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We calculate the axial current decay constants of taste non-Goldstone pions and kaons in staggered
chiral perturbation theory through next-to-leading order. The results are a simple generalization of the
results for the taste Goldstone case. New low-energy couplings are limited to analytic corrections that
vanish in the continuum limit; certain coefficients of the chiral logarithms are modified, but they contain
no new couplings. We report results for quenched, fully dynamical, and partially quenched cases of

interest in the chiral SU(3) and SU(2) theories.
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I. INTRODUCTION

The decay constants f, and fx parametrize hadronic
matrix elements entering the leptonic decays of 7 and K
mesons. The values of the decay constants can be com-
bined with the leptonic decay rates from experiment to
extract the CKM matrix elements |V,,| and |V,,| and test
first-row CKM unitarity. Tighter constraints on new phys-
ics are obtained by taking the ratio fx/f, and the form
factor for the semileptonic decay K — w{v as theoretical
inputs; doing so has led to impressive agreement between
the Standard Model and experiment [1,2].

Staggered quarks have four tastes per flavor by construc-
tion [3,4]. The full taste symmetry group for a single
massless flavor is SU(4); X SU(4)g in the continuum limit
(a = 0). At finite lattice spacing, lattice artifacts of @(a?)
break the taste symmetry, and the remaining exact chiral
symmetry is U(1),, which is enough to prevent the stag-
gered quark mass from being additively renormalized.
Hence, staggered fermions have an exact chiral symmetry
at nonzero lattice spacing. In addition, lattice calculations
with staggered fermions are comparatively fast. Staggered
chiral perturbation theory (SChPT) was first developed
to describe the lattice artifacts and light quark mass
dependence of lattice data for the pseudo-Goldstone
boson (PGB) masses [5—8]. Lattice data were extrapolated
to the continuum limit and physical quark masses to
determine the light quark masses, tree-level PGB mass
splittings, and low-energy couplings (LECs); these
served as inputs to lattice calculations of the decay
constants, semileptonic form factors, mixing parameters,
and other quantities [9-27]. Lattice calculations of f,
have become precise enough to use it to determine the
lattice spacing [28].

While there have been a few attempts to calculate the
decay constants for the taste non-Goldstone sectors
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[29,30], most lattice calculations of the decay constants
have been concentrated on the taste Goldstone sector as-
sociated with the exact chiral symmetry of the staggered
action. In Ref. [31], Aubin and Bernard calculated the
decay constants of the taste Goldstone pions and kaons
through next-to-leading order (NLO) in SChPT. Here we
extend their calculation to the taste non-Goldstone pions
and kaons; we find that the general results are simply
related to those in the taste Goldstone case.

In Sec. II we recall the staggered chiral Lagrangian
and the tree-level propagators. In Sec. III we consider
the definition of the decay constants, recall the various
contributions through NLO in SChPT, and write down
the general results in the 4 + 4 + 4 theory. Section IV
contains the results for specific cases of interest in the
1 + 1+ 1 theory, and we conclude in Sec. V. We use the
notation of Ref. [32] throughout.

II. CHIRAL LAGRANGIAN FOR
STAGGERED QUARKS

In this section, we write down the chiral Lagrangian
for staggered quarks. The single-flavor Lagrangian was
formulated by Lee and Sharpe [5] and generalized to
multiple flavors by Aubin and Bernard [7]. Here, we con-
sider the 4 + 4 + 4 theory, in which there are three flavors
and four tastes per flavor. The exponential parameteriza-
tion of the PGB fields is a 12 X 12 unitary matrix,

3 = e/ € U(12), (1)
where the PGB fields are

b=>¢ ®T° )
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U, @} K
¢t =7, D, Kg| &)
K, K% s,
T e {55; ié‘:y,S) l‘f/,cv(/-l“ < V); gﬂ,) gl} (4)

Here a runs over the 16 PGB tastes, and the 7% are 4 X 4
generators of U(4)y; &; is the identity matrix. Under a
chiral transformation, 2, transforms as

SU(12), X SU(12)g: S — L3R, 5)

where L, R € SU(12) .
In the standard power counting,

O(p*/A3) = O(m,/A)) = O(@®AY). ©)

The order of a Lagrangian operator is defined as the sum of
n,2, Ny, and n,, which are the number of derivative pairs,
powers of (light) quark masses, and powers of the squared
lattice spacing, respectively, in the operator. At leading
order, the Lagrangian operators fall into three classes:
(n,2, ny, n2) = (1,0,0), (0, 1, 0), and (0, 0, 1), and we

have

2
Luo =L T3, 35,51 = LA THMS + M3

+ %(U, +D; + 8P +a(U+U), (7)

where f is the decay constant at leading order (LO), u is
the condensate parameter, and M is the mass matrix,

m, 0 O
M = 0 my 0 ® f[- (8)
0 0 m

The term multiplied by m3 is the anomaly contribution
[33], and the potentials ‘U and U’ are the taste symmetry
breaking potentials of Ref. [7].

