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We analyze the constrained minimal supersymmetric standard model with �> 0 supplemented by a

generalized ‘‘asymptotic’’ Yukawa coupling quasiunification condition, which allows an acceptable

b-quark mass. We impose constraints from the cold dark matter abundance in the Universe, B physics,

and the mass mh of the lightest neutral CP-even Higgs boson. We find that, in contrast to previous results

with a more restrictive Yukawa quasiunification condition, the lightest neutralino ~� can act as a cold dark

matter candidate in a relatively wide parameter range. In this range, the lightest neutralino relic abundance

is drastically reduced mainly by stau-antistau coannihilations and, thus, the upper bound on this

abundance from cold dark matter considerations becomes compatible with the recent data on the

branching ratio of Bs ! �þ��. Also, mh ’ ð125–126Þ GeV, favored by LHC, can be easily accom-

modated. The mass of ~�, though, comes out large (� 1 TeV).
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I. INTRODUCTION

The recently announced experimental data on the mass
of the standard model (SM)-like Higgs boson [1–3] as well
as the branching ratio BRðBs ! �þ��Þ of the process
Bs ! �þ�� [4] in conjunction with cold dark matter
(CDM) considerations [5] put under considerable stress
[6] the parameter space of the constrained minimal super-
symmetric standard model (CMSSM) [7–10]. Let us recall
that the CMSSM is a highly predictive version of the
minimal supersymmetric standard model (MSSM) based
on universal boundary conditions for the soft supersym-
metry (SUSY) breaking parameters. The free parameters of
the CMSSM are

sgn�; tan�; M1=2; m0; and A0; (1)

where sgn� is the sign of �, the mass parameter mixing
the electroweak Higgs superfieldsH2 andH1 of the MSSM
which couple to the up- and down-type quarks, respec-
tively, tan� is the ratio of the vacuum expectation values
(VEVs) of H2 and H1, and the remaining symbols above
denote the common gaugino mass, the common scalar
mass, and the common trilinear scalar coupling constant,
respectively, defined at the grand unified theory (GUT)
scale MGUT determined by the unification of the gauge
coupling constants.

It would be interesting to investigate the consequences
of these experimental findings for even more restricted
versions of the CMSSM which can emerge by embedding
it in a SUSY GUT model with a gauge group containing
SUð4Þc and SUð2ÞR. This can lead [11] to asymptotic

Yukawa unification (YU) [12], i.e., the exact unification
of the third generation Yukawa coupling constants (of the
top [bottom] quark ht [hb] and the tau lepton h�) at MGUT.
The conditions for this to hold are that the electroweak
Higgs superfields H2, H1 as well as the third generation
right-handed quark superfields form SUð2ÞR doublets,
the third generation quark and lepton SUð2ÞL doublets

[singlets] form a SUð4Þc 4-plet [4-plet], and the Higgs
doublet H1 which couples to them is a SUð4Þc singlet.
The simplest GUT gauge group which contains both
SUð4Þc and SUð2ÞR is the Pati-Salam (PS) group GPS ¼
SUð4Þc � SUð2ÞL � SUð2ÞR [13,14].
It is well known that, given the experimental values of

the top-quark and tau-lepton masses (which, combined
with YU, naturally restrict tan� to large values), the
CMSSM supplemented by the assumption of YU yields
unacceptable values of the b-quark mass mb for both signs
of �. This is due to the generation of sizable SUSY
corrections [15] to mb (about 20%), which arise from
sbottom-gluino (mainly) and top squark-chargino loops
[15,16] and have the same sign as �—with the standard
sign convention of Ref. [17]. The predicted tree-level
mbðMZÞ, which turns out to be close to the upper edge
of its 95% confidence level (C.L.) experimental range,
receives, for �> 0 [�< 0], large positive [negative] cor-
rections which drive it well above [a little below] the
allowed range. Consequently, for both signs of �, YU
leads to an unacceptable mbðMZÞ with the �< 0 case
being much less disfavored.
In Ref. [18]—see also Refs. [19–23]—concrete SUSY

GUT models based onGPS are constructed which naturally
yield a moderate deviation from exact YU and, thus, can
allow acceptable values of the b-quark mass for both signs
of � within the CMSSM. In particular, the Higgs sector
of the simplest PS model [13,14] is extended so that
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H2 and H1 are not exclusively contained in a SUð4Þc
singlet, SUð2ÞL � SUð2ÞR bidoublet superfield, but receive
subdominant contributions from another bidoublet too
which belongs to the adjoint representation of SUð4Þc. As
a consequence, a modest violation of YU is naturally
obtained, which can allow acceptable values of the
b-quark mass even with universal boundary conditions.
This approach is an alternative to the usual strategy
[24–27] according to which YU is preserved, but the
universal boundary conditions of the CMSSM are aban-
doned. We prefer to keep the universality hypothesis for
the soft SUSY breaking rather than the exact Yukawa
unification since we consider this hypothesis as more eco-
nomical and predictive. Moreover, it can be easily accom-
modated within conventional SUSY GUT models. Indeed,
it is known—cf. first paper in Refs. [26]—that possible
violation of universality which could arise from D-term
contributions if the MSSM is embedded into the PS GUT
model does not occur provided that the soft SUSY break-
ing scalar masses of the superheavy superfields which
break the GUT gauge symmetry are assumed to be
universal.

We will focus, as usual [18,20,21,23], on the�> 0 case
since�< 0 is strongly disfavored by the constraint arising
from the deviation �a� of the measured value of the muon

anomalous magnetic moment a� from its predicted value

aSM� in the SM. Indeed, �< 0 is defended [28] only at 3-�

by the calculation of aSM� based on the �-decay data,

whereas there is a stronger and stronger tendency [29,30]
at present to prefer the eþe�-annihilation data for the
calculation of aSM� , which favor the �> 0 regime. Note

that the results of Ref. [31], where it is claimed that the
mismatch between the �- and eþe�-based calculations is
alleviated, disfavor �< 0 even more strongly.

