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By analyzing the external field dependence of correlation functions, the magnetic properties of hadrons

can be determined using lattice QCD in magnetic fields. To compute the magnetic moments and

polarizabilities of charged hadrons, for example, one requires sufficiently weak magnetic fields. Such

field strengths, however, lead to closely spaced Landau levels that are not straightforwardly resolved using

standard lattice spectroscopy. Focusing on charged spinless hadrons, we introduce a simple projection

technique that can be used to isolate the lowest Landau level. As the technique requires the explicit

coordinate-space wave function, we investigate the extent to which the continuum, infinite volume wave

function can be employed. We find that, in practice, the effects of discretization can be handled using a

perturbative expansion about the continuum. Finite volume corrections are taken into account by using the

discrete magnetic translational invariance of the torus. We show that quantized magnetic fields can lead to

pernicious volume effects, which depend on the magnetic flux quantum, rather than on the lattice volume.
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I. INTRODUCTION

Quarks are unique in the Standard Model because they
are the only particles charged under all three gauge groups.
While electromagnetic interactions of quarks are dwarfed
by their strong interactions, electromagnetic observables
and tiny electrodynamic effects ultimately give one an
intuitive picture of the underlying QCD dynamics present
in the vacuum and in hadrons. Studying QCD in the pres-
ence of classical electromagnetic fields, moreover, allows
one to address howQCD responds to external conditions. In
recent years, considerable steps have been taken to inves-
tigate QCD in external electromagnetic fields using lattice
gauge theory techniques; for an overview, see Refs. [1,2].

The external field method in lattice QCD appeared quite
early on. Background magnetic fields were used in the first
calculations of the nucleon magnetic moments [3,4]. Soon
thereafter, it was realized that effects at second order in
background electric fields could be used to extract the
electric polarizabilities of neutral hadrons [5]. In the context
of weak external magnetic fields, the background field
methodwas revisited several years ago to computemagnetic
moments and polarizabilities of hadrons [6,7]. These studies
were completely quenched, and nonuniformmagnetic fields
were employed with effects resulting from field gradients
mitigated by the imposition of spatial Dirichlet boundary
conditions. Such boundary conditions produce nonperturba-
tive effects that are unfortunately difficult to quantify.

Uniform magnetic fields can be achieved on the lattice
by imposing a quantization condition on magnetic field
strength [8–10]. In QCD, this condition takes the form

jqdjB ¼ 2�n�
L2

; (1)

where L is the spatial size of the lattice, which we assume
to be the same in each spatial direction, and jqdj ¼ 1

3 e is

the magnitude of the electric charge of the down quark.
The integer n� is the magnetic flux quantum of the torus.
A study of magnetic moments of spin-3=2 resonances
employing uniform magnetic fields appeared a few years
ago [11]. While the quantization condition has generally
restricted one to prohibitively large magnetic fields, lattice
volumes are ever increasing, and this trend will conse-
quently lead to lattices that are able to support several
quantized values of perturbatively small magnetic fields.
Because of the existence of Landau levels, the correla-

tion functions of charged hadrons depend strongly on the
magnetic field. For a hadron of massM, the characteristics
of the Landau levels depend on the dimensionless ratio
jeBj=M2. When the magnetic field is large, jeBj=M2 � 1,
the Landau levels are widely separated in energy. In this
regime, one can expect that standard lattice spectroscopy
will filter out the lowest Landau level in the long Euclidean
time limit. On the other hand, for small values of the
magnetic field, jeBj=M2 � 1, the energies of Landau lev-
els are very closely spaced and standard spectroscopic
techniques will be of limited use. To deduce the magnetic
properties of charged hadrons,1 one is ultimately interested
in the regime jeBj=M2 � 1; however, in the near term one
may have to settle for more intermediate values, for which
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1As these properties are dynamically determined, one must
additionally worry about energy scales set by the virtual degrees
of freedom within hadrons. Because the charged pion is the
lightest electrically charged state in QCD, the ratio jeBj=m2

� is
important for all hadrons.
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jeBj=M2 & 1. Nonetheless, as the available magnetic
fields become smaller, the need to explicitly treat Landau
levels becomes greater. Fortunately, this can be achieved
easily using the proper-time formalism, which was pio-
neered in quantum field theory by Schwinger [12]. In this
work, we develop the technique for lattice correlation
functions by focusing on charged scalar particles.

