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Physics Department, Indiana University, Bloomington, Indiana 47405, USA
(Received 15 December 2012; published 11 March 2013)

We discuss gauge coupling unification in models with additional one to four complete vectorlike

families and derive simple rules for masses of vectorlike fermions required for exact gauge coupling

unification. These mass rules and the classification scheme are generalized to an arbitrary extension of the

standard model. We focus on scenarios with three or more vectorlike families in which the values of gauge

couplings at the electroweak scale are highly insensitive to the grand unification scale, the unified gauge

coupling, and the masses of vectorlike fermions. Their observed values can be mostly understood from

infrared fixed-point behavior. With respect to sensitivity to fundamental parameters, the model with three

extra vectorlike families stands out. It requires vectorlike fermions with masses of order 1–100 TeV, and

thus at least part of the spectrum may be within the reach of the LHC. The constraints on proton lifetime

can be easily satisfied in these models since the best motivated grand unification scale is at �1016 GeV.

The Higgs quartic coupling remains positive all the way to the grand unification scale, and thus the

electroweak minimum of the Higgs potential is stable.
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I. INTRODUCTION

Models for new physics at the TeV scale are typically
motivated by the hierarchy problem. They strive to explain
the hierarchy between the electroweak (EW) scale and the
Planck scale, or at least remove the incredible fine-tuning
required in the standard model (SM) for having such a
hierarchy. However, the SM is stubbornly surviving the
first tests at the LHC, and there are no traces of new physics
yet. In addition, the mass of the recently discovered Higgs-
like particle suggests that the SM can be a consistent theory
all the way to the Planck scale. This gives more weight to
speculations that there is no mechanism (no new physics)
that stabilizes the hierarchy or that the EW scale is selected
based on anthropic reasoning.

However, even when we ignore the hierarchy problem,
the SM is still not very satisfactory. The three gauge
couplings, all couplings of the Higgs boson to fermions,
the Higgs mass, and the Higgs quartic coupling are free
parameters. This motivates us to explore extensions of the
standard model in which at least some of these parameters
could be understood.

We have recently showed that extending the standard
model by three complete vectorlike families (SMþ 3VFs)
with masses of order 1–100 TeV allows for the unification
of gauge couplings [1]. Predictions for gauge couplings
at the EW scale are highly insensitive to fundamental
parameters: the grand unification scale, the unified gauge
coupling, and the masses of vectorlike fermions. Their
observed values can be mostly understood from infrared
fixed-point behavior.

In this paper, we discuss gauge coupling unification in
detail in models with additional one to four complete
vectorlike families (VFs) and derive simple rules for
masses of vectorlike fermions required for exact gauge

coupling unification. We then focus on scenarios with three
or more vectorlike families that lead to insensitive unifica-
tion of gauge couplings. Requiring the smallest splitting
between masses of vectorlike fermions, we show that the
best motivated grand unified theory (GUT) scale is at
�1016 GeV. We provide examples of the spectrum as a
function of the GUT scale, which can be as large as the
Planck scale. We discuss constraints from proton decay
and show that predictions from the best motivated region
are close to current limits. However, due to insensitivity
of predicted EW scale values of gauge couplings to GUT
scale parameters, no sharp predictions can be madewithout
knowing the spectrum of vectorlike fermions.
The focus on complete families follows from the fact

that quantum numbers of quarks and leptons in the SM
nicely fill representations of a GUT symmetry, 10 and �5 of
SUð5Þ or 16 of SOð10Þ. This provides a support for the idea
of grand unification and the unification of gauge couplings
[2]. Additional complete families represent some of the
simplest extensions of the SM that can be embedded into
simple GUTs.1 Consequently, there are many studies ex-
ploring various features of vectorlike families (mostly in
supersymmetric models); see, for example, Refs. [4–8].
In addition, vectorlike fermions, not necessarily coming

in complete GUT multiplets, are often introduced on
purely phenomenological grounds to explain various dis-
crepancies between observations and SM predictions.

1This does not mean that the masses of vectorlike fermions
needed for gauge coupling unification necessarily result from a
simple unified boundary condition. By simple GUTs, we mean
that there is no additional mechanism required to keep particles
in incomplete GUT multiplets significantly below the GUT scale
or to split their masses over many orders of magnitudes that
would, to large extent, ameliorate the motivation for GUTs.
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Examples include discrepancies in precision EW Z-pole
observables [9–12] and the muon g� 2 anomaly [13].
However, with the arbitrary new particles, there are many
possibilities for gauge coupling unification.2 Therefore,
we generalize the mass rules and the method to classify
scenarios consistent with gauge coupling unification to an
arbitrary extension of the standard model.

The method to classify scenarios consistent with gauge
coupling unification in terms of physical masses of extra
particles starts with finding the mass scales that represent
‘‘average’’ masses of all particles charged under given
gauge symmetry required for gauge coupling unification
(they are defined precisely in the next section and are
referred to as crossing scales). These crossing scales are
easy to obtain, and they immediately give us information
about the required spectrum. First of all, if they do not exist
between the EW scale and the GUT scale, the gauge
coupling unification in a given model is not possible, no
matter what the splitting between masses of extra particles
is. Second, the splitting between crossing scales represents
the minimum necessary splitting in the spectrum required.
Third, from the mass formulas that define crossing scales in
terms of masses of extra particles, one can immediately see
the basic features of the spectrum required, and the spec-
trum can be calculated. In addition, these formulas also
indicate the freedom one has in imposing further relations
between masses of extra particles. This might be useful
when searching for models that relate masses of particles
at a given scale. The mass rules given in terms of particle
masses can be evolved to an arbitrary scale, e.g., the GUT
scale, which would provide the boundary conditions that
need to be satisfied. However, the renormalization group
(RG) evolution of the mass rules depends on additional
assumptions one has to make about the origin of the masses
and the scale at which these masses are generated.3