The representation used for the Higgs superfield which
mixes the SUð2ÞL doublets contained in the SUð4Þc singlet
and nonsinglet Higgs bidoublets plays a crucial role in the
proposal of Ref. [18]. As argued there, this Higgs super-
field can be either a triplet or a singlet under SUð2ÞR. In
particular, it was shown that extending the PS model so
as to include a pair of SUð2ÞR-triplet and/or a pair of
SUð2ÞR-singlet Higgs superfields belonging to the adjoint
representation of SUð4Þc can lead to a sizable violation of
YU. However, in the past, we mainly focused [18,20,21,23]
on the minimal extension of the PS model resulting from
the inclusion of just a pair of SUð2ÞR-triplet superfields
since this was enough to generate an adequate violation
of YU ensuring, at the same time, a SUSY spectrum which
leads to successful radiative electroweak symmetry break-
ing and a neutralino lightest SUSY particle (LSP) in a large
fraction of the parametric space. The resulting asymptotic
Yukawa quasiunification conditions, which replaced the
exact YU conditions, depend only on one new complex
parameter (c) which was considered for simplicity real. It
is also remarkable that this model predicts [21,23] values

for the mass mh of the CP-even Higgs boson h close to
those discovered [1–3] by the Large Hadron Collider
(LHC) and supports new successful versions [32] of the
F-term hybrid inflation based solely on renormalizable
superpotential terms.
However, it has been recently recognized [23] that the

lightest neutralino ~� cannot act as a CDM candidate in this
model. This is because the upper bound on the lightest
neutralino relic density from CDM considerations,
although this density is strongly reduced by neutralino-
stau coannihilations, yields a very stringent upper bound
on the mass of the lightest neutralino m~�, which is incom-

patible with the lower bound on m~� from the data [33] on

BRðBs ! �þ��Þ. This result is further strengthened by
the recent measurements [4] on BRðBs ! �þ��Þ, which
reduce the previous upper bound on this branching ratio
and, thus, enhance even further the resulting lower bound
onm~�. The main reason for this negative result is that tan�

remains large and, thus, the SUSY contribution to
BRðBs ! �þ��Þ, which originates [34,35] from neutral
Higgs bosons in chargino-, H�-, and W�-mediated pen-
guins and behaves as tan 6�=m4

A, turns out to be too large

(mA is the mass of CP-odd Higgs boson). Note, in passing,
that even if one abandons universality in the electroweak
Higgs sector and applies instead the boundary conditions
of the so-called [22] nonuniversal Higgs model 1—with
equal soft SUSY breaking masses for H1 and H2,
but different common soft mass m0 for all the other
scalar fields—tan� still remains larger than about 55.
Consequently, even in this case, compatibility of the data
on BRðBs ! �þ��Þ [33] with the CDM bound on the
neutralino relic density cannot be achieved—cf. Ref. [22].
Therefore, it would be interesting to check if, in the

framework of the CMSSM and consistently with the
GUT models of Ref. [18], we can revitalize the candidacy
of ~� as a CDM particle, circumventing the constraint
from BRðBs ! �þ��Þ and, at the same time, obtaining
experimentally acceptablemh’s. A key point in our present
investigation is the inclusion of both pairs of SUð2ÞR-triplet
and singlet Higgs superfields. This allows for a more general
version of the Yukawa quasiunification conditions—
already extracted in Ref. [18]—which now depend on
one real and two complex parameters. This liberates
the third generation Yukawa coupling constants from the
stringent constraint hb=ht þ h�=ht ¼ 2 obtained in the
monoparametric case and, thus, can accommodate more
general values of the ratios hi=hj with i; j ¼ t, b, �, which

are expected, of course, to be of order unity for natural
values of the model parameters. This allows for lower
tan�’s and, consequently, the extracted BRðBs!�þ��Þ
can be reduced to an acceptable level compatible with the
CDM requirement. The allowed parameter space of
the model is then mainly determined by the interplay of
the constraints from BRðBs ! �þ��Þ and CDM and the
recently announced results of LHC on the Higgs mass mh.
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We first review the salient features of the PS GUT model
in Sec. II and exhibit the cosmological and phenomeno-
logical requirements that we consider in our investigation
in Sec. III. We then find the resulting restrictions on the
parameter space of our model and test the perspective of
direct neutralino detectability in Sec. IV. Finally, we sum-
marize our conclusions in Sec. V.

II. VIOLATING YU WITHIN A SUSY PS MODEL

The starting point of our construction is the SUSY GUT
model presented in Ref. [14]. It is based on GPS, which, as
already mentioned, is the simplest gauge group that can
lead to YU. The representations and transformations under
GPS of the various matter and Higgs superfields of the
model are presented in Table I [Uc 2 SUð4Þc, UL 2
SUð2ÞL, UR 2 SUð2ÞR and T, y, and � stand for the trans-
pose, the Hermitian conjugate, and the complex conjugate
of a matrix, respectively]. The model also possesses a
Peccei-Quinn (PQ) symmetry, a Uð1Þ R symmetry, and a
discrete Z

mp
2 matter parity symmetry with the charges of

the superfields under these extra global symmetries also
shown in Table I. The matter superfields are Fi and
Fc
i (i ¼ 1, 2, 3), while H1 and H2 belong to the superfield

h. So, as one can easily see, all the requirements [11] for
exact YU are fulfilled. The breaking of GPS down to the
SM gauge group GSM is achieved by the superheavy VEVs
(�MGUT) of the right-handed neutrino type components
ð�c

H; ��
c
HÞ of a conjugate pair of Higgs superfields Hc, �Hc.

