eras of the universe, is an
open issue. The lack of detailed microscopic models that
would determine the form of the dilaton potential and
provide rigorous information on the region of validity of
the dilaton cosmological solution (2.3) complicates mat-
ters. Nevertheless, one may perform phenomenological
searches on the compatibility of such solutions at various
epochs of the universe. For the DM searches mentioned
above, all one needs is the dominance of the time-
dependent dilaton at early epochs of the universe before
the big-bang nucleosynthesis. Nevertheless, a dilaton of the
form (2.3) can be compatible (notably at the same level as
the �CDM model) with cosmological data even at low
redshifts of order z ¼ Oð1Þ, where large scale structure in
the universe (galaxies and clusters of them) is formed, as
demonstrated recently in Ref. [12]. On the other hand,
D-foam dominance at late eras (such as the end of radiation
or matter-dominated era [13]) has been argued to play a
role in galactic growth itself. Thus, considering models
with combined dilaton and D-foam sources, as in the
current article, may be desirable from the point of view
of constructing realistic cosmologies in such frameworks.
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However, the rate of galactic growth is in principle capable
of discriminating the various models (2.3) corresponding to
different values of � when more data become available in
the near future. In all such theories, of course, an important
requirement is that the big-bang-nucleosynthesis condi-
tions at MeV temperatures are not disturbed.
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APPENDIX: THERMODYNAMIC PROPERTIES OF
A UNIVERSE IN THE PRESENCE OF SOURCES

The purpose of this Appendix is to demonstrate that it is
possible to define an appropriate entropy density (scaling
with temperature as T3), even in the presence of nontrivial
backgrounds, such as a time-dependent dilaton and/or
space-time foam. This allows the entropy density to be
used in this paper as a fiducial quantity in the definition of
the thermal relic abundance YðxÞ.

In the presence of such nontrivial backgrounds the con-
tinuity equations of cosmic fluids corresponding to matter
and radiation are modified relative to standard FRW cos-
mology. These modifications could affect the thermody-
namic properties of the universe, such as the relation
between the scale factor and the temperature T (the cooling
law). It is the relativistic degrees of freedom that dominate
the entropy and the cooling law. In the case of a FRW
universe the continuity equation is the conservation of the
stress-energy tensor r�T� ¼ 0, which is compatible with

Einstein’s equations of general relativity and admits a ther-
modynamic interpretation. This equation can be manipu-
lated to appear as the first law of thermodynamics for the
total internal energy �V in a co-moving volume V � a3 and
pressure p:

dð�VÞ þ pdV ¼ 0; V � a3: (A1)

This interpretation in terms of the first law is consistent
with an adiabatic expansion at temperature T. A constant
entropy function SðT; VÞ, which is analytic in T and V, can
be constructed:

S ¼ V
�þ p

T
: (A2)

The construction involves the application of the thermody-
namic Maxwell relations to cast the right side of (A1) into
the form TdS; that is,

0 ¼ TdS ¼ dð�VÞ þ pdV: (A3)

[Strictly speaking, (A3) should be modified by a term
involving the chemical potential �. Hence, TdS should
be replaced by TdSþ�dN. However, as is standard in
cosmology, � is ignored because �=T is much smaller
than one [3], which is consistent with the dominance of the
relativistic degrees of freedom in the entropy.] The domi-
nance of relativistic degrees of freedom in the entropy S is
therefore consistent with the constancy of S and the cool-
ing law a� 1=T. (Recall that � ¼ 3p� T4 for radiation.)
From (A2) and (A3) it is then straightforward to see that
the entropy density s � S=V scales with temperature T as
T3. For cosmologies with nontrivial time-dependent dila-
ton and/or space-time D-particle foam backgrounds we
also construct entropy functions that are constant during
the evolution of the universe.
(i). Dilaton cosmology
In the context of a FRW cosmology we review here the

modification of the Boltzmann equation for dark matter
relic abundances [5] in the presence of a rolling dilaton. In
dilaton cosmologies inspired by string theory, the starting
point is the existence of two kinds of target-space metric,
related by an appropriate field redefinition and some coor-
dinate transformations. The first is the so-called string-
frame metric, g��, which is the target-space metric that

appears in the stringy world-sheet conformal field theory
(� model) describing the propagation of a string in a
gravitational background. The conditions for world-sheet
conformal invariance are equivalent to the equations of
motion derived from a four-dimensional target-space ef-
fective action (after appropriate compactifications); the
gravitational part of the effective action is a power series
in space-time derivatives. The lowest-nontrivial order is
quadratic (in derivatives) and is given by a Brans-Dicke
scalar curvature term

