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We consider the quark sector of theories containing three scalarSUð2ÞL doublets in the triplet representation
of A4 (or S4) and three generations of quarks in arbitrary A4 (or S4) representations. We show that for all

possible choices of quark field representations and for all possible alignments of theHiggs vacuumexpectation

values that can constitute global minima of the scalar potential, it is not possible to obtain simultaneously

nonvanishing quark masses and a nonvanishing CP-violating phase in the Cabibbo-Kobayashi-Maskawa

quark mixing matrix. As a result, in this minimal form, models with three scalar fields in the triplet

representation of A4 or S4 cannot be extended to the quark sector in a way consistent with experiment.
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I. INTRODUCTION

There is a long history of articles considering discrete
symmetries in the study of the leptonic sector (see for
instance the recent reviews [1–4] and references therein),
including many models predicting tribimaximal leptonic
mixing [5], now disfavored by the measurement of a large
mixing angle �13 [6–9]. In the quark sector, models based
on the A4 symmetry as a possible family symmetry were
first introduced in Refs. [10,11]. After the impact of the
symmetry on the Yukawa matrices is known, some struc-
ture for the vacuum expectation values (VEV) has to be
assumed before moving on to the mass matrices and re-
spective phenomenological predictions. Occasionally, this
has been performed without a full study of the scalar sector
and without ensuring properly whether the assumed vac-
uum structure indeed corresponds to the global minimum.
This may occur, in part, because finding local minima is
easy (one just has to show that the gradient of the potential
vanishes), while ensuring that there is no other, lower-lying
minimum is often rather difficult. Recently, Degee et al.
[12] have introduced a geometrical procedure to minimize
highly symmetric scalar potentials and solved the problem
for a three Higgs doublet model (3HDM) potential with an
A4 or an S4 symmetry. Although it is not explicitly stated,
Ref. [12] refers to a set of three Higgs fields in a triplet
representation of the group.1 This is a crucial point, since if
one were to place each of the three Higgs fields in a singlet
representation, one would end up with the most general
3HDM potential. It is found that the possible VEV
alignments for the A4 symmetric potential [14] that may
correspond to a global minimum are [12]

vð1; 0; 0Þ; vð1; 1; 1Þ;
vð�1; �; ��Þ with � ¼ ei�=3;

vð1; ei�; 0Þ with any �:

(1)

Similarly, the possible VEV alignments corresponding to
global minima in the S4 symmetric potential are [12]

vð1; 0; 0Þ; vð1; 1; 1Þ;
vð�1; �; ��Þ with � ¼ ei�=3; vð1; i; 0Þ: (2)

In each case, a VEV corresponding to some permutation of
the fields is also a possible global minimum. Any other
solution of the stationarity conditions may be a saddle
point, a local maximum, or even a local minimum, but
never the global minimum.
Besides a correct identification of global minima, one

must also consider whether the specific discrete symmetry
under study can be extended to the whole Lagrangian of the
theory, in a way consistent with known data. In particular,
in the quark sector there should be no massless quarks,
no diagonal blocks in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix, and/or no vanishing CP-violating phase.
As shown by Ferreira and Silva [15], these constraints
place stringent limits on the type of mass matrices obtain-
able from Abelian symmetries in the 2HDM.
In this article, we consider models with three Higgs

doublets �i in a triplet representation of A4 (Sec. II), or
in a triplet representation of S4 (Sec. III). This ensures that
the only possible global VEV structures are those in
Eqs. (1) and (2), respectively. The models contain only
three generations of left-handed quark doublets QL, right-
handed up-type quark singlets uR, and right-handed down-
type quark singlets dR. Our conclusions are briefly
summarized in Sec. IV.
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1To be precise, the three scalar fields must be in a faithful

representation of the group [13].
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II. THE A4 CASE

A4 is the group of even permutations of four objects, and
it has 12 elements divided into four irreducible representa-
tions, namely, three singlets 1, 10, 100 and one triplet 3. The
multiplication rules are

1 � any ¼ any; 10 � 10 ¼ 100; 10 � 100 ¼ 1;

10 � 3 ¼ 3; 100 � 100 ¼ 10; 100 � 3 ¼ 3;