In an external magnetic field with jeBj=M2 & 1, the
tower of Landau levels complicates standard lattice
spectroscopy. As we show, one need not rely upon the
long-time limit of the correlation function to filter out the
lowest Landau level. One can project out this state directly,
and thereby considerably reduce the challenges inherent to
studying charged hadrons in external magnetic fields. We
begin in Sec. II by detailing the method using a continuum
action defined in infinite volume. For simplicity, we focus
on charged scalar particles. To address the effects of
discretization, we consider a charged particle effective
action on an infinite lattice in Sec. III. We find that the
effects of discretization can be treated in practice using
perturbation theory with a continuum wave function. Next,
in Sec. IV, we investigate finite volume corrections. Using
the discrete magnetic translational invariance of the torus,
we account for finite volume corrections to the lowest
Landau level. While volume corrections are generally
suppressed by exponentially small terms, we expose
certain corrections that are not exponentially small and
discuss how the infinite volume limit can be recovered.
This subtlety results from the magnetic field quantization
required on the torus. A simple numerical study is under-
taken in Sec. V, where we compute various two-point
functions for a scalar particle coupled to a magnetic field
on a finite, four-dimensional lattice. We compare the
numerical computations to the analytic results we derive
and find excellent agreement. Furthermore, the numerical
results show that the projection technique is necessary for
magnetic fields that are perturbatively small compared to
the hadron’s mass scale. Finally, we conclude in Sec. VI
with a brief summary of our findings and directions for
future work.

II. CONTINUUM METHOD

The object for studying the spectrum of QCD is the two-
point correlation function. Standard lattice spectroscopy
relies on the large Euclidean time limit of the two-point
correlator. With a mixed momentum-time representation,
the two-point correlator is2

Gð ~p; �Þ ¼
Z

d~xei ~p� ~xh0j�ð ~x; �Þ�yð~0; 0Þj0i; (2)

where for simplicity we restrict our attention to a charged
scalar hadron �, which has an interpolating field �. The
Fourier transform introduces the coordinate-space wave

function, c �
~pð ~xÞ ¼ ei ~p� ~x, of the momentum eigenstate ~p.

The spectral decomposition of the correlator shows that the
ground state saturates the correlation function in the long
Euclidean time limit, with excited-state contamination
suppressed by the factor � exp ð��E�Þ. Here �E is the
splitting between the ground and first excited states, and we
have assumed that the overlap factors for both states are
approximately equal. For Euclidean times on the order of
�� 1 fm, a natural energy-level splitting, �E��QCD,

ensures reasonably good suppression of the excited states.

The addition of a magnetic field, ~B, considerably com-
plicates the spectral decomposition of the two-point func-
tion. Energy levels of multiparticle states, for example,
become cumbersome to enumerate. We will assume the
zero-field ground state is the single-hadron state �. This
ground-state hadron, which is a state possessing the quan-
tum numbers of �, now consists of an infinite tower of
Landau levels. These energy levels are not widely sepa-
rated in weak magnetic fields. For an ideally weak external
field, the energy splitting between neighboring Landau
levels is set by �E ¼ jeBj=M, where M is the hadron’s
mass. In a given magnetic field, the proton’s Landau levels,
for example, will be more closely spaced than the charged
pion’s, leading to comparatively more challenging lattice
spectroscopy. Even for the best case, the pion itself, the
energy-level splitting in perturbatively weak fields requires
� considerably greater than 1 fm to resolve. Consequently,
it is beneficial to handle the Landau levels explicitly.
The single-particle effective action for the composite

field � in a uniform electromagnetic field has the form

S ¼
Z

d4x½D��
yD��þM2�y�þ c0F��F���

y�

þ c2F�f�F�g�D��
yD���; (3)

which follows on account of gauge invariance, parity in-
variance, and Euclidean invariance. The gauge covariant
derivative is defined in the usual way, D�� ¼ @��þ
ieA��, and the electromagnetic field-strength tensor is

F�� ¼ @�A� � @�A�. The curly braces denote the sym-

metric traceless part of a tensor, namelyOf��g ¼ 1
2 ðO�� þ

O�� � 1
2���O��Þ. The combination T�� ¼ F�f�F�g� is

the electromagnetic stress-energy tensor. In the effective
action, we have written down all terms containing up to
two powers of the electromagnetic field-strength tensor.
There are of course higher-order terms allowed by symme-
tries, but we assume the external field to be sufficiently
weak. The low-energy constants, c0 and c2, describe the
helicity, � ¼ 0 and � ¼ 2, couplings of two photons to the
�. From a simple matching calculation, these low-energy
constants can be identified as

2Throughout, we omit explicitly writing the end points of
integration for all integrals spanning the entire real line. Thus
we write

R
dx for the integral

Rþ1
�1 dx. Similarly for sums over

all integers, we do not explicitly write out the limits. Thus we use
the notation

P
n for the sum

Pþ1
n¼�1 .
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c0 ¼ �Mð	E � 
MÞ; c2 ¼ 4�

M
ð	E þ 
MÞ; (4)

where 	E is the electric polarizability of the �, and 
M its
magnetic polarizability.

Now we specialize to the case of a magnetic field
specified by the vector potential3

A� ¼ ð�Bx2; 0; 0; 0Þ: (5)

After a field redefinition, the effective action can be written
in the form

S ¼
Z

d4x½D��
yD��þM2�y��; (6)

where M is given by

MðBÞ ¼ M� 1

2
4�
MB

2 þOðB4Þ; (7)

and the higher-order terms in the magnetic field that were
neglected above are now effectively subsumed into the B
dependence of M. The goal of a background field lattice
computation is to determine the magnetic polarizability

M from the magnetic field dependence of M.