S� ¼ 1

16�GN

Z
d4x

ffiffiffiffiffiffiffiffiffiffi�g�
p

e�2�Rðg�Þ þ � � � ; (A4)

where � is the dilaton field, the superscript � denotes
quantities evaluated in the �-model frame, GN is the four-
dimensional gravitational (Newton) constant, and � � �
indicates the presence of kinetic terms for the dilaton and
other terms.
We can avoid the noncanonical normalization of the

Einstein-Hilbert term in (A4) by redefining themetric tensor
in order to pass to the so-called Einstein frame so that the
action (A4) acquires the canonical Einstein-Hilbert form. In
this frame the coefficient in front of the scalar curvature
tensor is independent of the dilaton-scale factor and is
chosen to be 1=ð16�GNÞ. The passage from the string frame
to the Einstein frame also involves a transformation of the
time coordinate [14]. To be explicit, we have

g� ¼ e�2�g��;
@t

@t�
¼ e��: (A5)
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It is the Einstein frame that is relevant for a cosmological
observer. In this frame GN is truly constant in space time,
in accord with current observations. (On the other hand, in
the string frame, the effective gravitational ‘‘constant’’
e2�GN would depend on the dilaton field, which in general
could be space-time dependent.)

Consider the phase space density of a DM species X,
which is assumed to be coupled to the metric and rolling
dilaton background terms:

fðj ~pj; t;�ðtÞ; g�ðtÞÞ: (A6)

It is important to stress that the phase-space distribution
function (A6) is evaluated in the string frame, although its
arguments are expressed in terms of quantities in the
‘‘physical’’ Einstein frame [5]. This is because in the
context of the underlying string theory model, the string
frame is the frame where matter excitations, represented as
strings, are defined. The Einstein metric is assumed to be of
FRW type, with g00 ¼ �1, gij ¼ aðtÞ2�ij, where aðtÞ is
the universe scale factor.

For a generic DM particle of mass m in the comoving
frame we have ðp�Þ� ¼ mdx�=d
 ¼ mðdx�=dtÞ

ðdt=dt�Þ ¼ mp�e��. It can then be readily seen that

j ~p�j � ðpi;�pj;�g�ijÞ1=2 ¼ ðpipjgijÞ1=2 � j ~pj

¼ aðtÞ
�X3
i¼1

pipi

�
1=2

: (A7)

We make use of the above relations in what follows.
Below, we are interested in studying the action of the

relativistic Liouville operator L̂ on the phase-space density
(A6). We commence our analysis by recalling the relativ-
istic form of the Liouville operator in conventional general
relativity:

L̂½f� ¼
�
p� @

@x�
þ ��

��p
�p� @

@p�

�
f: (A8)

The second term on the right side of the equation denotes
the relativistic force, which follows from the geodesic
equation. For a FRW universe, only the time-energy part
survives from the first term; that is,

p� @

@x�
¼ E

@

@t
; (A9)

where E is the energy of the DM species in the Einstein
frame. Moreover, the connection parts receive nontrivial
contributions only from the terms

P
i�

0
iip

ipi @
@E , i ¼ 1, 2, 3,

a spatial index (assuming for concreteness an already
compactified string theory, or a theory on a three-brane
world), with �0

ii ¼ �a _a, where the overdot denotes deriva-
tive with respect to the cosmic FRW time t, identified in
our string theory with the Einstein-frame time (A5).

The dependence of (A6) on the time-dependent dilaton
source implies that there will be corrections to the conven-
tional Liouville operator associated with the action of the

time derivatives on the phase-space density. These are due
to the implicit time dependence of the dilaton background
source. Schematically, we can denote the action of the full

operator on f (A6) as ðL̂conv þ L̂dilÞf. Here, L̂conv is the
conventional (dilaton-independent) Liouville operator,
which in a FRW universe reads [3]

L̂conv¼E
@

@t
�a _a

X3
i¼1

pipi @

@E
¼E

@

@t
� _a

a

X3
i¼1

j ~pj2 @

@E
: (A10)

Also, L̂dil denotes the dilaton-source-induced corrections:

L̂ dil ¼ E _�
@

@�
:

Therefore, the Boltzmann equation in the presence of a
rolling dilaton background reads [5]

ðL̂conv þ L̂dilÞf ¼ C½f�

) @f

@t
¼ _a

a

j ~pj2
E

@f

@E
� _�

@f

@�
þ 1

E
C½f�; (A11)

where C½f� is the Boltzman collision term. This equation
takes into account the implicit dependence of fðj ~pj; t;�Þ
on gii through j ~pj ¼ ðP3

i¼1 p
ipigiiÞ1=2, which implies that

@f=@gii ¼ ð@j ~pj=@giiÞ@f=@j ~pj ¼ pipi

2j ~pj
@f
@j ~pj .