The model also contains a gauge singlet S which triggers

the breaking of GPS, a SUð4Þc 6-plet G which gives [13]
masses to the right-handed down quark type components of
Hc, �Hc, and a pair of gauge singlets N, �N for solving [36]
the � problem of the MSSM via a PQ symmetry.
In order to allow for a sizable violation of YU, we extend

the model by including three extra pairs of Higgs super-

fields h0, �h0,�, ��, and�0, ��0, where the barred superfields
are included in order to give superheavy masses to the
unbarred superfields. These extra Higgs superfields to-
gether with their transformation properties and charges
are also included in Table I. The superfield h0 belongs to
the (15; 2; 2) representation of SUð4Þc which is the only
representation, besides (1; 2; 2), that can couple to the
fermions. On the other hand, � and �0 acquire superheavy
VEVs of order MGUT after the breaking of GPS to GSM.

Their couplings with �h0 and h naturally generate a SUð2ÞR-
and SUð4Þc-violating mixing of the SUð2ÞL doublets in h
and h0 leading, thereby, to a sizable violation of YU.
More explicitly, the part of the superpotential which is

relevant for the breaking of GPS to GSM is given by

WH¼	SðHc �Hc�M2Þþm� ��þm0�0 ��0

�Sð��2þ�0�02Þþð
 ��þ
0 ��0ÞHc �Hc; (2)

where the mass parametersM,m, andm0 are of orderMGUT

and 	, �, �0, 
, and 
0 are dimensionless parameters with
M,m,m0, 	, 
, 
0 > 0 by field redefinitions. For simplicity,
we take �> 0 and �0 > 0 (the parameters are normalized
so that they correspond to the couplings between the SM
singlet components of the superfields).

TABLE I. Superfield content of the model.

Global symmetries

Superfields

Representations

under GPS

Transformations

under GPS R PQ Z
mp
2

Matter fields

Fi ð4; 2; 1Þ FiU
y
LU

T
c 1=2 �1 1

Fc
i ð�4; 1; 2Þ U�

cU
�
RF

c
i 1=2 0 �1

Higgs fields

Hc ð�4; 1; 2Þ U�
cU

�
RH

c 0 0 0

�Hc ð4; 1; 2Þ �HcUT
RU

T
c 0 0 0

S ð1; 1; 1Þ S 1 0 0

G ð6; 1; 1Þ UcGU
T
c 1 0 0

h ð1; 2; 2Þ ULhU
T
R 0 1 0

N ð1; 1; 1Þ N 1=2 �1 0
�N ð1; 1; 1Þ �N 0 1 0

Extra Higgs fields

h0 ð15; 2; 2Þ U�
cULh

0UT
RU

T
c 0 1 0

�h0 ð15; 2; 2Þ UcUL
�h0UT

RU
y
c 1 �1 0

� ð15; 1; 3Þ UcUR�Uy
RU

y
c 0 0 0

�� ð15; 1; 3Þ UcUR
��Uy

RU
y
c 1 0 0

�0 ð15; 1; 1Þ Uc�
0Uy

c 0 0 0

��0 ð15; 1; 1Þ Uc
��0Uy

c 1 0 0
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The scalar potential obtained from WH is given by

VH ¼ j	ðHc �Hc �M2Þ � ��2 � �0�02j2
þ j	Sþ 
 ��þ 
0 ��0j2ðjHcj2 þ j �Hcj2Þ
þ j2�S��m ��j2 þ j2�0S�0 �m0 ��0j2
þ jm�þ 
Hc �Hcj2 þ jm0�0 þ 
0Hc �Hcj2
þD terms; (3)

where the complex scalar fields which belong to the SM
singlet components of the superfields are denoted by the
same symbols as the corresponding superfields. Vanishing
of the D terms yields �Hc� ¼ ei#Hc (Hc, �Hc lie in the �c

H,
��c
H direction). We restrict ourselves to the direction with

# ¼ 0 which contains the SUSY vacua (see below).
Performing appropriate R and gauge transformations, we
bring Hc, �Hc, and S to the positive real axis.

From the potential in Eq. (3), we find that the SUSY
vacuum lies at

hHc �Hci ¼ v2
0; (4a)

h�i ¼ v�

�
T15
c ; 1;

�3ffiffiffi
2

p
�
; (4b)

h�0i ¼ v0
�

�
T15
c ; 1;

�0ffiffiffi
2

p
�
; (4c)

and

hSi ¼ h ��i ¼ h ��0i ¼ 0; (4d)

where
�
v0

M

�
2 ¼ 1

2�
ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4�
p Þ; (4e)

v� ¼ �

v2
0

m
; v0

� ¼ �
0 v
2
0

m0 (4f)

with

� ¼ M2

	

�
�
2

m2
þ �0
02

m02

�
< 1=4: (4g)

The structure of h�i and h�0i with respect to GPS is shown
in Eqs. (4b) and (4c), where

T15
c ¼ 1

2
ffiffiffi
3

p diagð1; 1; 1;�3Þ; (5a)

�3 ¼ diagð1;�1Þ; and �0 ¼ diagð1; 1Þ: (5b)

The part of the superpotential which is responsible for
the mixing of the doublets in h and h0 is

Wm ¼ Mh
�h0h0 þ 
3� �h0hþ 
1�

0 �h0h; (6)

where the mass parameterMh is of orderMGUT (made real
and positive by field rephasing) and 
3, 
1 are dimension-
less complex coupling constants. Note that the two last
terms in the right-hand side (RHS) of Eq. (6) overshadow
the corresponding ones from the nonrenormalizable

SUð2ÞR-triplet and singlet couplings originating from the

symbolic coupling �HcHc �h0h (see Ref. [18]). Defining
properly [18,20] the relevant couplings in the RHS of
Eq. (6), we obtain the mass terms

Wm ¼ Mh
�h0T1 "ðh02 þ �2h2Þ þMhðh0T1 þ �1h

T
1 Þ" �h02 þ � � � ;