This paper is organized as follows. In Sec. II, we discuss
RG evolution of gauge couplings in models with extra VFs.
We start with the discussion of IR fixed-point predictions
for gauge couplings, then add threshold corrections from a
universal mass of vectorlike fermions, and, finally, we add
effects from splitting masses of vectorlike fermions. We
discuss sensitivity of predicted values of gage couplings to
fundamental parameters. Finally, we derive simple mass
rules that have to be satisfied in order to get exact gauge
coupling unification. We generalize the method to classify

all solutions consistent with gauge coupling unification to
an arbitrary extension of the SM. In Sec. III, we discuss
constraints from proton decay, the stability of the EW
minimum of the Higgs potential, and the possible origin
of masses of vectorlike fermions. We give few concluding
remarks in Sec. IV.

II. RENORMALIZATION GROUP EVOLUTION OF
GAUGE COUPLINGS

The one-loop renormalization group equations (RGEs)
for three gauge couplings, �i ¼ g2i =4�, are given by

d�i

dt
¼ �ð�iÞ ¼ �2

i

2�
bi; (1)

where t ¼ lnQ=Q0 withQ representing the energy scale at
which gauge couplings are evaluated. The beta function
coefficients, bi, in the SM with nf families are given by

bi ¼
�
1

10
þ 4

3
nf;� 43

6
þ 4

3
nf;�11þ 4

3
nf

�
: (2)

For nf ¼ 3, we get the usual SM result, bi ¼
ð41=10;�19=6;�7Þ. With extra N pairs of complete
VFs, we have nf ¼ 3þ 2� N (a vectorlike partner con-

tributes in the same way). For example, in SMþ 3VFs, we
find bi ¼ ð121=10; 29=6;þ1Þ, which indicates that all
three gauge couplings are asymptotically divergent (this
result obviously holds for three or more pairs of VFs).
The evolution of gauge couplings in the SM and an

example of the evolution in the SMþ 3VFs case are shown
in Fig. 1. The numerical analysis closely follows that of
Ref. [1]. For the SM evolution, we use the Z-scale central
values of ��1

EMðMZÞ ¼ 127:916, sin 2�W ¼ 0:2313, and
�3ðMZÞ ¼ 0:1184, together with the top quark mass mt ¼
173:2 GeV that can be found in Ref. [3]. The �EM and
sin 2�W are related to �1;2ðMZÞ through

sin 2�W ¼ �0

�2 þ �0 ; and �EM ¼ �2sin
2�W; (3)

where, assuming the SUð5Þ normalization of the hyper-
charge, �0 � ð3=5Þ�1. We set the Higgs boson mass to
mh ¼ 126 GeV [16,17]. The example of the RG evolution
of gauge couplings in the SMþ 3VFs starts with unified
gauge coupling �G ¼ 0:3 at MG ¼ 2� 1016 GeV. The
crossing points in the evolutions of gauge couplings in
these two cases, which will be important for the discussion
of threshold corrections, are indicated in the left plot by
M1;2;3. In all numerical results, we use full two-loop RGEs

[18], and we integrate out all particles with masses above
MZ at their mass scale and include one-loop matching
corrections for mt and mh [19]. We assume that Yukawa
couplings of vectorlike fermions are negligible, and we
also neglect Yukawa couplings of all fermions in the SM
except the top quark.

2For examples of recent studies investigating the effects of
extra particles on gauge coupling unification in models without
supersymmetry, see Refs. [14,15].

3The study of gauge coupling unification is, to large extent,
unaffected by these assumptions; only the physical masses of
particles matter in the leading order. If the masses originate from
Yukawa couplings to extra scalars that get vacuum expectation
values at an intermediate scale, these may contribute to the RG
evolution of gauge couplings at the two-loop level. However,
unless the extra couplings are large, these effects would be
negligible.
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The results of the numerical analysis we present can be
understood from approximate analytic formulas. The one-
loop RGEs can be solved, and we can express gauge
couplings at the EW scale in terms of the GUT scale and
values of gauge couplings at MG:

��1
i ðMZÞ ¼ bi

2�
ln
MG

MZ

þ ��1
i ðMGÞ: (4)

Assuming gauge coupling unification, �iðMGÞ ¼ �G, and
neglecting threshold corrections both at the EW scale and
the GUT scale, we can express one gauge coupling in terms
of the other two. For example,

�3ðMZÞ ¼ b1 � b2
ðb1 � b3Þs2W þ 3=5ðb3 � b2Þc2W

�EMðMZÞ; (5)

where s2W � sin 2�WðMZÞ, and c2W � cos 2�WðMZÞ. For the
measured values of �EM and s2W , the SUð5Þ embedding of
the SM predicts �3ðMZÞ ’ 0:07 which is about 40% below
the experimental value.

Adding complete chiral or vectorlike families at the EW
scale does not change at all the one-loop prediction given
in Eq. (5) since complete families contribute equally to all
three beta-function coefficients; see Eq. (2). Furthermore,
the scale of unification (more precisely, the scales where
any two couplings meet) does not change at one loop; only
the value of the unified gauge coupling increases. With the
increasing the number of extra families, at some point, the
couplings become nonperturbative before they meet and
eventually reach the Landau pole. Further increase of the
number of families lowers the energy scale at which the
Landau pole occurs.