Upon considering the action of the above operator on the
number density of a given DM species X, n � R

d3pf, we
arrive, after some straightforward momentum integration
by parts, at the modified Boltzmann equation for a four-
dimensional effective field theory (after string compactifi-
cation or restriction on three-brane worlds) in the presence
of time-dependent dilaton source terms:

dn

dt
¼ _a

a

Z
d3p

j ~pj2
E

@f

@E
� _�

Z
d3p

@f

@�
þ
Z
d3p

C½f�
E

)dn

dt
þ3

_a

a
n¼� _�

Z
d3p

@f

@�
þ
Z d3p

E
C½f�: (A12)

There are two types of dependence of f on �:
(i) Explicit dependence of the form e�4�, which arises
because in our approach the phase space density is con-
structed as a quantity in the string frame, which is then
expressed in terms of quantities in the Einstein frame. As
such, it is by definition (as a density) inversely proportional
to the proper string-frame volume

V� ¼
Z

d4x
ffiffiffiffiffiffiffiffiffiffi�g�

p / e4�;

because of (A5). (ii) Implicit dependence corresponding
to a dependence on � through the Einstein-frame metric
gii (A5).
Hence, the general structure of f has the form

fð�; ~p; ~x; g�� ¼ e2�g�; tÞ / e�4�F ðj ~pj; ~x; tÞ: (A13)

This implies that
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Z
d3p

@f

@�
¼ �4

Z
d3pfþX3

i¼1

Z
d3p

@gii
@�

@f

@gii

¼ �4n� 2
Z

d3p
X3
i¼1

gii
@j ~pj
@gii

@f

@j ~pj

¼ �4n�
Z

d3pj ~pj @f

@j ~pj
¼ �4nþ 3

Z
d3pfðj ~pj; tÞ ¼ �n; (A14)

where in the last step we have performed appropriate
partial (momentum-space) integrations.

The final form of the Liouville operation (A12) is then [5]

dn

dt
þ 3

�
_a

a

�
n� _�n ¼

Z d3p

E
C½f�: (A15)

We next remark that for a FRW cosmology in four
space-time dimensions the presence of a rolling dilaton
leads to a modification of the continuity equation for the
total energy density � and pressure p [4–6,15]:

_�þ 3Hð�þ pÞ � _�ð�� 3pÞ ¼ 0; (A16)

where the dot denotes derivative with respect to the cosmic
time t. In fact, this equation follows from the Einstein
equations of motion for the graviton field in a cosmology
with a rolling dilaton in the Einstein frame:

R� � 1

2
g�R ¼ 8�GNT

m
� þ T�

�; (A17)

where the term Tm
� ¼ 2ffiffiffiffiffi�g

p ð�Lmatter ffiffiffiffiffiffiffi�g
p Þ=�g� is asso-

ciated with matter/radiation degrees of freedom, and
T�
� ¼ 2ffiffiffiffiffi�g

p �ðL� ffiffiffiffiffiffiffi�g
p Þ=�g� denotes the contributions

from the dilaton dependent (kinetic and other possible
potential/dark energy) terms of the string effective action.

The covariant conservation law in the Einstein term for
the total stress tensor Tm�

; þ T��
; ¼ 0, which follows

from (A17) because of the properties of the Riemann
tensor in the Einstein frame, implies an energy flow be-
tween the matter and dilaton parts. This leads to the
modified continuity equation (A16). In fact, the latter is
derived by covariant derivation and further manipulations
of the component forms of Eq. (A17) [5,15]:

3H2� ~%m�%�¼0; 2 _Hþ ~%mþ%�þ ~pmþp�¼0;

(A18)

where ~%m ¼ 8�GN

! �m (and ~pm ¼ 8�GN

! pm) denotes the mat-

ter energy density (and pressure) including dark matter
contributions and ! is a dimensional constant having units
of inverse time, as specified below. %� (and p�) are the
corresponding quantities for the dilaton dark-energy fluid

with [5,15] �� ¼ _�2 þ V̂all=2, p� ¼ _�2 � V̂all=2. Here,
we assume for the sake of generality a dilaton potential

V̂all, which in the case of string theory may come from
quantum string loops, breaking the scale invariance of

target-space theory. The overdots in these equations denote
derivatives with respect to the Einstein time t, which is
proportional to the Robertson-Walker cosmic time tRW,
t ¼ !tRW so that the Einstein time t is dimensionless.