(7)

where " is the 2� 2 antisymmetric matrix with "12 ¼ 1,
the ellipsis includes color nonsinglet components of the
superfields, and the complex dimensionless parameters �1

and �2 are given by

�1 ¼ 1ffiffiffi
2

p
Mh

ð�
3v� þ 
1v
0
�Þ; (8a)

�2 ¼ 1ffiffiffi
2

p
Mh

ð
3v� þ 
1v
0
�Þ� (8b)

It is obvious from Eq. (7) that we obtain two pairs of
superheavy doublets with mass Mh:

�h 0
1; H

0
2 and H0

1;
�h02; (9a)

where

H0
r ¼ h0r þ �rh

0
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j�rj2
p ; r ¼ 1; 2 (9b)

(no summation over the repeated index r is implied). The
electroweak doublets Hr, which remain massless at the
GUT scale, are orthogonal to the H0

r directions:

Hr ¼ ���
rh

0
r þ hrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j�rj2
p � (10)

Solving Eqs. (9b) and (10) with respect to hr and h0r, we
obtain

hr ¼ Hr þ ��
rH

0
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ j�rj2
p and h0r ¼ ��rHr þH0

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�rj2

p � (11)

The superheavy doublets H0
r must have zero VEVs, which

gives

hhri ¼ hHriffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�rj2

p and hh0ri ¼ ��rhHriffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�rj2

p � (12)

The Yukawa interactions of the third family of fermions
are described by the superpotential terms

WY ¼ y33F3hF
c
3 þ 2y033F3h

0Fc
3; (13)

where the factor of 2 is incorporated in the second term in
the RHS of this equation in order to make y033 directly

comparable to y33, since the doublets in h
0 are proportional

to T15
c , which is normalized so that the trace of its square

equals unity. From Eqs. (12) and (13) and using the fact
that h0 is proportional to T15

c in the SUð4Þc space, we can
readily derive the masses of the third generation fermions:
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mt ¼
��������
1� 
�2=

ffiffiffi
3

p

ð1þ j�2j2Þ12
y33v2

��������; (14a)

mb ¼
��������
1� 
�1=

ffiffiffi
3

p

ð1þ j�1j2Þ12
y33v1

��������; (14b)

m� ¼
��������
1þ ffiffiffi

3
p


�1

ð1þ j�1j2Þ12
y33v1

��������; (14c)

where 
 � y033=y33 can be made real and positive by

readjusting the phases of h, h0 and vr ¼ hHri. The third
generation Yukawa coupling constants (ht, hb, and h�)
must then obey the following set of generalized asymptotic
Yukawa quasiunification conditions:

htðMGUTÞ:hbðMGUTÞ:h�ðMGUTÞ

¼
��������
1� 
�2=

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�2j2

p
��������:

��������
1� 
�1=

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�1j2

p
��������:

��������
1þ ffiffiffi

3
p


�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j�1j2

p
��������:

(15)

These conditions depend on two complex ð�1; �2Þ and one
real and positive (
) parameter. For natural values of 
,�1,
and �2, i.e., for values of these parameters which are of
order unity and do not lead to unnaturally small numerators
in the RHS of Eq. (15), we expect all the ratios hi=hj with

i; j ¼ t, b, � to be of order unity. So, exact YU is naturally
broken, but not completely lost since the ratios of the
Yukawa coupling constants remain of order unity restrict-
ing, thereby, tan� to rather large values. On the other hand,
these ratios do not have to obey any exact relation among
themselves as in the previously studied [18–21,23] mono-
parametric case. This gives us an extra freedom which
allows us to satisfy all the phenomenological and cosmo-
logical requirements with the lightest neutralino contribut-
ing to CDM.

III. COSMOLOGICAL AND
PHENOMENOLOGICAL CONSTRAINTS

The two-loop renormalization group equations for the
Yukawa and the gauge coupling constants and the one-loop
ones for the soft SUSY breaking parameters are used
between the GUT scale MGUT and a common SUSY

threshold MSUSY ’ ðm~t1m~t2Þ1=2 (~t1;2 are the top squark

mass eigenstates), which is determined consistently with
the SUSY spectrum. At MSUSY, we impose the conditions
for radiative electroweak symmetry breaking, calculate the
SUSY spectrum employing the publicly available code
SOFTSUSY [37], and include the SUSY corrections to the

b-quark and �-lepton masses [16]. The corrections to m�

(almost 4%) lead [18,19] to a small decrease of tan�. The
running of the Yukawa and gauge coupling constants from
MSUSY to MZ is continued using the SM renormalization
group equations.

The pole mass of the top quark is fixed at its central
value Mt ¼ 173 GeV [38], which corresponds to the

running mass mtðmtÞ ¼ 164:6 GeV. We adopt also the

central value [39] of the MS b-quark mass mbðmbÞMS ¼
4:19 GeV, which is evolved up to MZ using the central
value �sðMZÞ ¼ 0:1184 [39] of the strong fine structure
constant and then converted [40] to the b-quark mass in the
DR scheme at MZ yielding mbðMZÞ ¼ 2:84 GeV. Finally,
the tau-lepton mass is taken to be m�ðMZÞ ¼ 1:748 GeV.
The model parameters are restricted by a number of

phenomenological and cosmological constraints, which
are evaluated by employing the latest version of the pub-
licly available code MICROMEGAS [41]. We now briefly
discuss these requirements paying special attention to
those which are most relevant to our investigation.
(a) Cold dark matter considerations.—The 95% C.L.

range for the CDM abundance, according to the
results of WMAP [5], is

�CDMh
2 ¼ 0:1126� 0:0072: (16)

In the CMSSM, the LSP can be the lightest neutra-
lino ~� and naturally arises as a CDM candidate. The
requirement that its relic abundance �LSPh

2 does
not exceed the 95% C.L. upper bound derived from
Eq. (16), i.e.,

�LSPh
2 & 0:12; (17)

strongly restricts the parameter space of the model,
since �LSPh

2 generally increases with the mass of
the LSPmLSP and so an upper bound onmLSP can be
derived from Eq. (17). The lower bound on �LSPh

2

is not taken into account in our analysis since other
production mechanisms [42] of LSPs may be
present too and/or other particles [43,44] may also
contribute to the CDM. We calculate �LSPh

2 using
the MICROMEGAS code, which includes accurately
thermally averaged exact tree-level cross sections of
all the (co)annihilation processes [9,45], treats poles
[10,18,46] properly, and uses one-loop QCD and
SUSY QCD corrected [15,18,47] Higgs decay
widths and couplings to fermions.