However, the SM extended with a sufficient number
of complete vectorlike families so that all couplings
are asymptotically divergent offers a new possibility.
Vectorlike families introduce an additional scale to the
problem associated with masses of vectorlike fermions,
MVF, and they contribute to the RG evolution of gauge

couplings only above this energy scale. This allows us to
consider models with a large (but still perturbative) unified
gauge coupling at a high scale, higher than the scale at
which the Landau pole would occur if the VFs were at the
EW scale. Consequently, in the RG evolution to lower
energies, gauge couplings run to the (trivial) IR fixed point.
Thus, at lower energies, the values of gauge couplings are
determined only by the particle content of the theory and
how far from the GUT scale we measure them. Since the
exact value of �G becomes irrelevant, instead of one
prediction of the conventional unification, Eq. (5), we
have two predictions for ratios of gauge couplings. At the
MVF scale, the vectorlike fermions are integrated out, and
below this scale, gauge couplings run according to the
usual RG equations of the standard model. In a way, the
two parameters of the conventional unification, MG and
�G, are replaced by MG and MVF. The discrepancies of IR
fixed-point predictions from observed values can be ex-
plained by threshold effects of extra vectorlike fermions.

A. IR fixed-point predictions for gauge couplings

The IR fixed-point predictions were discussed in detail
in Ref. [1]. In models with asymptotically divergent cou-
plings, these can be easily obtained if the one-loop RGEs
are good approximations. Assuming a large enough uni-
fication scale and large (but still perturbative) unified
gauge coupling, the first term in Eq. (4) dominates, and
the ratios of gauge couplings are given by ratios of beta-
function coefficients,

�iðMZÞ
�jðMZÞ ’

bj
bi

: (6)

This can be translated into the prediction for sin 2�W :

sin 2�W � �0

�2 þ �0 ¼
b2

b2 þ b0
; (7)
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FIG. 1 (color online). RG evolution of gauge couplings: �3 (top solid line), �2 (middle solid line), and �1 (bottom solid line) in the
SM extended by three vectorlike families for �G ¼ 0:3 at MG ¼ 2� 1016 GeV. Dashed lines in the same order show the running of
gauge couplings in the SM. Masses of three VFs are neglected in the left plot and fixed to 10 TeV (indicated byMVF) in the right plot.
The crossing points in the evolution of gauge couplings in the SMþ 3VFs and the SM indicated in the left plot define the common
threshold scales, M1;2;3, for masses of particles charged under given symmetry required for exact gauge coupling unification.
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where b0 � ð5=3Þb1. Numerically, we find sin 2�W ¼
0:193 in the case of SMþ 3VFs, which is identical to the
value obtained assuming nine chiral families [20,21].
Similarly, in SMþ 4VFs, we find sin 2�W ¼ 0:234.

In the case of SMþ 3VFs, the one-loop RGE for �3

given in Eq. (1) is not a good approximation because of the
accidentally small b3 coefficient. The two-loop contribu-
tion to the beta function is well approximated by the term
proportional to �3

3,

d�3

dt
¼ �ð�3Þ ’ �2

3

2�
b3 þ �3

3

8�2
B3; (8)

where B3 ¼ �102þ ð76=3Þnf ¼ 126 for SMþ 3VFs

[18]. Thus, the two-loop contribution is larger than the
one-loop contribution for �3 * 0:1.4

The RGE for �3 can be solved by adding the one-loop
contribution as an expansion in � ¼ 4�b3=B3 to the solu-
tion obtained from the two-loop contribution only [1,23].
Alternatively, we can solve the full RGE given in Eq. (8)
and find

��1
3 ðMZÞ � 1

�
ln

�
1þ �

�3ðMZÞ
�

¼ b3
2�

ln
MG

MZ

þ ��1
G � 1

�
ln

�
1þ �

�G

�
: (9)

Neglecting ��1
G , we obtain the second prediction:

�3ðMZÞ
1� �3ðMZÞ

� ln ð1þ �
�3ðMZÞÞ

¼ b2 þ b0

b3
�EMðMZÞ: (10)

Numerically, for �EMðMZÞ ¼ 1=127:916, it predicts
�3ðMZÞ ’ 0:072 in the case of SMþ 3VFs.

The beta-function coefficients for �3 in the SMþ 4VFs
scenario are b3 ¼ 11=3 and B3 ¼ 530=3. The one-loop
term in the RG equation (8) dominates for �3 < 0:26 in
this case.

The proximity of predictions from the IR fixed point,
Eqs. (7) and (10), to observed values is certainly intriguing.
Although they are not a perfect match to measured values,
the discrepancies can be easily accommodated by taking
into account threshold corrections from vectorlike fermi-
ons that should be integrated out at the MVF scale.