3 � 3 ¼ 1 � 10 � 100 � 3s � 3a:

(3)

We recall that for the corresponding entry of the Yukawa
coupling matrix to be nonvanishing, the Yukawa
Lagrangian must be in the invariant singlet representation
1. Since the three Higgs doublets are in the representation
3, we see from Eq. (3), that the product of left-handed and
right-handed fermions must also be in a triplet representa-
tion. This means that at least one of the fermion fields in
each charge sector must be in a triplet representation. The
possibilities for the representations of the left-handed
quark fields and for the up and down right-handed quarks
are listed in Table I.

Since permutations of the three fields in each sector do
not lead to new structures for the Yukawa matrices,
the notation ‘‘three singlets’’ stands for the following in-
dependent possibilities for the fields in each of the three
generations:

ð1; 1; 1Þ; ð1; 10; 100Þ; ð1; 1; 10Þ; ð10; 10; 10Þ;
ð1; 10; 10Þ; ð10; 10; 100Þ; ð1; 1; 100Þ;
ð10; 100; 100Þ; ð1; 100; 100Þ; ð100; 100; 100Þ:

(4)

In order to use the VEVs given in Eq. (1), one must be
sure to use a representation of the group that is consistent
with the basis in which those VEVs were obtained in
Ref. [12]. Indeed, if one starts from Higgs fields with the
VEVs of Eq. (1), and one changes the scalar fields by a
unitary transformation U, i.e.,

�1

�2

�3

0
@

1
A ! U

�1

�2

�3

0
@

1
A; (5)

then the VEVs also transform as

h�1i
h�2i
h�3i

0
BB@

1
CCA ! U

h�1i
h�2i
h�3i

0
BB@

1
CCA; (6)

and, in general, will no longer have the form in Eq. (1). A
suitable basis for the triplet representation of A4 is given by

S ¼
1 0 0

0 �1 0

0 0 �1

0
BB@

1
CCA; T ¼

0 1 0

0 0 1

1 0 0

0
BB@

1
CCA: (7)

In the notation of Sec. 6.4 of Ref. [16], a1 ¼ S, b ¼ T, and
a2 ¼ T�1ST is redundant. These matrices satisfy S2 ¼
T3 ¼ ðSTÞ3 ¼ 1, showing that they indeed generate the
group A4. Equation (7) also coincide with the basis used
in Ref. [17].
One way to confirm that we are indeed using a basis

consistent with Ref. [12] is to check that imposing S and T
on the 3HDM potential, we recover

V ¼ �M0ffiffiffi
3

p ðj�1j2 þ j�2j2 þ j�3j2Þ þ�0

3
ðj�1j2 þ j�2j2 þ j�3j2Þ2 þ�3

3
½j�1j4 þ j�2j4 þ j�3j4 � j�1j2j�2j2

� j�2j2j�3j2 � j�3j2j�1j2� þ�1½ðRe�y
1�2Þ2 þ ðRe�y

2�3Þ2 þ ðRe�y
3�1Þ2� þ�2½ðIm�y

1�2Þ2 þ ðIm�y
2�3Þ2

þ ðIm�y
3�1Þ2� þ�4½ðRe�y

1�2ÞðIm�y
1�2Þ þ ðRe�y

2�3ÞðIm�y
2�3Þ þ ðRe�y

3�1ÞðIm�y
3�1Þ�; (8)

as in Eq. (9) of Ref. [12].2

In A4, with the basis of Eq. (7), the product of two triplets, a ¼ ða1; a2; a3Þ and b ¼ ðb1; b2; b3Þ, gives [1,17]

ða � bÞ1 ¼ a1b1 þ a2b2 þ a3b3; ða � bÞ10 ¼ a1b1 þ!2a2b2 þ!a3b3; ða � bÞ100 ¼ a1b1 þ!a2b2 þ!2a3b3;

ða � bÞ3s ¼ ða2b3 þ a3b2; a3b1 þ a1b3; a1b2 þ a2b1Þ; ða � bÞ3a ¼ ða2b3 � a3b2; a3b1 � a1b3; a1b2 � a2b1Þ; (9)

TABLE I. Possible representations of the left-handed quark
doublets (QL), the right-handed up quark singlets (uR), and the
right-handed down quark singlets (dR), when the three Higgs
doublets are in a triplet representation 3.