(b) The Higgs boson mass.—According to recent inde-
pendent announcements from the ATLAS [1] and
the CMS [2] experimental teams at the LHC—see
also Ref. [3]—a discovered particle, whose behavior
so far has been consistent with the SM-like Higgs
boson, has mass around 125–126 GeV. More pre-
cisely the reported mass is (126:0� 0:4� 0:4) [1]
or ð125:3� 0:4� 0:5Þ GeV [2]. In the absence of
an official combination of these results and allowing
for a theoretical uncertainty of �1:5 GeV, we con-
struct a 2-� range adding in quadrature the various
experimental and theoretical uncertainties and
taking the upper [lower] bound from the ATLAS
[CMS] results:

122 & mh=GeV & 129:2: (18)
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This restriction is applied to the mass mh of the
CP-even Higgs boson h of MSSM. The calculation
of mh in the package SOFTSUSY [37] includes the
full one-loop SUSY corrections and some zero-
momentum two-loop corrections [48]. The results
arewell tested [49] against other spectrumcalculators.

(c) B-physics constraints.—We also consider the follow-
ing constraints originating from B-meson physics:
(i) The branching ratio BRðBs ! �þ��Þ of the

process Bs ! �þ�� [34,35] is to be consistent
with the 95% C.L. bound [4]:

BRðBs ! �þ��Þ & 4:2� 10�9; (19)

which is significantly reduced relative to the
previous experimental upper bound [33] adopted
in Refs. [23]. This bound implies a lower bound
on mLSP since BRðBs ! �þ��Þ decreases as
mLSP increases. Note that, very recently, the
LHCb Collaboration reported [50] a first evi-
dence for the decay Bs ! �þ�� yielding the
following two-sided 95% C.L. bound:

1:1 & BRðBs ! �þ��Þ=10�9 & 6:4: (20)

In spite of this newer experimental upper bound
on BRðBs ! �þ��Þ, we adopt here the much
tighter upper bound on BRðBs ! �þ��Þ in
Eq. (19) since we consider it more realistic. As
we show below, the upper bound on the LSP
mass mLSP which can be inferred from the lower
bound on BRðBs ! �þ��Þ in Eq. (20) does not
constrain the parameters of our model.

(ii) The branching ratio BRðb ! s�Þ of the process
b ! s� [47,51] is to be compatible with the
95% C.L. range [21,52,53]:

2:84�10�4&BRðb! s�Þ&4:2�10�4: (21)

Note that the SM plus the H� and SUSY con-
tributions [47,51] to BRðb ! s�Þ initially in-
creases with mLSP and yields a lower bound on
mLSP from the lower bound in Eq. (21)—for
higher values ofmLSP, it starts mildly decreasing.

(iii) The ratio RðBu ! ��Þ of the CMSSM to the
SM branching ratio of Bu ! �� [35,54] is to be
confined in the 95% C.L. range [52]:

0:52 & RðBu ! ��Þ & 2:04: (22)

A lower bound onmLSP can be derived from the
lower bound in this inequality.

(d) Muon anomalous magnetic moment.—The discrep-
ancy �a� between the measured value a� of the

muon anomalous magnetic moment and its pre-
dicted value in the SM can be attributed to SUSY
contributions arising from chargino-sneutrino and
neutralino-smuon loops. The relevant calculation
is based on the formulas of Ref. [55]. The absolute

value of the result decreases as mLSP increases
and its sign is positive for �> 0. On the other
hand, the calculation of aSM� is not yet stabilized

mainly because of the ambiguities in the calculation
of the hadronic vacuum-polarization contribution.
According to the evaluation of this contribution in
Ref. [28], there is still a discrepancy between the
findings based on the eþe�-annihilation data and
the ones based on the �-decay data—however, in
Refs. [31], it is claimed that this discrepancy can be
alleviated. Taking into account the more reliable
calculation based on the eþe� data [29], the recent
complete tenth-order QED contribution [30], and
the experimental measurements [56] of a�, we end

up with a 2:9-� discrepancy

�a� ¼ ð24:9� 8:7Þ � 10�10; (23)

resulting to the following 95% C.L. range:

7:5� 10�10 & �a� & 42:3� 10�10: (24)

A lower [upper] bound onmLSP can be derived from
the upper [lower] bound in Eq. (24). As it turns out,
only the upper bound on mLSP is relevant here.
Taking into account the aforementioned computa-
tional instabilities and the fact that a discrepancy at
the level of about 3-� cannot firmly establish a real
deviation from the SM value, we restrict ourselves
to just mentioning at which level Eq. (23) is satisfied
in the parameter space allowed by all the other
constraints—cf. Refs. [6].