Without loss of generality we take [5,15] ! ¼ ffiffiffi
3

p
H0,

where H0 is the present day Hubble constant. With this
choice for! the densities appearing in (A18) are in units of
the critical density.
In addition to the equations of motion for the graviton,

one also has an equation for the dilaton field� obtained by
variation of the effective action with respect to �:

€�þ 3H _�þ 1

4

@V̂all

@�
þ 1

2
ð~%m � 3~pmÞ ¼ 0: (A19)

We now note that
(i) From (A16) the dilaton source terms do not play a

role for radiation. One obtains the standard scaling of
�� a�4 in the radiation dominated era of the
universe.

(ii) For dust, p ¼ 0. Also, for DM with mass mX, �X ¼
mXnX, where nX is the number density. The source-
independent part of (A16) yields the collisionless
Boltzmann equation for thermal relic abundance.
The dilaton-dependent term is a classical source

term _�n.
This is consistent with the fact that the Boltzmann equa-

tion (A12) is compatible with the conservation equation
(A16) as well as the (modified) Einstein equations (A18).
The nonlinear part of the Boltzmann equation comes

from two-body annihilations of DM particles. On assuming
the functional dependence � ¼ �ðaÞ and a dilaton source
of the form (2.3), we obtain from (A16)

dð�VÞ þ pdV � j�0jð�� 3pÞdV=3 ¼ 0: (A20)

Here,we have assumed that _� ¼ �j�0jH, whereH ¼ _a=a
is the Hubble parameter, V � a3 is the comoving volume,
and �a3 is the total (internal) energy in that volume.
We thus observe that the presence of a rolling dilaton

affects the standard thermodynamic properties of the FRW
universe. Our aim is to ascertain whether the total entropy in
the comoving volume V remains constant in time after the
inclusion of the dilaton source (2.3). A naive application of
the first law of thermodynamics would identify dð�VÞ þ
pdV with TdS, whereT is the temperature, and S is the total
entropy in the volumeV. It would seem that a dilaton source
leads to the nonconservation of entropy. However, this is
incorrect. To show this, we first replace the zero of the right
side of (A20) by TdS, where S is the quantity that repre-
sents the entropy; the entropy is assumed to depend onT and
V, so S ¼ SðT; VÞ. From (A20) we find that

dS¼1

T
dð�VÞþp

T
dV�j�0j

3T
ð��3pÞdV

¼V
d�

dT
dTþ1

T
½ð1þj�0jÞpþð1�j�0j=3Þ��dV: (A21)
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As in the case of conventional cosmology, it has been
assumed that the cooling law of (3.4) holds, and that � ¼
�ðTÞ and p ¼ pðTÞ, since both � and p depend upon the
scale factora, which is a function of temperature,a ¼ aðTÞ.
The function SðT; VÞ is assumed to be a differentiable
function of T and V. This implies the condition

@2S
@T@V

¼ @2S
@V@T

: (A22)

From (A21) and (A22) we then obtain

1

T2
½ð1þ j�0jÞpþ ð1� j�0jÞ=3Þ��

¼ ð1þ j�0jÞ
T

dp

dT
� j�0j

3T

d�

dT
: (A23)

The expression (A21) for dS can be rewritten as

dS¼ 1

T
d½ð�þpÞV��V

T

dp

dT
dT�j�0j

3T
d½ð��3pÞV�þj�0jV

3T

d�

dT
dT�j�0jV

T

dp

dT
dT

¼d

�
1

T

�
�

�
1�j�0j

3

�
þp½1þj�0j�

�
V

�
þ V

T2

�
ð1þj�0jÞpþ

�
1�j�j

3

�
�

�
dT�ð1þj�0jÞV

T

dp

dT
dTþj�0jV

3T

d�

dT
dT

¼d

�
1

T

�
�

�
1�j�0j

3

�
þp½1þj�0j�

�
V

�
: (A24)