B. Mass scale of vectorlike fermions and sensitivity to
fundamental parameters

The existence of a scale associated with masses of
vectorlike fermions is strongly suggested by the overlay
of the RG evolution of gauge couplings in the SM and
those in the SMþ 3VFs assuming unified gauge coupling

at a high scale, given in Fig. 1. All three gauge couplings in
these two scenarios cross at comparable scales suggesting a
common threshold at which particles from VFs are inte-
grated out. Indeed, for the example given in Fig. 1, fixing
all the masses of 3 VFs to 10 TeV, shown on the right side
of the figure, the EW scale values of gauge couplings are
predicted within 8% from measured values. In the next
subsection, wewill show that the measured values of gauge
couplings can be precisely reproduced by splitting the
masses of vectorlike fermions. First, however, we would
like to discuss general features of this result assuming the
common mass of VFs.
The fairly good agreement of predicted values of gauge

couplings from three VFs at �10 TeV with observed
values does not rely on the specific choice of the GUT
scale and the value of the unified gauge coupling. The EW
scale values of gauge couplings are highly insensitive to
these parameters, which can be understood from IR fixed-
point behavior.
The low sensitivity of predicted values of gauge cou-

plings to fundamental parameters is demonstrated in Fig. 2
(left). It shows a large region of the GUT scale,MG, and the
universal mass of fermions from three vectorlike families,
MVF, from which the values of gauge couplings at the
EW scale are simultaneously predicted within 10% from
the measured values. It also shows the best fit that predicts
all couplings within 6%. The GUT scale is the best moti-
vated between 1015 GeV and 1017 GeV with the best fit
close to 1016 GeV. For completeness, a similar plot for
�EM, s

2
W , and �3 is presented in Fig. 2 (right). However, as

we will see from the discussion of threshold corrections
in the next subsection, the plot on the left for �1, �2, and
�3 is more indicative of the best motivated values of MG

and MVF.
In order to understand the sensitivity of the EW scale

values of gauge couplings to fundamental parameters
quantitatively, it is instructive to estimate separate contri-
butions to �1;2;3ðMZÞ from �G,MG, andMVF. Note that the

values of ��1
1;2;3ðMZÞ are approximately 59, 30, and 8.4,

respectively. From Eqs. (4) and (10), we see that �G * 0:3
contributes less than �10% to the EW scale values of
gauge couplings. It is the least important parameter. Plots
in Fig. 2 for any �G > 0:3 would look almost identical.
Increasing �G moves all the contours slightly to the right.
The largest contribution to EW scale values of couplings
originates from the 1=ð2�Þ ln ðMG=MZÞ ’ 5:2 term multi-
plied by corresponding beta-function coefficients.
The second largest contribution to gauge couplings

comes from masses of vectorlike fermions. The IR fixed-
point predictions for the gauge couplings at the EW scale,
obtained from Eq. (4) for�1;2 with�1;2ðMGÞ¼�G and from

Eq. (9) for �3, are modified by threshold corrections Ti,

�iðMZÞ ! �iðMZÞ
1� �iðMZÞTi

; (11)

4This is a consequence of a very small one-loop beta-function
coefficient, and it is not an indication of nonperturbativity. The
coupling is still perturbative, and the dominant three-loop con-
tribution to �ð�3Þ, proportional to �4

3, represents a �5% cor-
rection to 1þ 2-loop beta function for �3 ’ 0:1 [22].
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that depend on masses of the extra vectorlike fermions.
These threshold effects are well approximated by the lead-
ing logarithmic corrections:5

Ti ¼ 1

2�

X
f

bfi ln
Mf

MZ

; (12)

where bfi is the contribution of a given fermion f, with mass
Mf, to the corresponding beta function coefficient [18]. For

particles originating from vectorlike families, these contri-
butions, summarized in Table I, are identical to contribu-
tions from fermions in the standard model. The contribution
from the complete family is identical to all three beta-
function coefficients and equal to 4=3 for a chiral family

and 8=3 for a vectorlike pair [16þ 16 in the SOð10Þ
language].

The correction to �3 of about þ40% is crucial in order
to reproduce the measured value. As can be seen in Figs. 1
and 2, it is indeed �3 that determines MVF ’ 104 GeV and,
consequently,MG ’ 1016 GeV. The other two couplings are
within 10% from measured values in much larger ranges of
MVF and would actually prefer smaller MVF and MG.

Out of the three parameters, the EW scale values of
gauge couplings are the most sensitive to changes in
MVF. However, since MVF is only responsible for at most

�40% of the EW scale values of couplings, the overall
sensitivity is still very small. Most of the EW scale values
of couplings originate from the IR fixed point. Since no
precise cancellations between separate contributions are
required, there are large ranges of fundamental parameters
from which the predicted values of gauge couplings at the
EW scale are close to observed values.
The standard model extended by four vectorlike families

(SMþ 4VFs) allows for insensitive unification of gauge
couplings in a similar way as the SMþ 3VF. Predicted
values of gauge couplings at MZ as functions of the GUT
scale and the universal mass of fermions from four vector-
like families for fixed �G ¼ 0:3 are shown in Fig. 3. There
are, however, notable differences from the SMþ 3VFs
case. First of all, the common mass of vectorlike families
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FIG. 2 (color online). Left: contours of constant values of predicted gauge couplings at MZ, �1, green; �2, blue; and �3, red, as
functions of the GUT scale, MG, and the universal mass of fermions from three vectorlike families, MVF, for fixed �G ¼ 0:3. Solid
lines represent the central experimental values of three gauge couplings, the shaded regions represent �10% ranges, and the dashed
lines in unshaded areas represent�20% ranges. The lightly shaded area corresponds to a�50% range of �3. In the overlapping (bright
red) region, all three gauge couplings are simultaneously predicted within 10% from the measured values, and the small black area in
the red region represents the best fit with all three couplings within 6% from the measured values. The gray region corresponds to
�3ðMZÞ> 0:3; �3ðMZÞ becomes nonperturbative very fast with increasingMVF from the value that corresponds to the boundary of this
region. Right: the same as in the plot on the left but for �EM, orange; s

2
W , purple; and �3, red. The dotted purple line represents s2W

being �5% from the central value.