QL uR dR

3 3 3
3 3 Three singlets

3 Three singlets 3
3 Three singlets Three singlets

Three singlets 3 3

2Equation (9) of Ref. [12] coincides with the sum of Eqs. (38) and (39) of Ref. [16], with the substitutions �0 ¼ 3�þ �0, �1 ¼
�00 þ 2Reð~�Þ, �2 ¼ �00 � 2Reð~�Þ, �3 ¼ ��0, �4 ¼ �4 Imð~�Þ.
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where ! ¼ e2i�=3, and s, a stand for the symmetric and
antisymmetric triplet components, respectively.

We will also need the product of three triplets, a, b, and
c ¼ ðc1; c2; c3Þ,
ða � b � cÞs ¼ a1ðb2c3 þ b3c2Þ þ a2ðb3c1 þ b1c3Þ

þ a3ðb1c2 þ b2c1Þ;
ða � b � cÞa ¼ a1ðb2c3 � b3c2Þ þ a2ðb3c1 � b1c3Þ

þ a3ðb1c2 � b2c1Þ:

(10)

We are now ready to construct the Yukawa matrices for
the various cases. We have built a program to test all
possibilities automatically. As a first example, let us con-
sider the case �� 3, ð �QL1; �QL2; �QL3Þ � ð1; 1; 10Þ, dR � 3,
and uR � 3. We start with the down sector. Since �QL1 is in
the 1 representation, it must couple to the ð� � dRÞ1 com-
bination obtained from Eq. (9). The same is true for �QL2,
with an independent coefficient. This leads to the Yukawa
terms,

�1
�QL1½�1dR1 þ�2dR2 þ�3dR3�
þ �2

�QL2½�1dR1 þ�2dR2 þ�3dR3�: (11)

Once the fields �i are substituted by their VEVs vi, these
terms give the first and second row of the down-type quark
mass matrix, Md, respectively. Since �QL3 is in the 10
representation, we can only obtain a singlet with the 100
combination ð� � dRÞ100 in Eq. (9). This leads to a term

�3
�QL3½�1dR1 þ!�2dR2 þ!2�3dR3�; (12)

which will fill the third row of Md. Thus, the down-type
quark mass matrix reads

Md ¼
�1v1 �1v2 �1v3

�2v1 �2v2 �2v3

�3v1 !�3v2 !2�3v3

0
BB@

1
CCA; (13)

with arbitrary complex constants �i.
Recalling that the up-quark Yukawa terms involve the

combinations �QL
~�uR, a similar analysis of the up-type

quark sector yields

Mu ¼
�1v

�
1 �1v

�
2 �1v

�
3

�2v
�
1 �2v

�
2 �2v

�
3

�3v
�
1 !�3v

�
2 !2�3v

�
3

0
BB@

1
CCA; (14)

where �i are arbitrary complex constants.
In order to find the most relevant features of the quark

sector, we define the Hermitian matrices

Hd ¼ MdM
y
d ; Hu ¼ MuM

y
u ; (15)

whose eigenvalues coincide with the squared masses in
each quark sector. Moreover, the CKM CP-violating phase
is proportional to the determinant [18]

J ¼ DetðHdHu �HuHdÞ: (16)

We must now substitute ðv1; v2; v3Þ by each of the possible
VEV alignments in Eq. (1), including all possible permu-
tations, and study the properties of Hd, Hu, and J. As an
example, consider the possibility that ðv1; v2; v3Þ ¼
vð1; ei�; 0Þ, for any phase �. Then

Md ¼ v

�1 �1e
i� 0

�2 �2e
i� 0

�3 !�3e
i� 0

0
BB@

1
CCA; (17)

Mu ¼ v

�1 �1e
�i� 0

�2 �2e
�i� 0

�3 !�3e
�i� 0

0
BB@

1
CCA: (18)

As a result, we predict one massless quark with charge
�1=3 and one massless quark with charge 2=3, contrary to
experimental evidence. It is interesting to note that, in
this case, Hd and Hu do not depend on � but, nevertheless,
J � 0. This means that the model predicts one massless
quark in each charge sector but displays explicit CP vio-
lation in the CKM matrix.3