IV. RESTRICTIONS ON THE SUSY PARAMETERS

Imposing the requirements above, we can delineate the
allowed parameter space. We find that the only constraints
which play a role are the CDM bound in Eq. (17), the
lower bound on mh in Eq. (18), and the bound on
BRðBs ! �þ��Þ in Eq. (19). In the parameter space
allowed by these requirements, all the other restrictions
of Sec. III are automatically satisfied with the exception of
the lower bound on �a� in Eq. (24). This bound will not be

imposed here as a strict constraint on the parameters of the
model for the reasons explained in Sec. III. We will only
discuss at which level Eq. (23) is satisfied in the parameter
space allowed by the other requirements.
In Fig. 1, we present the overall allowed parameter space

in the tan�� A0=M1=2 plane. Each point in this shaded

space corresponds to an allowed area in the M1=2 �m0

plane (see below). The lower boundary of the allowed
parameter space in Fig. 1 originates from the limit on
BRðBs ! �þ��Þ in Eq. (19), except its leftmost part
which comes from the lower bound on mh in Eq. (18)
or the CDM bound in Eq. (17). The upper boundary
comes from the CDM bound in Eq. (17). We see that
tan� ranges from about 43.8 to 52. These values are only
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a little smaller than the ones obtained for exact YU or the
monoparametric Yukawa quasiunification conditions dis-
cussed in Refs. [18,20,21,23]. This mild reduction of
tan� is, however, adequate to reduce the extracted
BRðBs ! �þ��Þ to an acceptable level compatible with
the CDM requirement. In the allowed area of Fig. 1, the
parameter A0=M1=2 ranges from about �3 to 0.1. We also

find that, in this allowed area, the Higgs mass mh ranges
from 122 to 127.23 GeVand the LSPmassmLSP from about
746.5 to 1433 GeV. So we see that, although mh’s favored
by LHC can be easily accommodated, the lightest neutra-
lino mass is large making its direct detection very difficult.
At the maximum allowedmLSP,BRðBs ! �þ��Þ takes its
minimal value in the allowed parameter space. This value
turns out to be about 3:64� 10�9 and, thus, the lower
bound in Eq. (20) is satisfied everywhere in the allowed
area in Fig. 1. The range of the discrepancy �a� between

the measured muon anomalous magnetic moment and its
SM value in the allowed parameter space of Fig. 1 is about
ð0:35–2:76Þ � 10�10 (note that �a� decreases as tan� or

M1=2 increases). Therefore, Eq. (23) is satisfied only at the

level of 2.55 to 2:82-�. Note that had we considered the
�< 0 case, �a� would have been negative and the viola-

tion of Eq. (23) would have certainly been stronger than
in the �> 0 case.

In order to get a better understanding of the structure of
the allowed parameter space and the role played by the
various restrictions, we will now concentrate on the central
value of tan� ¼ 48 and delineate the allowed areas in the
M1=2 �m0 and mLSP �mh plane for various values of

A0=M1=2. These allowed areas are the shaded areas in

Figs. 2 and 3. We observe that these areas are very thin
strips. Their lower boundary corresponds to �~�2 ¼ 0,

where�~�2 ¼ ðm~�2 �mLSPÞ=mLSP is the relative mass split-

ting between the lightest stau mass eigenstate ~�2, which is
the next-to-LSP, and the LSP. The area below this bound-
ary is excluded because the LSP is the charged ~�2. The
upper boundary of the areas comes from the CDM bound

in Eq. (17), while the left one originates from the limit on
BRðBs ! �þ��Þ in Eq. (19). The upper right corner of
the areas coincides with the intersection of the lines
�~�2 ¼ 0 and �LSPh

2 ¼ 0:12. We observe that the allowed

area, starting from being just a point at A0=M1=2 slightly

bigger than�0:9, gradually expands as A0=M1=2 decreases

and reaches its maximal size around A0=M1=2 ¼ �1:6. For
smaller A0=M1=2’s, it shrinks very quickly and disappears

just after A0=M1=2 ¼ �1:62. We find that, for tan� ¼ 48,
mLSP ranges from about 983 to 1433 GeV, while mh from
about 123.7 to 125.93 GeV.
We will now discuss the structure of the allowed areas in

Figs. 2 and 3. The fact that they are narrow strips along the
lines with �~�2 ¼ 0 indicates that the main mechanism

which reduces �LSPh
2 below 0.12 is the coannihilation

of ~�2’s and ~�’s. Indeed, we find that the dominant
processes are the ~�2~�

�
2 coannihilations to b �b and � ��

contributing to the inverse of �LSPh
2 about (55–72)% and

(11–15)%, respectively. As already noticed in Refs. [6],

FIG. 2. The allowed (shaded) areas in theM1=2 �m0 plane for
tan� ¼ 48 and various A0=M1=2’s indicated on the graph.

FIG. 1. The overall (shaded) allowed parameter space of the
model in the tan�� A0=M1=2 plane.

FIG. 3. The allowed (shaded) areas in the mLSP �mh plane for
tan� ¼ 48 and various A0=M1=2’s indicated on the graph.
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these processes are enhanced by the s-channel exchange of
the heavy CP-even neutral Higgs boson H, with mass mH,
in the presence of a resonance (2mLSP ’ mH)—for the
relevant channels, see, for example, Ref. [45]. In order to
pinpoint the effect of the H pole on the ~�2~�

�
2 coannihila-

tions, we must track its position relative to the line
�~�2 ¼ 0. In Fig. 4, the dashed lines correspond to the H

pole, i.e., to �H ¼ 0 with �H ¼ ðmH � 2mLSPÞ=2mLSP for
tan� ¼ 48 and various values of A0=M1=2 as indicated.

The solid lines (with their dotted part included) correspond
to �~�2 ¼ 0 and the vertically [horizontally] hatched

regions are excluded by the bound on BRðBs ! �þ��Þ
in Eq. (19) [lower bound on mh in Eq. (18)]. We observe
that, for A0=M1=2 ¼ 1, the lower bound on M1=2 which

originates from the lower bound on mh in Eq. (18) over-
shadows the one from Eq. (19). In all other cases, however,
we have the opposite situation. This is consistent with the
fact that for almost fixed M1=2 and m0, the Higgs mass mh

increases as A0=M1=2 decreases—cf. Refs. [6].