At NLO, there are six classes of operators satisfying
n,y +n, +n,=2, but only two classes contribute
to the decay constants: (n,,n,, n.)=(1,1,0) and
(1, 0, 1). Contributing operators in the former are Gasser-
Leutwyler terms [34],

Lo =Ly Tr(9,379,3)Tr(x's + y=1)
+LsTr(0,310, 30t + 3ty), 9

where y = 2uM, and contributing operators in the latter
are O(p’a®) terms enumerated by Sharpe and Van de
Water [35].

III. DECAY CONSTANTS OF FLAVOR-CHARGED
PSEUDO-GOLDSTONE BOSONS

For a flavor-charged PGB with taste ¢, P;', the decay
constant fp+ is defined by the matrix element of the axial
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current, ji;,, between the single-particle state and the
vacuum,

L5 NP () = ~if ps (10)

From the LO Lagrangian, the LO axial current is
+ f2 +
Jpsy = —ig TTOP (0,331 + 310, 3)] A1

where T7°®) = [; ® T%, I is the identity matrix in flavor
space, and P* Tisa projection operator that chooses the P*
from the 3 field. For example, for 7+ it is T’l?}+ = 6,16
In general, ’PZ = 0,0y, where x and y are the light
quarks in P*. For flavor-charged states, x # y, by defini-
tion. Note that PP and 79® commute with each other.

Expanding the exponentials 3 = ¢/%// in the LO current
gives

9,33t + 319, E
= —8,L¢ Sf* (0, 0¢> —2¢0, ¢ + $*0,¢)
SIS (12)

The O(¢) term of the axial current gives the LO term of the
decay constants, f, and NLO corrections from the wave
function renormalization. The wave function renormaliza-
tion consists of NLO analytic terms and one-loop chiral
logarithms at NLO; we denote the former by & fanalz nd

the latter by 6/%. . The O(¢*) term of the axial current also
gives one-loop chiral logarithms at NLO, 6&f ;“I“’“‘.

Figures 1(a) and 1(b) show the one-loop corrections to
the decay constant. In addition, there is an analytic con-
tribution to the decay constants from the NLO current. We

denote the total of the NLO analytic terms by & fj,‘,‘ia', which

and analytic terms from the NLO

consists of & f‘malz

current. Combmmg 13} f‘mdl with the one-loop corrections,
we write the decay constants up to NLO,

1
frr = f[l Tonzy2 OFF: & 853 + o ] (13)
(a) (b)
FIG. 1. One-loop diagrams contributing to the decay constants

at NLO. (a) is the wave function renormalization correction and
(b) is the current correction. The propagators include all inser-
tions of hairpin vertices.
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In this section we outline the calculation of 8% P é ;‘i“cm,
t
and & f},‘h“l and present results for the 4 + 4 + 4 theory.
t

A. Wave function renormalization correction
At O(¢) the axial current, Eq. (11), is

ihsd = Flo,b00), (14)

where we used 7, = 48,,, P}, = D =8,8; jy and performed

the trace over taste indices. Here 7., is defined by
Tapea.. = Tr(TTPTCTY ). (15)

The contributions of the @(¢) current to the decay
constants are defined by the matrix element

<0|],L5, [P (p)) = f(=ip, )0l $5 P (p)y  (16)

where Zp+ = 1 + 8Zp+ is the wave function renormaliza-
tion constant of the ¢}, field. At NLO the wave function
renormalization corrections are

Sff + 5ffmalz —8Zp = —

1
2 ! 2

dz
dp2 p2:7mi’f+)

(18)

where 2 is the self-energy of P;. Using the self-energy
from Ref. [32], we find the one-loop corrections

5%, = 2—142[21@“)

+ 167 2[(2 7 (D Dy = 20D )], (19)