TABLE I. Quantum numbers and contributions to beta-
function coefficients of particles from extra vectorlike families.
The names are chosen to mimic those of the standard model
particles with the same quantum numbers. For each particle,
there is a corresponding vectorlike partner, and its contributions
to the beta-function coefficients are identical. The b1 coefficients
correspond to the SUð5Þ normalization of the hypercharge.

Particle SUð3Þ � SUð2Þ � Uð1Þ b3 b2 b1

Q 3 2 1=6 2=3 1 1=15
U �3 1 �2=3 1=3 0 8=15
E 1 1 1 0 0 2=5
L 1 2 �1=2 0 1=3 1=5
D �3 1 1=3 1=3 0 2=15

5These corrections correspond to removing one-loop contri-
butions of vectorlike fermions from Eqs. (4) and (9) below their
mass. It is an excellent approximation for �1;2 and sufficient
approximation for �3 since, for the IR value of �3, the one-loop
term in the RG equation dominates.
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moves to �106–107 GeV. This is easily understood from
the fact that more matter makes gauge couplings run faster,
and thus the VFs must stop contributing to RG evolution
at a higher scale; otherwise, the EW scale values of gauge
couplings would be too small. Second of all, the one-loop
IR fixed point value of sin 2�W is 0.234, which is larger than
in the SMþ 3VFs case and actually very close to the
measured value. Overall, this, however, does not make
the predictions much better than in the SMþ 3VFs case,
since �3 requires MVF larger than the one needed to reach
the measured value of sin 2�W . Finally, as a result of larger
masses of VFs required in the SMþ 4VFs scenario, the
sensitivity of EW scale values of gauge couplings to fun-
damental parameters increased, which is visible in Fig. 3 as
narrower 10% bands, compared to those in Fig. 2 corre-
sponding to the case of SMþ 3VFs.

It is easy to extrapolate to a larger number of VFs.
Increasing the number of VFs requires larger MVF closer
and closer to the GUT scale. The sensitivity of predicted
values of gauge couplings to fundamental parameters is
increasing and approaching the sensitivity in the SM.

In the SM extended by one or two vectorlike families,
the predictive power is lost, since the unified gauge cou-
pling is small and its specific value is crucial for predic-
tions for gauge couplings at the EW scale in a similar way
as in the SM. The difference form the SM is that the exact
unification of gauge couplings is now possible with split
masses of VFs. We will include these solutions as a curi-
osity in the next subsection.

C. Threshold effects of vectorlike fermions

Let us now turn our attention to precise predictions for
gauge couplings rather than the�10% agreement. For this,
we need to consider threshold effects from splitting masses
of VFs.

The necessity to split masses of particles from three
extra VFs is indicated in Fig. 1 (left) by slightly different

scales at which the RG evolutions of gauge couplings in the
SM and SMþ 3VFs cross. For the example in this figure,
the crossing scales for �1, �2, and �3 are M1 ’ 100 TeV,
M2 ’ 1 TeV, and M3 ’ 10 TeV. These scales determine
threshold corrections Ti ¼ ð4=�Þ ln ðMi=MZÞ, see Eq. (12),
required for gauge coupling unification. Any spectrum that
leads to required threshold corrections will reproduce the
measured values of gauge couplings.
The crossing scales are increasing with increasing MG

and depend very little on �G for �G * 0:3. For different
values of MG, they can be read out of Fig. 2 (left) as
corresponding values of MVF for which we obtain the
measured value of given gauge coupling. Similarly, in the
case of SMþ 4VFs, the values of M1;2;3 can be read out

of Fig. 3 (left). For values of MG not shown, or for other
scenarios, the crossing scales can be easily calculated from
RG equations as functions of MG and �G.
In general, for N pairs of vectorlike families, once we

know values of crossing scales M1;2;3 for chosen GUT

scale, the masses of fermions must satisfy

4N

3�
ln
M3

MZ

¼ 1

�

XN
i¼1

�
bQ3 ln

MQi

MZ

þ bU3 ln
MUi

MZ

þ bD3 ln
MDi

MZ

�
;

(13)

4N

3�
ln
M2

MZ

¼ 1

�

XN
i¼1

�
bQ2 ln

MQi

MZ

þ bL2 ln
MLi

MZ

�
; (14)

4N

3�
ln
M1

MZ

¼ 1

�

XN
i¼1

�
bQ1 ln

MQi

MZ

þ bU1 ln
MUi

MZ

þ bD1 ln
MDi

MZ

þ bL1 ln
MLi

MZ

þ bE1 ln
MEi

MZ

�
; (15)

in order to get exact gauge coupling unification at the given
GUT scale. In the case of universal masses of particles with
the same quantum numbers, e.g.,MQ1

¼MQ2
¼���¼MQN

�
MQ, these mass rules can be written in a simple form:
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FIG. 3 (color online). The same as in Fig. 2 but for the SM extended by four vectorlike families.
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M4=3
i ¼ Y

F¼Q;U;D;L;E

M
bFi
F ; i ¼ 1; 2; 3: (16)

Inserting the beta-function coefficients from Table I, we
find

M4
3 ¼ M2

QMUMD; (17)

M4
2 ¼ M3

QML; (18)

M20
1 ¼ MQM

8
UM

2
DM

3
LM

6
E: (19)

These formulas hold for any number of complete vector-
like families; only the values of M1;2;3 depend on the

specific scenario. In the case of nonuniversal masses of
particles with the same quantum numbers, the above for-
mulas are still valid with the replacement,

MF � ðMF1
MF2

. . .MFN
Þ1=N; F¼Q;U;D;L;E: (20)

From Eqs. (17)–(20), we can immediately see that split-
ting fermions with the same quantum numbers does not
help to find a solution if a solution does not exist with
universal masses. Thus, it is sufficient to assume universal
masses, MF, of particles with the same quantum numbers,
and Eqs. (17)–(19) classify possible solutions. In addition,
for each solution with universal masses, there are other
solutions with split masses, and the only constraint is that
their geometric mean is the universal mass needed for a
given solution.