From Fig. 4, we see that, for A0=M1=2 ¼ 1 and 0, the

H-pole line is far from the part of the �~�2 ¼ 0 line allowed

by all the other constraints without considering the CDM
bound. Consequently, in the neighborhood of this part, the
effect of the H pole is not strong enough to reduce�LSPh

2

below 0.12 via ~�2~�
�
2 coannihilations and no overall allowed

area exists. On the contrary, for A0=M1=2 ¼ �1, the

H-pole line gets near the otherwise allowed (i.e., allowed
by all the other requirements without considering the
CDM bound) part of the �~�2 ¼ 0 line and starts affecting

the neighborhood of its leftmost segment, where �LSPh
2

becomes smaller than 0.12 and, thus, an overall allowed
(dotted) area appears. For A0=M1=2 ¼ �1:3, �1:5, �1:6,
the H-pole line moves downwards and intersects the
�~�2 ¼ 0 line with the point of intersection moving to the

right as A0=M1=2 decreases. This enhances H-pole ~�2~�
�
2

coannihilation in the neighborhood of a bigger and bigger
segment of the otherwise allowed part of the �~�2 ¼ 0

line and, thus, leads to �LSPh
2’s below 0.12 generating

an overall allowed (dotted) area. For even smaller
A0=M1=2’s, the H-pole line keeps moving downwards and

gets away from most of the otherwise allowed part of
the �~�2 ¼ 0 line. Also, the intersection of these two lines

moves to higher values of M1=2 and m0 and the effect of

the H pole is weakened even around this intersection. So
the overall allowed area quickly disappears as A0=M1=2

moves below �1:6.
As we have seen, in the allowed parameter space of our

model, �~�2 is very close to zero. So we can restrict our-

selves to�~�2 ¼ 0without much loss. Note, by the way, that

this choice ensures the maximal possible reduction of
�LSPh

2 due to ~�2~�
�
2 coannihilations and, thus, leads to

the maximal allowed M1=2 [or mLSP] for given tan�,
A0=M1=2, andm0 [ormh]. In Fig. 5, we present the allowed

areas in the M1=2 � A0=M1=2 plane for �~�2 ¼ 0 and vari-

ous values of tan� indicated on the graph. They are the
horizontally hatched regions. Their right boundaries cor-
respond to �LSPh

2 ¼ 0:12, while the left ones saturate
the bound on BRðBs ! �þ��Þ in Eq. (19)—cf. Fig. 1.
The almost horizontal upper boundaries correspond to the
sudden shrinking of the allowed areas which, as already
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various A0=M1=2’s indicated on the graphs. Vertically [horizontally] hatched regions are excluded by the bound in Eq. (19) [lower
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discussed, is due to the weakening of the H-pole effect as
A0=M1=2 drops below a certain value for each tan�. The

lower left boundary of the areas for tan� ¼ 44, 45, and 46
comes for the lower bound on mh in Eq. (18), while the
somewhat curved almost horizontal part of the lower
boundary of the area for tan� ¼ 44 originates from the
CDM bound in Eq. (17). The dot-dashed lines from top to
bottom correspond to mh ¼ 126:5, 126, 125, 124.5 GeV.
We see that the mh’s which are favored by LHC can be
readily obtained in our model for the higher allowed values
of tan�.

In Table II, we list the input and the output parameters
of the present model, the masses in TeV of the SUSY
particles—gauginos/higgsinos ~�, ~�0

2, ~�0
3, ~�0

4, ~��
1 ~��

2 , ~g,

squarks ~t1, ~t2, ~b1, ~b2, ~uL, ~uR, ~dL, ~dR, and sleptons ~�1, ~�2,
~��, ~eL, ~eR, ~�e—and Higgses ðh;H;H�; AÞ and the values
of the various low energy observables in four characteristic
cases. Note that we consider the squarks and sleptons of the
two first generations as degenerate. From the values of the
various observable quantities it is easy to verify that
all the relevant constraints are met. In the low energy
observables, we included the spin-independent (SI) and
spin-dependent (SD) lightest neutralino-proton (~�� p)
scattering cross sections �SI

~�p and �SD
~�p, respectively, using

central values for the hadronic inputs—for the details of the
calculation, see Ref. [21]. We see that these cross sections
are well below not only the present experimental upper
bounds, but even the projected sensitivity of all planned
future experiments. So the allowed parameter space of our
model will not be accessible to the planned CDM direct
detection experiments based on neutralino-proton scatter-
ing. We also notice that the sparticles turn out to be very
heavy, which makes their discovery a very difficult task.

In the overall allowed parameter space of our model in
Fig. 1, we find the following ranges for the ratios of the

asymptotic third generation Yukawa coupling constants:
ht=h� ’ 0:98–1:29, hb=h� ’ 0:60–0:65, and ht=hb ’
1:62–2:00. We observe that, although exact YU is broken,
these ratios remain close to unity. They can generally be
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FIG. 5. Allowed regions in the M1=2 � A0=M1=2 plane for
�~�2 ¼ 0 and various tan�’s indicated on the graph. The dot-

dashed lines from top to bottom correspond to mh ¼ 126:5, 126,
125, 124.5 GeV.

TABLE II. Input and output parameters, masses of the spar-
ticles and Higgses and values of the low energy observables of
our model in four cases (recall that 1 pb ’ 2:6� 10�9 GeV�2).