As a second example, let us consider the case �� 3,
ð �QL1; �QL2; �QL3Þ � ð1; 10; 100Þ, dR � 3, and uR � 3. We find

Md ¼
�1v1 �1v2 �1v3

�2v1 !�2v2 !2�2v3

�3v1 !2�3v2 !�3v3

0
BB@

1
CCA; (19)

Mu ¼
�1v

�
1 �1v

�
2 �1v

�
3

�2v
�
1 !�2v

�
2 !2�2v

�
3

�3v
�
1 !2�3v

�
2 !�3v

�
3

0
BB@

1
CCA: (20)

For the VEV alignments vð1; 1; 1Þ and vð�1; �; ��Þ of
Eq. (1), this leads to

Hd ¼ 3v2
j�1j2 0 0
0 j�2j2 0
0 0 j�3j2

0
B@

1
CA; (21)

Hu ¼ 3v2
j�1j2 0 0
0 j�2j2 0
0 0 j�3j2

0
B@

1
CA; (22)

3One could envisage a more complicated setup where the light
quark masses appear radiatively.
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meaning that, in these cases, all quark masses are non-
vanishing and nondegenerate. However, we find a diagonal
CKM matrix and no CP violation, in blatant contradiction
with experiment.

The particular case where �QL, uR, and dR (in addition
to �) are all in a triplet representation of A4 has been
considered in Refs. [10,11] for the first three VEVs given
in Eq. (1). Reference [10] solves the problem by adding a
fourth scalar as a singlet of A4; Ref. [11] considers sym-
metry breaking in stages.

Having gone through all cases in Table I and all possible
VEV alignments in Eq. (1) (including permutations), we
find that in all situations one obtains either massless quarks
or a vanishing CKM phase.

In Table II we present, for each choice of representations
and for each VEValignment given in Eq. (1), the different
quark mass spectra and the number of CKMmixing angles
not predicted by the discrete symmetry, i.e., the number of
parameter-dependent mixing angles (PDMA).

By itself, requiring nonvanishing quarks restricts the
representations of fQL; uR;dRg to the five possibilities
fs; 3; 3g, f3; s; sg, f3; s; 3g, f3; 3; sg, and f3; 3; 3g, where s
stands for ð1; 10; 100Þ, with the VEVs restricted to vð1; 1; 1Þ
or vð�1; �; ��Þ. In all these special cases, the CKMmatrix

equals the unit matrix. Thus, it is not possible to extend the
A4 symmetry to the quark sector, with only three gener-
ations of quarks and the three scalar fields in a triplet of A4.
It is conceivable that this problem can be evaded by

adding quark generations. More commonly, one considers
other representations for the three scalar fields and/or one
adds extra scalars to the theory in other representations of
A4. But, in such cases one must prove that the local
minimum does indeed correspond to a global minimum.
One can see from the treatment of A4 that this endeavor is
far from trivial [12].

III. THE S4 CASE

S4 is the group of all permutations of four objects. It has
24 elements divided into five irreducible representations:
two singlets 11, 12, one doublet 2, and two triplets 31, 32.
The multiplication rules are

11�any¼ any; 12�12 ¼ 11; 12�2¼ 2;

12�31 ¼ 32; 12�32 ¼ 31; 2�2¼ 11�12�2;

2�31 ¼ 31�32; 2�32 ¼ 31�32;

31�31 ¼ 11�2�31�32; 31�32 ¼ 12�2�31�32;

32�32 ¼ 11�2�31�32: (23)

Since A4 is a subgroup of S4, this case will have at least the
same unphysical restrictions. Yet, for model building, it is
useful to go through the analysis in detail, uncovering the
specific constraints that should be corrected when enlarg-
ing the model.
Let us start by assuming that the three Higgs doublets

are in the representation 31. By looking at Eq. (23), we see
that the product of left-handed and right-handed fermions

TABLE II. Quark mass spectra and number of arbitrary CKM
parameter-dependent mixing angles (PDMA) in the A4 case. The
symbol � stands for 0 or mi � 0; s stands for 1, 10 or 100.