16 2f2

where Q runs over the six flavor combinations xi and yi
fori € {u, d, s}, a runs over the 16 PGB tastes in the 15 and
1 of SU4)s, Q, is the squared tree-level pseudoscalar
meson mass with flavor Q and taste a, and 6° = 17,
In Eq. (19), I(Q,) and D¢; are chiral logarithms and the

disconnected piece of the tree-level propagator, respec-
tively, [7,32]

I(X) = X(InX/A? + 8,(VXL)), (20)
where 0, (\/)_(L) is the finite volume correction of Ref. [6],
and
D¢ = — &
Y (¢* + 1,)(g* + J,)
(¢° + U)(g* + Do)(g* + S,)
(¢* + 7G> + n)(g> + L)

Here the names of mesons denote the squares of their
tree-level masses, and

21
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;= 4mi/3, 8ur =0, 65=0 (22)
8, = a*sl, 8,5 = a*dl,. (23)

For X €{1,J,U, D, S},
X, = mg(a =2um, + a’A,, (24)

where m, is the mass of the quark of flavor x €
{i, j, u, d, s}, while for X € {#°, n, '}, the squares of the
tree-level meson masses are the eigenvalues of the matrix,

U, + 9o, O, O,
o, D,+ 9o, 0, . (25)
O, 0, S, + 6,

The squared tree-level mass of a flavor-charged meson
(7%, K=, K% K9 is

P; E_(X +Y) = ulm, +my) +a*A,  (26)

where X # Y € {U, D, S} and x # y € {u, d, s}. The hair-
pin couplings 6 {, 4 and taste splittings A, are combinations
of the couplings of the LO Lagrangian [7].

We defer discussing the analytic corrections & fa“alz to

Sec. III C.

B. Current correction

The O(¢?) terms of the axial current are

Pt 1
J,u,S,rd) = _—thabc(a,ud)gk(ﬁZld)fx

2¢(\3ka ¢kl¢lx + ¢ k(bkl8 (blx) (27)

In the calculation of the matrix element defined in Eq. (10),
each term of Eq. (27) contributes only one contraction
because the derivatively coupled fields in the current
must contract with the external field to obtain a nonzero
result. For example, the first term gives

—Zp 5m 51}( Kb

zl,lx

Oudy, ¢k1 e

where [7,32,36]

(28)

K;lj,kl = <¢ ¢kl> (no sum), (29)

(2 )4

(bs Pl = 8 (5,.,54

—_—+ 6::6,,D% ).
Jjk 6]2+%(1a +Ja) ijekl zz)

(30)

Collecting the three contributions from Eq. (27), we find

[Z( jgx T K;ZJ /y) — 20K Myy] G
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where j runs over {u, d, s}. Performing the integrals over
the loop momenta gives the one-loop current corrections to
the decay constants,

8 fument = —éZ[Zl(Qa)

+ 1672 f 3 )4(1)“ +D;‘y—20‘”D“):|. (32)

Note that §f3" is proportional to the one-loop wave
t

function renormalization correction, o fIZJ+. This was
t

shown in the taste Goldstone case in Ref. [31].

C. Next-to-leading order analytic contributions

Now we consider the NLO analytic contributions to
the decay constants. They come from the O(p?m) Gasser-
Leutwyler Lagrangian in Eq. (9) and the O(p*a®) Sharpe-
Van de Water Lagrangian of Ref. [35]. Both Lagrangians
contribute to wave function renormalization and the current.

The analytic corrections to the self-energy [32] give the
wave function renormalization correction,

-ana 64
Of ps b= _FLML(mu +mg +my)

8 8
- FLS/J‘(mx + my) - Fach (33)
while the NLO current from the Gasser-Leutwyler terms
gives the current correction,

128

) urremGL 7 —Lyu(m, +my~+mg)+

szSI-L(m +m )
(34)

The contributions of the O(p?a?) operators coming from
the Sharpe-Van de Water Lagrangian in Ref. [35] give the
current correction,

5fcurrent SV __ azc/ (35)

The LECs C, and C} are degenerate within the irreducible
representations (irreps) of the lattice symmetry group.
Sharpe and Van de Water observed that contributions
from the O(p?a®) source operators destroy would-be rela-
tions between the SO(4) violations in the PGB masses and
the (axial current) decay constants [35].