Input parameters

tan� 48 49 50 51

�A0=M1=2 1.4 1.6 2 2.5

M1=2=TeV 2.27 2.411 2.824 2.808

m0=TeV 1.92 2.295 3.156 3.747

Output parameters

ht=h�ðMGUTÞ 1.117 1.079 1.038 1.008

hb=h�ðMGUTÞ 0.623 0.618 0.613 0.607

ht=hbðMGUTÞ 1.792 1.745 1.693 1.660

�=TeV 2.78 3.092 3.823 4.129

�~�2 (%) 1.43 0.93 0.1 0.17

�H (%) 3.08 1.30 0.11 1.76

Masses in TeV of sparticles and Higgses

~� 1.023 1.110 1.309 1.303

~�0
2 1.952 2.117 2.489 2.481

~�0
3 2.782 3.088 3.815 4.114

~�0
4 2.785 3.091 3.817 4.116

~��
1 1.985 2.117 2.489 2.481

~��
2 2.785 3.091 3.817 4.116

~g 4.809 5.190 6.042 6.040

~t1 3.806 4.097 4.761 4.781
~t2 3.226 3.458 3.967 3.902
~b1 3.838 4.141 4.853 4.947
~b2 3.763 4.058 4.733 4.757

~uL 4.687 5.138 6.186 6.483

~uR 4.485 4.923 5.946 6.257
~dL 4.687 5.138 6.187 6.483
~dR 4.459 4.896 5.914 6.227

~�1 2.082 2.347 2.979 3.293

~�2 1.037 1.121 1.310 1.305

~�� 2.075 2.342 2.975 3.289

~eL 2.453 2.819 3.690 4.201

~eR 2.112 2.476 3.339 3.901

~�e 2.451 2.818 3.689 4.200

h 0.1245 0.125 0.126 0.1265

H 2.109 2.249 2.621 2.652

H� 2.111 2.251 2.623 2.654

A 2.110 2.25 2.622 2.652

Low energy observables

104 BRðb ! s�Þ 3.25 3.25 3.26 3.26

109 BRðBs ! �þ��Þ 4.17 4.15 3.98 4.17

RðBu ! ��Þ 0.975 0.977 0.982 0.982

1010�a� 1.11 0.89 0.57 0.49

�LSPh
2 0.11 0.11 0.11 0.11

�SI
~�p=10

�12 pb 6.17 4.55 2.44 1.75

�SD
~�p=10

�9 pb 1.69 1.08 0.43 0.28
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obtained by natural values of the real and positive parameter

 and the complex parameters �1, �2, which enter the
Yukawa quasiunification conditions in Eq. (15). Comparing
these ratios with the ones of the gauge coupling constants
of the non-SUSY SM at a scale close to MGUT—see
e.g., Ref. [57]—we can infer that the ratios here are not as
close to unity. In spite of this, we apply the term Yukawa
quasiunification in the sense that the ratios of the Yukawa
coupling constants in ourmodel aremuch closer to unity than
in generic models with lower values of tan�—cf. Refs. [58].
Finally, note that the deviation from exact YU here is
comparable to the one obtained in the monoparametric
case—cf. Ref. [21]—and is also generated in a natural,
systematic, controlled, and well-motivated manner.

In order to see this, we take as a characteristic example
the second out of the four cases presented in Table II,
which yields mh ¼ 125 GeV favored by the LHC. In this
case, where hb=h� ¼ 0:618 and ht=h� ¼ 1:079, we solve
Eq. (15) with respect to the complex parameters �1, �2 for
various values of the real and positive parameter 
.
Needless to say, one can find infinitely many solutions
since we have only two equations and five real unknowns.
Some of these solutions are shown Fig. 6. Note that the
equation for hb=h� depends only on the combination 
�1

and, thus, its solutions are expected to lie on a certain curve
in the complex plane of this combination. Consequently, in
the �1 complex plane, the solutions should be distributed
on a set of similar curves corresponding to the various
values of 
. This is indeed the case as one can see from
the left panel of Fig. 6. For each �1 and 
 in this panel, we
then solve the equation for ht=h� to find �2. In the right
panel of Fig. 6, we show several such solutions. Observe
that the equation for ht=h� depends separately on �2 and 

and, thus, its solutions do not follow any specific pattern in
the �2 complex plane. Note that each point in the �1 plane
generally corresponds to more than one point in the �2

plane. We scanned the range of 
 from 0.3 to 3 and found
solutions only for the lower values of this parameter (up to
about 0.6). The solutions found for �1 and �2 are also
limited in certain natural regions of the corresponding

complex planes. The picture is very similar to the one
just described for all the possible values of the ratios of
the third generation Yukawa coupling constants encoun-
tered in our investigation. So we conclude that these ratios
can be readily obtained by a multitude of natural choices of
the parameters 
, �1, and �2 everywhere in the overall
allowed parameter space of the model.

V. CONCLUSIONS

We performed an analysis of the parameter space of the
CMSSM with �> 0 supplemented by a generalized
asymptotic Yukawa coupling quasiunification condition,
which is implied by the SUSY GUT constructed in
Ref. [18] and allows an experimentally acceptable
b-quark mass. We imposed a number of cosmological
and phenomenological constraints which originate from
the CDM abundance in the Universe, B physics (b ! s�,
Bs ! �þ��, and Bu ! ��), and the massmh of the light-
est neutral CP-even Higgs boson. We found that, in con-
trast to previous results based on a more restrictive Yukawa
quasiunification condition, the lightest neutralino can act
as a CDM candidate in a relatively wide range of parame-
ters. In particular, the upper bound from CDM consider-
ations on the lightest neutralino relic abundance, which is
drastically reduced mainly by H-pole enhanced stau-
antistau coannihilation processes, is compatible with the
recent data on the branching ratio of Bs ! �þ�� in this
range of parameters. Also, values ofmh ’ ð125–126Þ GeV,
which are favored by LHC, can be easily accommodated.
The mass of the lightest neutralino, though, comes out to
be large (� 1 TeV), which makes its direct detectability
very difficult and the sparticle spectrum very heavy.
The fact that, in our model, M1=2, m0, and � generally

turn out to be of the order of a few TeV puts under some
stress the naturalness of the radiative electroweak symme-
try breaking. This is, though, a general problem of the
CMSSM especially in view of the recent data on the
branching ratio of Bs ! �þ�� and the Higgs mass mh

as noted in Refs. [6,58]. Indeed, these data not only
strongly restrict the parameter space of the CMSSM so

FIG. 6. The complex parameters �1 and �2 for various 
’s indicated on the graphs for the case in the second column of Table II.
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as to yield very heavy sparticle masses, but also make the
electroweak symmetry breaking less natural.
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