In the last equality on the right side we have used (A23).
From (A24) we conclude that the quantity

S ðT; VÞ � ½�ð1� j�0j=3Þ þ pð1þ j�0jÞ�V=T (A25)

is constant upon using the classical equations of motion [or
equivalently, the continuity equation (A16) for the case of
dilaton cosmology (2.3)]. S may be identified with the total
entropy in the comoving volume V. The corresponding
entropy density s is then

s ¼ 1

T
½�ð1� j�0j=3Þ þ pð1þ j�0jÞ�; (A26)

which, inviewof (A25), scaleswith the size of the universe as
a�3 ¼ ðT=C0Þ3, upon assuming (3.4). We stress that the
energydensity� andpressurep in the above formulas pertain
to the total degrees of freedom of the fluid including the
relativistic ones. It is the latter, for which the dilaton source
effects are irrelevant [see (A16)], that provide the dominant
contributions to the entropy; otherwise, the entropy would
not remain constant. Indeed, in the case of DM dust, p ¼ 0,
the entropy density is s ¼ �ð1� j�0j=3Þ=T, which does
not leave the entropy function (A25) constant. This is sat-
isfied only for relativistic degrees of freedom that have an
energy density scaling like �� T4 with the temperature T.

We have the following relation between Y and the
number density nX of the DM species X:

Y ¼ nXT
�3 ! nX ¼ m3

XYx
�3; (A27)

as in the standard cosmology case. The energy density �X

of the DM relic satisfies �X ¼ mXnX. The current relic
abundance,

�Xh
2 �m4

X

�c
0

Y0

x30
; (A28)

occurs for x ¼ x0 ¼ mX=T0, with T0 the current (CMB)
temperature of the universe and �c

0 the current critical

density. Since the latter is proportional to h2, the above
expression is independent of the value of the Hubble
constant.
In practice, x0 � 1. Hence, the asymptotic regime YðxÞ

with x ! 1 is relevant. In the current literature one usually
replaces Y0 by Y1; that is,

�Xh
2 �m4

X

�c
0

Y1
x30

: (A29)

For standard cosmology in (3.39) lim x!1YðxÞ ¼ const.
This constant value of the freeze-out is identified with
the current relic abundance of the weakly interacting mas-
sive particle �Xh

2 � 1=h�vi.
We remark that the scaled Hubble-constant-independent

relic abundance of the DM species X behaves as

�Xh
2 �m4

Xx
�3Y1 ðx ! 1Þ:

Also, for the case of standard cosmology Y1 ¼ const [see
(3.39)],

�Xh
2 � x�3 ! 0 ðx ! 1Þ: (A30)

For dilaton cosmology [see (2.3)] one has a modified law

�Xh
2 � x�3�j�0j ! 0 ðx ! 1Þ: (A31)

Finally we remark that for the dilaton case �0 > 0, the
string coupling would increase for large times, and the
theory would become strongly coupled and thus intrac-
table. Nonperturbative string corrections would need to be
incorporated. Nevertheless, the formal solution for YðxÞ
behaves asymptotically as YðxÞ � xj�0j. This would still
imply an asymptotically vanishing relic abundance pro-

vided that �0 < 3 because we have �Xh
2 � x�3þj�0j ! 0

as x ! 1.
(ii). Stochastic D-particle-foam cosmology
It is known that in the background of D-particle space-

time foam (for constant dilatons), the Boltzmann equation
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for the number density nX of the DM species X assumes the
form [9]

d

dt
nX þ 3HnX ¼ �D-foamðtÞnX þ C½n�; (A32)

where �D-foamðtÞ ¼ 2Ha4mXhh�2ii g2s
M2

s
Tð9þ 2mX=TÞ. The

notation and conventions here are those of Ref. [9], where
C½n� ¼ h�vi½ðneqX Þ2 � ðnXÞ2� is the standard nonlinear in-
teraction term and n

eq
X is the thermal equilibrium number

density of X. As discussed in Ref. [9] and reviewed in the
text [see (3.3)], the recoil fluctuations of the D-foam hh�2ii
averaged over populations of D-particle defects have the
scaling hh�2ii � h�2i0a�3.