Collecting the analytic corrections, we have (in the
4 + 4 + 4 theory)

S anal — 64

Pt f2
8
+ FL5/"L(mx + my) + azftr (36)

— Lyu(m, + my + my)

where the constants F, subsume the constants cﬁ”.
Examining Eqgs. (19), (32), and (36), we see that the
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constants F, (for t # 5) are the only new LECs entering
the (NLO) expressions for the decay constants, in the
sense that the others are present also in the taste
Goldstone case.

IV. RESULTS

To formulate the full QCD and (partially) quenched
results in rooted SChPT, we employ the replica method
[37-39]. Rooting introduces a factor of 1/4 in front of the
explicit chiral logarithms /(Q,) in Egs. (19) and (32) and in
the L, term in Eq. (36). We must also replace the eigen-
values of the mass matrix (25) with those of the matrix
obtained by sending 8, — 8,/4 there. We have

6fP;f j— ng + afcurrent J— BfCOIl + 8 dPIJEC’ (37)
16
g z}t)r}al = f2 L4M(mu + my +m )
G S Lsulm, +m)+@F,  G8)
where

con — 1

813 = — 35 2.851(Qy), (39)
0.B
S dlsc = f D[ +DI _2Dl
2y "

+4D), + 4Dy, —20YF D}, + 4D,

yy
+4Dj, — 2047 Dy,). (40)

In Eq. (40), the flavor-neutral, tree-level masses
(79, m, n,) appearing in D¢; have been replaced with
the masses obtained by sending 8, — 8,/4 in the flavor-
neutral meson mass matrix. In Egs. (39) and (40), we
summed over a within each SO(4) irrep in Egs. (19) and
(32), B and F represent (taste) SO(4) irreps,

B FE{LV,T AP} (41)
tE F, and
OFF = 3 0v,  gzp= 1. (42)
a€EB a€EB

The coefficients @57 are given in Table I. The loop
corrections differ from those in the taste Goldstone
case only in the values of the coefficients @5,

TABLE 1. The coefficient ®F defined in Eq. (42) is in row B
and column F.

B\F P A T \% 1
v —4 2 0 -2 4
A —4 -2 0 2 4
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Equation (38) subsumes the NLO analytic corrections in
fully dynamical and partially quenched SU(3) SChPT; in
the former case, m, # m, are chosen from m,,, m,, and m.
In the quenched case, the L, term is dropped. To obtain the
NLO analytic corrections in SU(2) SChPT, we drop terms
with the heavy quark mass(es), and the LECs become
heavy quark mass dependent [40].

Below we give the one-loop contributions to the decay
constants for each of these cases. In Sec. IVA1 and
IVA?2, fully dynamical and partially quenched results
forthe 1 + 1+ 1 and 2 + 1 flavor cases in SU(3) chiral
perturbation theory are given. The analogous results
in SU(2) chiral perturbation theory are presented in
Sec. IVB. In Sec. IVA 3, we write down the results in
the quenched case.

A. SU(3) chiral perturbation theory
1. Fully dynamical case

In Eq. (39) O runs over six flavor combinations, xi
and yi for i € {u, d, s}. Setting xy = ud, us, ds gives
the results for the 77+, K*, and K° in the fully dynamical
1+ 1+ 1 flavor case,

1
Sfem = —— gp(l(Up) + 2U(m})
; 324

+ I(K3) + I(Dg) + 1(KY)), (43)

1
Sf = =35 2.8ulUs) + U(my)
B
+2UKg) + I(KY) + 1(Sp)). (44)
1
Sfeom = — §Zg3(l(w§ ) + 1(Dp)
B

+ 2U(KY) + I(K7) + I(Sp)). (45)

In the disconnected parts, Eq. (40), the integrals can be
performed as explained in Ref. [7]. After performing the
integrals and decoupling the n} by taking m} — oo [33],
we find

s = z[ {RDS, (XDUX;) + RYS, (X)I(X;)
X

~ 2RS, (X))} + @S 2RES, (XIK,)
+2RDS, (XIXy) — OVFRS, (Xy)I(Xy)}
+(V— A)], (46)

PHYSICAL REVIEW D 87, 054508 (2013)
. 1
5 i = g[ SARDS, (X)IX) + RYZ, (X)I(X)

1
- 2RD0 XDIX)+~ a28(,{2RU7T -

(Xy)I(Xy)
(X)I(Xy) — OVFRD,

+ 2R§]£"nn’ o,,m/(XV)l(XV)}

V- A)], @7

Sfgy = ;[ {RS,, (XDIX)) + R{E (X)I(X))

~ 2RY, (X))} + {5 0RYS, (XIKy)
+2R{5, (Xp)I(Xy) — OVFRY, (X)X}
+(V—A) ] (48)

In the sum, X runs over the subscripts of the residue, R,
where the residues are defined by

[14,(Ajr — Xr)
15, +x(Bir — Xp)’

B,} and F€{V,A I} is the

Ry5 5 (Xp) = (49)
where X €{B,B,, ...,
SO(4)y irrep.