There are many solutions available, since we have
five different masses that have to satisfy three conditions
(17)–(19). However, it is not guaranteed that for a given
GUT scale there is a phenomenologically viable solution.
Clearly, the crossing scales have to be above the EW scale,
and even then the solution might require new fermions
below experimental limits or some fermions above the
GUT scale or the Planck scale.

Representative examples of the spectrum for various
values of MG in the case of SMþ 3VFs are given in
Fig. 4. The value of �G is fixed to 0.3; however, the
spectrum is not very sensitive to this choice as previously
discussed. The spectrum shown is just an example, moti-
vated by the smallest splitting between masses required,
and it is not unique. A specific example with exact numeri-
cal values was also given in Ref. [1]. The GUT scale
motivated by the lowest splitting required between masses
of vectorlike fermions is at �1016 GeV in agreement with
what is suggested in Fig. 2 (left), and the masses are split
between �1 TeV and �100 TeV.

There is a lower bound on the possible GUT scale at
�1015 GeV. For smaller MG, the crossing scale M2 is too
small, see Fig. 2 (left), and thus a phenomenologically
viable solution does not exist. With increasing MG, the
splitting of fermion masses is increasing, which can also be
inferred from larger splitting of crossing scales. The GUT
scale can be as high as the Planck scale. However, in that
case, the masses of vectorlike fermions have to be split
over 6 orders of magnitude.

Note that quark doublets, Q, are typically predicted at
�1 TeV. The preference forQ being the lightest of vector-
like fermions can be understood fromM2 <M1;3. However,

there are also solutions with L being the lightest. Keep in
mind, however, that these masses represent geometric means
of masses of particles with the same quantum numbers.
Therefore, when considering split masses of fermions with
the same quantum numbers, any fermion can be the lightest
one and as light as current experimental limits.
For SMþ 4VFs, examples of the spectrum are given in

Fig. 5. The main features are very similar to the case of
SMþ 3VFs. The GUT scale motivated by the lowest
splitting required between masses of vectorlike fermions
is also at�1016 GeV, in agreement with what is suggested
in Fig. 3 (left), and about 2 orders of magnitude splitting of
masses of vectorlike fermions is required. The main dif-
ference from the SMþ 3VFs case is that the spectrum
shifted to 106–108 GeV.

Q Q Q Q Q QL
L

L
L

L

L

U U

U
U

U U

D

D

D
D

D D
E

E

E

E

E

E

5x1015 1016 5x1016 1017 5x1017 1018

102

104

106

108

MG GeV

M
f

G
eV

FIG. 4 (color online). Masses of vectorlike fermions leading to
exact gauge coupling unification as functions of the GUT scale
in the case of SMþ 3VFs. The universal mass for particles with
the same quantum numbers is assumed. The value of �G is fixed
to 0.3. Smaller values of MG (not shown) can still be consistent
with gauge coupling unification for smaller �G. The spectrum
shown is just an example; it is not unique.
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FIG. 5 (color online). The same as in Fig. 4 but in the case of
SMþ 4VFs.
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For completeness, we also include examples of the
spectrum needed for exact gauge coupling unification in
the case of SMþ 1VF in Fig. 6 and SMþ 2VFs in Fig. 7.
For these cases, the EW scale values of gauge couplings are
highly sensitive to �G. Thus, �G in these examples is not
fixed but rather optimized for the given MG. In both cases,
the exact unification can be achieved even in the region
consistent with limits on proton lifetime. However, the
required splitting between masses of vectorlike fermions
is sizable.

D. Generalization of mass rules to other
extensions of the SM

The mass rules we have just derived can be generalized
to any extension of the SM. The existence of crossing
scales is a necessary condition for achieving gauge
coupling unification in a given model. This follows from
the fact that integrating out extra fields above the EW scale
can only increase gauge couplings at the EW scale.
Therefore, values of predicted couplings at the EW scale
without considering the mass effect of extra matter fields
have to be smaller than the measured values. The crossing
scales depend only on �G andMG. Thus, requiring that the

crossing scales exist leads to limits on possible values of
the GUT scale and �G.
For chosen �G and MG, we can find the crossing scales

M1;2;3 for all three gauge couplings. If one-loop RGEs are

good approximations, these crossing scales can be easily
found by applying Eq. (4) separately between MZ the Mi

scales using the SM beta-function coefficients, bSMi , start-
ing with the observed values of �i;exp ðMZÞ, and between

Mi and MG scales using beta-function coefficients in
the given extension, bi, assuming gauge couplings exactly
unify. We get

ln
Mi

MZ

¼ 2�

bi � bSMi

�
���1

i;exp ðMZÞ þ ��1
G þ bi

2�
ln
MG

MZ

�
:

(21)

The meaning of crossing scales is the same as in extensions
of the SM with VFs; namely, they represent the threshold
corrections, Ti¼ðbi�bSMi Þ=ð2�ÞlnðMi=MZÞ, that masses
of extra particles must generate in order to reproduce the
measured values of gauge couplings starting from the given
�G and MG. The rest follows what we did for complete
VFs. Once we know values of crossing scales M1;2;3, in

order to get exact gauge coupling unification, the masses of
extra particles must satisfy