VEV QL uR dR

Number

of PDMA

Mass

spectrum

3 3 3 0 ð0; mu;d; m
0
u;dÞ

3 3 s 0
ð0; mu;m

0
uÞ

ð0; 0; mdÞ

(1, 0, 0)

3 s 3 0
ð0; 0; muÞ
ð0; md;m

0
dÞ

3 s s 0 ð0; 0; mu;dÞ
s 3 3 2 ð0; 0; mu;dÞ
3 3 3 0 ðmu;d; m

0
u;d; m

00
u;dÞ

3 3 s 0
ðmu;m

0
u; m

00
uÞ

ð�;�; mdÞ
3 s 3 0

ð�;�; muÞ
ðmd;m

0
d; m

00
dÞ

ð1; 1; 1Þ; ð�1; �; ��Þ 3 s s 0 ð�;�; mu;dÞ

s 3 3
0 ðmu;d; m

0
u;d; m

00
u;dÞ

1 ð0; mu;d; m
0
u;dÞ

2 ð0; 0; mu;dÞ
3 3 3 1 ð0; mu;d; mu;dÞ
3 3 s

1 ð0; mu;muÞ
ð0;�; mdÞ

ð1; ei�; 0Þ 3 s 3 1
ð0;�; muÞ
ð0; md;mdÞ

3 s s 1 ð0;�; mu;dÞ
s 3 3

3 ð0; mu;d; m
0
u;dÞ

2 ð0; 0; mu;dÞ

TABLE III. Possible representations of uR and dR when the
three Higgs doublets are in a 31 representation and allQL are in a
triplet representation 31 or 32.

QL uR dR QL uR dR

31 11, 11, 11 11, 11, 11 32 12, 12, 12 12, 12, 12
11, 11, 11 2, 11 12, 12, 12 2, 12
11, 11, 11 31 12, 12, 12 31
11, 11, 11 32 12, 12, 12 32
2, 11 11, 11, 11 2, 12 12, 12, 12
2, 11 2, 11 2, 12 2, 12
2, 11 31 2, 12 31
2, 11 32 2, 12 32
31 11, 11, 11 31 12, 12, 12
31 2, 11 31 2, 12
31 31 31 31
31 32 31 32
32 11, 11, 11 32 12, 12, 12
32 2, 11 32 2, 12
32 31 32 31
32 32 32 32
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must also be in a 31 representation (or else, the Yukawa
Lagrangian would not be in the invariant 11 representa-
tion). The possibilities for the representations of the up and
down right-handed quarks are listed in Table III, when QL

is in a triplet representation.
When two of the QL are in the doublet 2 representation,

the possibilities are ðQL; uR; dRÞ � ð2; 31; 31Þ, ð2; 31; 32Þ,
ð2; 32; 31Þ, or ð2; 32; 32Þ. Similarly, when one of the QL is
in a singlet representation, there are only two possibilities:
either ðQL; uR; dRÞ � ð11; 31; 31Þ, or ðQL; uR; dRÞ �
ð12; 32; 32Þ. But, in this case, the third QL field must be in
a singlet representation that yields a Yukawa Lagrangian in
the singlet representation. Otherwise, the mass matrix
would have a row of zeros, and there would be a massless
quark. As a result, when two of the QL are in the doublet 2
representation, the only viable possibilities for uR and dR
are the ones listed in Table IV.

Finally, requiring that there are no massless quarks,
when all the QL are in a singlet representation, the possi-
bilities for uR and dR are listed in Table V.