The results in the 2 + 1 flavor case are easily obtained
by setting xy = ud, us and m, = my . Equation (39) gives
connected contributions for the 77 and K,

con —

S = = Y esCllmy) + (Kp),  (50)
B

S = —;—ZZgB@l(wB) +31(Kp) + 1(Sp)). (51
B

Setting xy = ud, us and m, = m, in Eq. (40) gives

afdlsc - _ 26(/(4 ®VF)ZR7T”//7] (XV)Z(XV) +(V—A)
(52)
and
dlSC — Z{R (Xl)l XI + R7T (X])I(XI)} 21(771)
+ Za25(,2{2anm X)I(Xy)
+2RE L (Xy)I(Xy) = OV R,y (Xy)U(Xy)}
+ (V= A), (53)

where Rp g, (Xr) is defined by
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: (XF =B 1)

| BB
Roro,(Xr) = { ! Xr = Bz).

(54)

B —B,
Using the tree-level masses of the taste singlet channel, one
finds

1
Rfrn(ﬂ-l) =3 Rfrn(nl) = _E’ (55)

N W

R7,(S) =3, RE,(n)=—2 (56)

S (11(1;0 = 1_12[31(771) — 5[(7’]1) + 6[(81) - 41(7’1)]

Sy — my

(my — v)? + (Sy — ny)?

PHYSICAL REVIEW D 87, 054508 (2013)
They simplify the results, Egs. (52) and (53),

Sy — my

. 1
Sfdise = —_q250,(4 — OVF [ I(7y)
Ja = g : (v = m)(ny — )
Sy — ny
+ I(my)
(my — ny)(ny — ny) KA
Sy — my

+

(my = )y — ) l(”v)] t V=4,

(57)

1o -
"2 8V|:(77v —my

(my — 1> + (Sy — n)?

(7TV - 77V)(77/v - 77V)(SV - 77\/)

V_SV

I(my)

+ I(my) +

(my — 77(/)(77V - U(/)(Sv - ny)
+ (V- A).

(ny — Sv)(ﬂ/v —Sy)

180) 5O~ - zm»}
Vv

(58)

2. Partially quenched case

In the partially quenched case, the valence quark masses, m, and m,, are not degenerate with the sea quark masses, m,,
mg, and m,. The connected contributions to the decay constants in the partially quenched 1 + 1 + 1 flavor case are

1
8 = — == g5l(Qp). (59)
F 32 o

Performing the integrals in Eq. (40) keeping all quark masses distinct gives the disconnected contributions for the

partially quenched 1 + 1 + 1 flavor case,

. 1 1
O f P mtm, = ;[E{D)‘{Qs“(z,)l(z,) + DYy ZDUZ)) = 2R, (ZDUZ} + 3 a8 2DY0 L ((Zy)U(Zy)

1 ~ -
+ 2D§7’3§W,,y(zv)l(z‘,) — QVFRUDS Tm/(zv)l(zv)} + (V- A)] + E{Rg,‘fs (XDIX;) + R?,’fosn(Yl)l(Yz)}

XYa© On
1 - -
T @SARDS  (XVIXy) + RUES (Y)I(Yy)} + (V= A), (60)
[
where For m, = my, we find
Dy, 55, (XF) = — @ngi...gi Xp) 6L 8fpx, = Z“25/v(4 - WF)[Rﬁ{ﬁim,(Xv)l(Xv)
and " %Dgg?w,x(zv)l(zw] F(V=A). (63)
I(X) = —(InX/A2 + 1) + 8;(v/XL). (62)

Here 85(+/XL) is the finite volume correction defined in
Ref. [6], and X and Y represent the squared tree-level
masses of xx and yy PGBs, respectively.