M
ðbi�bSMi Þ
i ¼ Y

F

M
bFi
F ; i ¼ 1; 2; 3; (22)

where the product is over all extra fermions (or scalars)
charged under a given gauge symmetry. For a vectorlike
pair of fermions, the corresponding mass on the right-hand
side appears twice. As in the case of complete VFs, it is
sufficient to consider the universal mass of all particles
with the same quantum numbers. The universal mass that
enters Eq. (22) represents their geometric mean.
For any model with an arbitrary particle content, the

crossing scales (21) as functions of �G and MG together
with the mass rules (22) classify all the solutions consistent
with gauge coupling unification in terms of physical
masses of extra particles.
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FIG. 6 (color online). The same as in Fig. 4 but in the case of
SMþ 1VF. In this case, values of �G are optimized for given
GUT scale and are close to 0.03 for allMG shown. For smaller or
larger values of MG, the unification is not possible for any
spectrum.
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FIG. 7 (color online). The same as in Fig. 4 but in the case of SMþ 2VF. In this case, values of �G are optimized for given GUT
scale and vary between 0.042 and 0.048. Smaller values of MG (not shown) can still be consistent with gauge coupling unification.
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Let us illustrate the usefulness of crossing scales and the
mass rules on one example. Let us ask if there is any
spectrum of extra particles in the SM extended by one
vectorlike family that leads to exact gauge coupling uni-
fication for MG ¼ 1016 GeV. This choice corresponds to
one of the points in Fig. 6, and so we already have the
answer we can compare with. However, this answer is
obtained by a fairly complicated numerical procedure
that iteratively solves coupled differential equations with
masses of extra vectorlike fermions varied until the EW
scale values of gauge couplings are precisely reproduced.
Using our method, we can get the basic features of the
required spectrum fast.

For �G ¼ 0:0286 that corresponds to the given example
in Fig. 6, the crossing scales M1;2;3, easily calculated from

Eq. (21), are 1�1013 GeV, 7�104 GeV, and 2�106 GeV.
This immediately tells us that there will be more than 8
orders of magnitude splitting between masses required.
Knowing the crossing scales, we can easily see the basic
features of the spectrum that will work. From Eq. (22),
which in this case are the same as Eqs. (17)–(19), we see
that MQ, which heavily weighs on M2, should be less than

M2, while everything with a large hypercharge (especially
E and U) should be above M1 in order to find a solution.
For a specific example, one can choose two masses and
calculate the rest of the spectrum from Eqs. (17)–(19).
Given a large splitting between M2 and M1 in this case,
it would be easiest to choose the masses of Q and U as a
starting point. Once we have one solution, varying the
starting masses of Q and U and calculating the rest of
the masses from Eqs. (17)–(19) will give us all possible
solutions for the given �G and MG. This procedure can be
repeated for any�G andMG, or the solutions can be plotted
as functions of these variables.

III. DISCUSSION

So far, we have only considered constraints on the GUT
scale and masses of vectorlike fermions from gauge cou-
pling unification. In order for this scenario to be easily
embedded into simple grand unified theories, based on
SUð5Þ or SOð10Þ, the constraints on proton lifetime and
the stability of the EW minimum of the Higgs potential
should be satisfied.

The most stringent limits on proton lifetime come from
super-Kamiokande. For the dominant decay mode from
dimension-6 operators, the limit is �ðp ! �0eþÞ> 1:4�
1034 yr [24]. Assuming, naively, that the proton lifetime is
�p �M4

G=ð�2
Gm

5
pÞ, wheremp is the mass of the proton, this

limit translates into the lower bound on the GUT scale:
MG > 1:5� 1016 GeV for �G ¼ 0:3, which we use in our
examples. However, the prediction for the proton lifetime
is somewhat model dependent (see, for example,
Refs. [2,24,25] and references therein), and so we do not
impose the strict limit in the plots we present. In addition,
the plots would look very similar for any large value of �G,

but the limits would differ. The interested reader can easily
impose the limit on any scenario by simple rescaling of the
mentioned limit using the formula for the proton lifetime.
It is interesting to note that the best motivated value of

the GUT scale is in the �1016 GeV range which is basi-
cally at the current limit. It is, however, not possible to
make precise predictions without knowing the masses of
vectorlike fermions. For example, a scenario with the GUT
scale larger by a factor of 3 results in �2 orders of
magnitude enhancement of the proton lifetime but would
only require modest changes in the spectrum of vectorlike
fermions in order to have exact gauge coupling unification.
This inability to make precise predictions of GUT scale
parameters is a direct consequence of the insensitivity of
the EW scale couplings to GUT scale boundary conditions.
The RG evolution of the top Yukawa and Higgs quartic

couplings in the SMþ 3VFs forMG ¼ 2� 1016 GeV and
�G ¼ 0:3 was given in Ref. [1]. The Higgs quartic cou-
pling remains positive all the way to the GUT scale, and
thus the electroweak minimum of the Higgs potential is
stable. This result holds in a large range of MG and �G,
especially in the best motivated region. Therefore, these
scenarios represent some of the simplest possible exten-
sions of the standard model that can be embedded into
grand unified theories, with a sufficiently long-lived pro-
ton, and a stable EW minimum of the Higgs potential.
We have not investigated the origin of masses of vector-