A suitable basis for the 31 representation of S4, consis-
tent with the notation of Ref. [12], can be found in
Ref. [19],

F3 ¼
1 0 0
0 0 �1
0 �1 0

0
@

1
A; G3 ¼

0 1 0
0 0 1
1 0 0

0
@

1
A: (24)

Notice that G3 coincides with T in Eq. (7). Imposing F3

and G3 on the 3HDM potential, we recover Eq. (8), with
�4 ¼ 0. The 32 representation of S4 can be identified with
the matrices �F3 and G3. These matrices satisfy F2

3 ¼
G3

3 ¼ ðF3G3Þ4 ¼ 1, showing that they indeed generate the

group S4. As for the explicit form of the tensor products,
we will use the Appendix of Ref. [19]. For example, the
product of two 31 triplets, a ¼ ða1; a2; a3Þ and b ¼
ðb1; b2; b3Þ, gives

ða�bÞ11 ¼a1b1þa2b2þa3b3;

ða�bÞ2¼ða1b1þ!a2b2þ!2a3b3;a1b1

þ!2a2b2þ!a3b3Þ;
ða�bÞ31 ¼ða2b3þa3b2;a3b1þa1b3;a1b2þa2b1Þ;
ða�bÞ32 ¼ða2b3�a3b2;a3b1�a1b3;a1b2�a2b1Þ:

(25)

For illustration, let us consider the case �� 31,
ð �QL1; �QL2Þ � 2, �QL3 � 11, dR � 31, and uR � 31. We start
with the down sector. The fact that ð �QL1; �QL2Þ is in the
doublet representation 2 means that we must pick up the
doublet combination ð� � dRÞ2 obtained from Eq. (25),
leading to

�1
�QL1½�1dR1 þ!�2dR2 þ!2�3dR3�
þ �1

�QL2½�1dR1 þ!2�2dR2 þ!�3dR3�: (26)

On the other hand, �QL3 � 11 couples to ð� � dRÞ11 in

Eq. (25), yielding

�2
�QL3½�1dR1 þ dR2 þ�3dR3�: (27)

Hence,

Md ¼
�1v1 !�1v2 !2�1v3

�1v1 !2�1v2 !�1v3

�2v1 �2v2 �2v3

0
BB@

1
CCA: (28)

Similarly,

TABLE IV. Possible representations of uR and dR when the
three Higgs doublets are in a 31 representation and two of the QL

are in the doublet representation 2.

QL uR dR

2, 11 31 31
2, 12 32 32

TABLE V. Possible representations of uR and dR when the
three Higgs doublets are in a 31 representation and allQL are in a
singlet representation 11 or 12.

QL uR dR

11, 11, 11 31 31
12, 12, 12 32 32

TABLE VI. Quark mass spectra and number of arbitrary CKM
parameter-dependent mixing angles (PDMA) in the S4 case, for
the VEV vð1; 0; 0Þ. In all cases, �� 31.

VEV QL uR dR Number of PDMA Mass spectrum

(1, 0, 0)

31 11 11 0 ð0; 0; mu;dÞ
11 2, 11 0 ð0; 0; mu;dÞ
11 3i 0 ð0; 0; muÞ

ð0; md; mdÞ
2, 11 11 0 ð0; 0; mu;dÞ
2, 11 2, 11 0 ð0; 0; mu;dÞ
2, 11 3i 0 ð0; 0; muÞ

ð0; md; mdÞ
3i 11 0 ð0; mu; muÞ

ð0; 0; mdÞ
3i 2, 11 0 ð0; mu; muÞ

ð0; 0; mdÞ
3i 3j 0 ð0; mu;d; mu;dÞ

2, 1i 3i 3i 1 ð0; 0; mu;dÞ
1i 3i 3i 2 ð0; 0; mu;dÞ
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Mu ¼
�1v

�
1 !�1v

�
2 !2�1v

�
3

�1v
�
1 !2�1v

�
2 !�1v

�
3

�2v
�
1 �2v

�
2 �2v

�
3

0
BB@

1
CCA: (29)

The predictions for the physical observables should now be
found for all the possible global minima presented in
Eq. (2). Let us test the case with the VEV alignment
vð1; 1; 1Þ. We find

Hd ¼ 3v2

j�1j2 0 0

0 j�1j2 0

0 0 j�2j2

0
BB@

1
CCA;

Hu ¼ 3v2

j�1j2 0 0

0 j�1j2 0

0 0 j�2j2

0
BB@

1
CCA:

(30)