The connected contributions in the 2 + 1 flavor case are
obtained by setting m, = m, in Eq. (59). To obtain the
disconnected contributions, we perform the integrals in
Eq. (40) setting m, = my,. For m, # m,, we find
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S disc

PHYSICAL REVIEW D 87, 054508 (2013)

1
B, = Z[E{D;;;X(Zm(z,) + D75 (Z)I(Z)) — 2R, (Z)I(Z))}
’ Z

1
+ ZGZBQ{ZDws lyx(ZV)l(ZV) + ZD;;E,?/,Y(ZV)I(ZV) - ®VFR;1S/1W(ZV)Z(ZV)} + (V- A)]

Xnm

+ %{R;zf,(xl)i(xl) + R, (YDI(Y)} + %azsc{R”S (XVIXy) + RES (Y)Y )+ (V— A, (64)

For m, = m,, we find

S disc
+ -
Ppm,=m,

1 ~
= ot — 0" RES ()X

+> D3 n,YX(ZV)l(ZV)] +(V—A). (65)
z

3. Quenched case

In the quenched case, there is no connected contribution,
Eq. (39). As explained in Refs. [6,7,41], quenching the sea
quarks in the disconnected part can be done by replacing
the disconnected propagator with

Dq,quench _ aguench (66)
! (@ + 1)+ L)
where
4mg + ag?)/3 ifa=1
5guench _ (m() aq )/ 1 a . 67)
o ifa+1

Here, note that I, and L, represent the squared tree-level
masses of ii and I/ PGBs, respectively, while I represents
the taste-singlet irrep.

Replacing D¢, with the quenched disconnected propaga-
tor in Eq. (40) for m, # m, gives

S disc

Plom, #m,
alY, +X ~ ~
= e — ) - xidx) ~ v |

m2 5 5 —
+B0i06) + () - o 10 — 1Y) ’(Y’)}

Y, - X;

L s [ iy — @vr (Xy) — 1Y)
+a 5V{2z(xv) +20(ry) - @V =0 }
+(V—A), (68)

and for m, = my,

- 1 _
1) dplﬁfmxzm), = L—‘azé@(4 - 0OVHI(Xy) + (V—A). (69)

Quenching the sea quarks also affects the analytic terms.
In the quenched version of Eq. (36), there is no L, term,
which is coming from the sea quarks.

Xnn

B. SU(2) chiral perturbation theory

We obtain the SU(2) SChPT results from the SU(3)
SChPT results by using the prescription of Ref. [40].
SU(2) chiral perturbation theory was developed in
Ref. [42] and applied to simulation data for the taste
Goldstone decay constants in Refs. [43-45]. The results
of this section extend the results of Refs. [45,46] to the
taste non-Goldstone case.

1. Fully dynamical case

From Egs. (43)-(45), we obtain the connected con-
tributions for the fully dynamical 1 + 1 + 1 flavor case
(m, + my; <K my),

1
Bft = =35 2.88(UUy) + 20(my) + UDp)),  (70)
B
1
Sf;(o:‘" = _ﬁng(l(UB) + lmg)). (71)
B

1
O = ~3p sy + L)) ()

For the disconnected contributions, we find from
Egs. (46)-(48),

81 = (U(U,) + D) ()
18, S RE , (X)I(X)
X

1 I(ny) — ()
+2RY | (X)I(Xy)}+-a?8,@VF 2 V2
D 71( VIXy)} 461 1% 77V_7T(\)/

+(V—=A), (73)

o 1 1
Sl = ~1(Uy) — < U(m9) + =a?8, > RD_, (Xy)I(Xy)
P2 4 27 TV&Suntn
+(V — A), (74)

and
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o U0 (XX

S fdise — %I(Dl) — l(?TI) + - aZSI‘/ZR

The connected contributions in the fully dynamical
2 + 1 flavor case (m, = m; <K my) are

1
Sfr =3 > gpl(my), (76)
B

1
81 = — ¢ 2.88l(mp) (77)
B

For the disconnected contributions in the fully dynamical

2 + 1 flavor case, we find |

S fdisc

1
+ 1028(/{2DUD (Zv)l(Zv) + ZDUD

PHYSICAL REVIEW D 87, 054508 (2013)

S dlSC — (4 @VF){Z(’JT\/) —Il(ny)} + (V— A), (78)

5fdlsc = 1(771) + l(my) — l(ny) + (V—A).  (79)