To this end, we use the cooling law (3.4) and
ignore the nonlinear interaction term C½n�. From (A32)
and (3.3), for the regime of temperatures mX � T, the
energy density �X ¼ mXnX then satisfies the continuity
equation

d

dt
�X þ 3H�X ¼ ~�D-foamðtÞH�X; (A33)

where ~�D-foamðtÞ ¼ 4C0
g2s
M2

s

m2
X

T h�2i0. For weak foam ef-

fects we have ~�D-foam < 1 in the range of temperatures we
are interested in; that is, from the early universe until
today (T � C0). Equivalently, for an expanding universe
where _a > 0 we have

dð�XVÞ � �~�D-foamdV=3 ¼ 0: (A34)

Equation (A34) implies that the thermodynamic inter-
pretation of heavy DM dust in the foam background is that
of a gas with an adiabatic expansion of its volume. During
the expansion entropy is constant, and the effective pres-
sure peff�X of the gas is negative (indicating cosmological
instabilities):

peff�X ¼ ��~�D-foam=3: (5.35)

Note that peff�X has a nontrivial dependence on the
temperature.

From the cooling law (3.4), we may write [see (A33)]
~� � ~�a, where ~� is a constant much less than one. Hence,
the scaling of the dust energy density, due to its interaction
with the D foam, is easily obtained from (A34) to be (in
units of a0)

�X � a�3e~�
R

a

1
da � T3e~�ðC0=T�1Þ: (A36)

To find the entropy function that remains constant it is
essential to consider the total energy density �, including
relativistic degrees of freedom, and not only �X. In a
similar spirit to the dilaton case the relativistic degrees of
freedom are insensitive to the heavy D-foam source ef-
fects. In this sense they satisfy an equation of the form (A1)

by themselves with equation of state p ¼ �=3, which can
be added to (A34) to give the equation

dðð�radþ�XÞVÞþðpradþpeff�XÞdV�dð�VÞþpeffdV¼0:

(A37)

Equation (A37) is the analog of the continuity equation in
the case of D foam. We stress that in (A37) � and peff refer
to the total energy density and pressure, including relativ-
istic degrees of freedom and D-foam background effects.
Taking into account that � is a function of T, we can

formally replace the right side of (A37) by TdS to deter-
mine the (constant) entropy function S (ignoring chemical
potential terms, a valid assumption for weak D foam); only
at the very end of the computation will we set dS to zero.
We then have

dS ¼ V

T

d�

dT
dT þ �þ peff

T
dV: (A38)

S is considered to be a smooth function of T and V, which
are treated as independent variables. From the requirement
(A22) we deduce the condition

� �þ peff

T2
þ 1

T

dpeff

dT
¼ 0: (A39)

We then see immediately from (A38) and (A39) that

dS ¼ d

�
�þ peff

T
V

�
� V

T

dpeff

dT
dT þ �þ peff

T2
VdT

¼ d

�
�þ peff

T
V

�
;

which upon setting dS ¼ 0 implies the constancy of the
effective entropy function in the comoving volume V:

S ¼ Seff ¼ �þ peff

T
V ¼ const: (A40)

Note that we have used (A36) and the cooling law (3.4); �
and peff refer to the total energy density and pressure
including relativistic components, which is essential for
consistency. As in the previous cases, the relativistic de-
grees of freedom dominate the entropy. The entropy den-
sity s associated with S is given by an expression similar in
form to that in standard cosmology,

seff D-foam ¼ �þ peff=T; (A41)

and scales with the temperature as T3. Hence, s can be
treated as a fiducial quantity to define YðxÞ just as in the
dilaton cosmology case (i) above.
Notice also that for the case of dust in dilaton cosmol-

ogy, the effective entropy function (A26) is reproduced

upon replacing the source ~�D-foam by the corresponding

source of the running dilaton (2.3) cosmology ~�running dil ¼
�j�0j. (With our definitions we have �running dil ¼ _� ¼
�j�0jH � ~�running dilH.)
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In the paper we considered the combined source
case, where the foam appears together with a nontrivial
running dilaton of the form (2.3). The string coupling
gs ¼ e� exhibits a nontrivial scaling with the scale factor
and also with temperature. The combined source is taken to
be the algebraic sum of the respective two source terms;
that is,

�total� ~�totalH¼
�
�j�0jþ4

g2s0m
2
X

M2
s

h�2i0
�
C0

T

�
1�2j�0j�

H

(A42)

in the asymptotic region mX � T of interest, where we
have assumed the cooling law (3.4).
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