like fermions needed for gauge coupling unification. This
would require additional assumptions about the mecha-
nism that generates them and the scale at which boundary
conditions are set. The masses of vectorlike fermions may
be fundamental Lagrangian parameters, or they can origi-
nate from Yukawa couplings to one or several additional
scalars (singlets under SM gauge symmetry, but possibly
charged under family symmetries) that acquire vacuum
expectation values at any scale between the GUT scale
and the MVF scale. In addition, vectorlike fermions can
have nonzero Yukawa couplings to the SM Higgs doublet,
which add another layer of complexity by contributing to
the physical masses and possibly significantly affecting the
RG evolution of other parameters that directly determine
their masses. The study of gauge coupling unification is, to
a large extent, unaffected by these assumptions, only the
physical masses of particles matter in the leading order.
Fundamental Lagrangian masses would not affect the run-
ning of gauge couplings at all, and the Yukawa couplings to
extra scalars may only contribute to the RG evolution of
gauge couplings at the two-loop level. However, in any
specific scenario, the mass rules (17)–(19) can be evolved
to the GUT scale (or other relevant scale), and the freedom
to choose some of the masses can be used to search for
simple boundary conditions that are consistent with gauge
coupling unification.
Finally, it is intriguing to consider a connection with

the anthropic solution to the hierarchy problem, or the
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EW scale [26,27]. Adding VFs to the SM makes this
possibility more appealing, since in the SM, special val-
ues of gauge couplings either at the EW scale or some
high scale have to be selected. In scenarios that we
discussed, the EW scale values of gauge couplings close
to the observed values are not very special, but rather
quite a generic outcome from large ranges of fundamental
parameters. For example, in the SMþ 3VFs case, as far
as MVF < 25 TeV, for any �G * 0:2, and MG anywhere
between 1014 GeV and the Planck scale, the predicted
values of gauge coupling at the EW scale are always
within 50% of the measured values (�1;2 typically well

within 20%). This is indicated by the lightly shaded
region in Fig. 2, and a similar region is indicated in
Fig. 3 for SMþ 4VFs. Furthermore, if the EW scale
and MVF have the same origin, it would also explain the
proximity of the QCD scale to the EW scale. The beta
function of �3 changes the sign at MVF, and below this
scale, it starts running fast toward �QCD.

IV. CONCLUSIONS

We have discussed gauge coupling unification in mod-
els with additional one to four complete vectorlike fam-
ilies. In scenarios with three or more vectorlike families,
the values of gauge couplings at the electroweak scale are
highly insensitive to the grand unification scale, the uni-
fied gauge coupling, and the masses of vectorlike fermi-
ons. Their observed values can be mostly understood
from infrared fixed-point behavior. Starting with a large
(but still perturbative) unified gauge coupling at a high
scale, the values of gauge couplings at lower energies are
determined only by the particle content of the theory and
how far from the GUT scale we measure them. Since the
exact value of �G becomes irrelevant, instead of one
prediction of the conventional unification, we have two
predictions for ratios of gauge couplings. These predic-
tions are modified at the MVF scale, where the vectorlike
fermions are integrated out, and below this scale, gauge
couplings run according to the usual RG equations of the
standard model.

Assuming first a common mass of vectorlike fermions,
MVF, we showed predictions for three gauge couplings at
the EW scale as functions of MG and MVF. We found that
the observed values of gauge coupling are reproduced
with good precision from a large range of parameters.
Especially, MG can be varied over several orders of mag-
nitude while having all three gauge couplings within 20%
from observed values. The best fit, which predicts all three
couplings within 6% from measured values, suggests
MG � 1016 GeV, MVF ’ 104 GeV in the case of SMþ
3VFs, andMVF ’ 106–107 GeV in the case of SMþ 4VFs.

The best motivated GUT scale, �1016 GeV, predicts a
proton lifetime close to current limits. However, due to
insensitivity of the predicted EW scale values of gauge
couplings to GUT scale parameters, no sharp predictions

can be made without knowing the spectrum of vectorlike
fermions. In addition, it was previously shown that the
Higgs quartic coupling remains positive all the way to
the GUT scale, and thus the electroweak minimum of the
Higgs potential is stable. This result holds in a large range
of MG and �G, especially in the best motivated region.
Therefore, these scenarios represent some of the simplest
possible extensions of the standard model that can be
embedded into grand unified theories, with a sufficiently
long-lived proton, and the stable EW minimum of the
Higgs potential.
The discrepancies of IR fixed-point predictions from

observed values can be explained by threshold effects of
extra vectorlike fermions. We showed examples of the
spectrum for the GUT scale varied between 1014 GeV
and 1018 GeV. We derived simple rules for masses of
vectorlike fermions required for exact gauge coupling
unification. In addition, we generalized the mass rules
and the method of using crossing scales of evolutions of
gauge couplings in the SM and the given extension to
classify scenarios consistent with gauge coupling unifica-
tion to an arbitrary extension of the standard model. The
problem of finding all possible mass spectra in a given
model consistent with gauge coupling unification is re-
duced to solving a set of simple algebraic equations that
masses of extra particles have to satisfy.
With respect to the sensitivity to fundamental parame-

ters, the model with three extra vector like families stands
out. In the best motivated region, it requires vectorlike
fermions with masses of order 1–100 TeV, and thus at least
part of the spectrum may be within the reach of the LHC.
Notably, quark doublets, Q, are typically predicted at
�1 TeV. However, only geometric means of masses of
particles with the same quantum numbers are constrained
by gauge coupling unification. Therefore, when consider-
ing split masses of fermions with the same quantum num-
bers, any fermion can be the lightest one and as light as
current experimental limits. Besides direct production of
these particles at the LHC, it may be also possible to
observe their effects in a variety of processes. However,
they typically affect standard model predictions only
through mixing with light fermions, which is highly model
dependent. The discussion of gauge coupling unification
that we focused on here is negligibly affected by such
mixing.
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