2. Partially quenched case

Considering x and y to be light quarks (m, > m,,, mg,
m,, my), the connected contributions to the decay constants
in the partially quenched 1 + 1 + 1 flavor case can be
obtained by dropping terms corresponding to strange sea
quark loops from Eq. (59). Equations (60), (63), and (40)
give the disconnected contributions,

o, = S DY EIZ) + DY (Z)1(Z) = 2R, (2120}
zZ

@0I(Z) = OVTRYD (22} + (V=)

X7 , X YO nY
1 - - - -
+ Z{R,L(’QO(XI)I(XI) R(y’fo(Yz)l(Yz)} + Eazﬁ(/{R)l(]QOn(XV)l(XV) + R,[{,l,)o YIYy)+ (V—A)  (80)
and
. 1
OF Y, = 507044 — 07N YD, (0)T0X) + S0, A2z |+ v =), (81)

The connected contributions to the decay constants in the partially quenched 2 + 1 flavor case can be obtained by setting
m, = m, and decoupling the strange quark in the 1 + 1 + 1 flavor case, Eq. (59). From Egs. (60) and (63), we find the

disconnected contributions in the 2 + 1 flavor case,

| i 1
SIEe, L = Z[ ~ SREZ)IZ) + 384 2DF, ((Z)(Zy) + 2DF, (Z)I(Z,) ~ OV Ry (Z)I(Z )} + (V= A)]
) Z
I ) o ) ]
+ Z{Z(Xl) + (= XPIUXp) + 1Y) + (= YUY} + 5025@{R§n(xv)l(xv) +R7, (YV)I(Yy)}+ (V—A)
(82)
[

and dle — 2/ NnUD

| = Z[DXWU xZDUZ) + 2478, D5, (Zy)U(Zy)
OF Y, = 07814 — OV RE, (X)IXy)

+ IDLNE) |+ (V= A, (6
Z

Considering x to be a light quark and y to be a heavy
quark (mg, m, > m,, my, m,), the connected contributions
to the decay constants can be obtained by dropping terms
from Eq. (59) corresponding to strange sea quarks and y
valence quarks circulating in loops; i.e., only the xu and
xd terms survive in the sum over Q. From Eqs. (80), (82),
and (40) [or alternatively, Egs. (60) and (64)], we find
the disconnected contribution for the partially quenched
1 + 1+ 1 flavor case,

(V= A+ R 06)T(X)

+ 1a23’ RUD (XV)Z(XV) + (V— A). (84)

For the 2 + 1 flavor case, we find

N 1
) ;1;50 = Z[E a8y, D3, x(Zy)(Zy) + (V — A)]

Z
+ 3 106) + (= X))}
+ %aZS’VRg,] (X)i(Xy) + (V — A) (85)

054508-8



TASTE NON-GOLDSTONE, FLAVOR-CHARGED PSEUDO- ...

V. CONCLUSION

Our results for the decay constants are given compactly
by Eq. (13) with Eqgs. (37) through (38); they reduce to
those of Ref. [31] in the taste Goldstone sector. The only
new LECs are those parametrizing the analytic corrections
proportional to a?; the SO(4)-violating contributions are
independent of those in the masses. As shown in Table I,
the factors @27 multiplying the disconnected pieces of the
propagators D,Y)’,A differ from the coefficients in the taste
Goldstone case, but no new LECs arise in the loop dia-
grams. In SU(2) chiral perturbation theory with a heavy
valence quark, the chiral logarithms are the same in all
taste channels; only the analytic @(a?) corrections differ.

Results for special cases of interest can be obtained by
expanding the disconnected pieces of the propagators in
Eq. (40). For the fully dynamical case with three non-
degenerate quarks, the loop corrections in the SU(3)
chiral theory are in Egs. (43)—(48). Results in the isospin

PHYSICAL REVIEW D 87, 054508 (2013)

limit are in Egs. (50)—(58). For the partially quenched
case with three nondegenerate sea quarks, loop correc-
tions in the SU(3) chiral theory are in Eqs. (59)—(63).
Results in the isospin limit are in Eqgs. (64) and (65). For
the quenched case the results are in Eqgs. (68) and (69).
Results in SU(2) chiral perturbation theory are in
Egs. (70)—(85). These results can be used to improve
determinations of the decay constants, quark masses,
and the Gasser-Leutwyler LECs by analyzing lattice
data from taste non-Goldstone channels.
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