Although this case does not exhibit massless quarks, it
has a pair of degenerate quarks in each sector, the
CKM is the unit matrix, and of course there is no CP
violation.
The analysis for �� 32 leads to a new set of cases

obtained trivially from Tables III, IV, and V by noting
that 32 ¼ 31 � 12. As we did for A4, we have also built a
program to test all S4 possibilities automatically. In all
cases, there is no CP violation in the CKM matrix
(J ¼ 0) and, in the absence of massless quarks, there will
always be one pair of degenerate quarks in each sector. The
restrictions on the physical parameters obtained for each
choice of representations and for each VEV alignment in
Eq. (2) can be found in Tables VI, VII, and VIII. This may
help model builders in identifying what features need to be
corrected when adding extra fields to the theory.

IV. CONCLUSIONS

We have studied the possibility of generating the quark
masses and CKM mixing in the context of three Higgs
doublet models extended by a discrete A4 or S4 symmetry.
Assuming that the Higgs fields are in the triplet (faithful)
representation of the discrete group, we have shown that
none of the possible VEValignments that corresponds to a
global minimum of the scalar potential leads to phenom-
enologically viable mass matrices for the three generations
of quarks of the Standard Model and, simultaneously, to a
nonvanishing CKM phase. Clearly, these conclusions can
be evaded by extending the field content with extra scalars
and/or fermions.
Our analysis can be applied straightforwardly to the

leptonic sector of the theory, if neutrinos are Dirac parti-
cles. In that case, one massless neutrino or lack of leptonic
CP violation would not contradict current experiments.
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TABLE VII. As in Table VI; for the VEV vð1; 1; 1Þ and
vð1; �; ��Þ.

VEV QL uR dR

Number

of PDMA Mass spectrum

ð1; 1; 1Þ; ð�1; �; ��Þ

31 11 11 0 ð0; 0; mu;dÞ
11 2, 11 0

ð0; 0; muÞ
ðmd;md;m

0
dÞ

11 3i 0
ð0; 0; muÞ

ðmd;md; 2md�1iÞ
2, 11 11 0

ðmu;mu;m
0
uÞ

ð0; 0; mdÞ
2, 11 2, 11 0 ðmu;d; mu;d; m

0
u;dÞ

2, 11 3i 0
ðmu;mu;m

0
uÞ

ðmd;md; 2md�1iÞ
3i 11 0

ðmu;mu; 2mu�1iÞ
ð0; 0; mdÞ

3i 2, 11 0
ðmu;mu; 2mu�1iÞ
ðmd;md;m

0
dÞ

3i 3j 0
ðmu;mu; 2mu�1iÞ
ðmd;md; 2md�1jÞ

2, 1i 3i 3i 0 ðmu;d; mu;d; m
0
u;dÞ

1i 3i 3i 2 ð0; 0; mu;dÞ

TABLE VIII. As in Table VI; for the VEV vð1; i; 0Þ.
VEV QL uR dR Number of PDMA Mass spectrum

ð1; i; 0Þ

31 11 11 0 ð0; 0; mu;dÞ
11 2, 11 0

ð0; 0; muÞ
ð0; md;m

0
dÞ

11 3i 0
ð0; 0; muÞ
ð0; md;mdÞ

2, 11 11 0
ð0; mu;m

0
uÞ

ð0; 0; mdÞ
2, 11 2, 11 0 ð0; mu;d; m

0
u;dÞ

2, 11 3i 0
ð0; mu;m

0
uÞ

ð0; md;mdÞ
3i 11 0

ð0; mu;muÞ
ð0; 0; mdÞ

3i 2, 11 0
ð0; mu;muÞ
ð0; md;m

0
dÞ

3i 3j 0 ð0; mu;d; mu;dÞ
2, 1i 3i 3i 1 ð0; mu;d; m

0
u;dÞ

1i 3i 3i 2 ð0; 0; mu;dÞ
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[17] G. C. Branco, R. González Felipe, M.N. Rebelo, and H.
Serôdio, Phys. Rev. D 79, 093008 (2009).

[18] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985); I. Dunietz,
O.W. Greenberg, and D.-D. Wu, Phys. Rev. Lett. 55, 2935
(1985); F. J. Botella and L.-L. Chau, Phys. Lett. B 181,
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