In an external magnetic field, one can consider the two-
point correlator,

GBð�Þ ¼
Z

d~xh0j�ð ~x; �Þ�yð~0; 0Þj0iB; (8)

where the subscripts denote the external field dependence.
Because the x2 component of momentum is not a good
quantum number in the external magnetic field, the Fourier
transform implicit in Eq. (8) receives contributions from an
infinte tower of Landau levels. Using the effective action in

Eq. (6) and following [14], the � contribution to the
correlator can be written in the form4

GBð�Þ ¼ Z�

Z 1

0
ds

e� 1
2sð�2þs2M2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s cosh ðeBsÞp ; (9)

where the nonstandard � dependence arises from summing
contributions from the entire tower of Landau levels. In the
extreme long-time and nonrelativistic limits, only the low-

est Landau level contributes,GBð�Þ � exp ½�ðMþ jeBj
2MÞ��.

As lattice calculations are far from these ideal limits, one
must confront contributions from higher Landau levels. The
explicit form of the correlation function in Eq. (9) could be
used, in principle, to fit the lattice correlator,5 however,
there are hidden assumptions. In deriving this expression
for the correlator, we integrated over all space. This leads to
contributions from Landau levels with an average size
extending a considerable distance from the origin. Such
contributions are modified due to boundary conditions. It
is thus highly desirable to filter out only the lowest Landau
level which has the smallest average size.
To remedy the situation with narrowly separated energy

levels, we return to the correlation function in Eq. (8). By
using this form, one is implicitly assuming the single-
particle wave function, c �

p2
ðx2Þ ¼ eip2x2 , of a free particle

with p2 ¼ 0,6 cf. Eq. (2). A more desirable correlation
function is

GBð�Þ ¼
Z

d~xc �ð0Þ
0 ðx2Þh0j�ð ~x; �Þ�yð~0; 0Þj0iB; (10)

where c ð0Þ
0 ðxÞ is the ground-state harmonic oscillator wave

function,

3The charged particle correlation function defined in Eq. (8) is
gauge variant as are the generalizations defined in Eqs. (10), (14),
and (44). To remove the gauge dependence, one could alterna-
tively include a Wilson line between the field operators to form
gauge-invariant two-point correlation functions. This approach
necessitates choosing a path linking the space-time locations of
the field operators. The Wilson line is not independent of the
path, however, because magnetic flux threads closed loops trans-
verse to the field direction. This dependence was explored
previously in a lattice calculation by choosing different defini-
tions of the charged particle two-point function [13]. In the
present method, the effective action is used to compute the
correlation functions, and we have chosen a convenient gauge
to accomplish this. In a different gauge, the behavior of the
correlation function will be different, and consequently the
coordinate wave function used to project out the lowest Landau
level will differ. The virtue of the effective action approach is that
in each gauge there is a prediction for the behavior of the
correlation function. We can generalize the effective action
approach, moreover, for gauge- invariant charged particle corre-
lation functions to study the path dependence introduced by the
Wilson line. To keep our presentation simple, we introduce the
method using gauge-variant correlators restricted to the gauge
specified by Eq. (5).

4The overlap factor, which is generically written as Z�, also
contains kinematic factors. We will write the same overlap factor
Z� throughout; although, it may have different numerical values
in different correlators. Because the overlap of the interpolating
field � with the single particle state � is a priori unknown, we
do not keep track of such kinematic factors.

5The utility of external field correlators in fitting lattice data
was originally suggested for background electric field computa-
tions [15]. Analogous to the Landau level problem, charged
particle two-point functions in external electric fields have non-
standard � dependence, and the predicted functions have been
sucessfully used to extract properties of pseudoscalar mesons
and baryons [16,17].

6If one imposes spatial Dirichlet boundary conditions, as is
done in some external field lattice calculations, see Ref. [18] for
example, there is an analogous issue even for neutral particle
correlation functions. The sum over spatial lattice sites produces
a tower of standing waves, and practitioners rely on the long-
time limit to obtain the lowest Dirichlet mode from the tower.
This tower could be directly avoided, however, by projecting out
the lowest mode using its coordinate wave function, c ðxÞ ¼
sin ð�xL Þ. While this suggestion would circumvent the momentum
problem, it unfortunately does nothing to resolve the myriad
difficulties with Dirichlet boundary conditions, e.g., the issue of
the Uð1ÞA anomaly [19,20], the possibility of chiral symmetry
restoration [21–23], etc.
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c ð0Þ
0 ðxÞ ¼ e�1

2jeBjx2 : (11)

The absolute normalization of this wave function is irrele-
vant for our purposes, and the notation for the wave function
is chosen to be consistent with Sec. III below. Computing
the � contribution to the correlator in Eq. (10) produces a
simple result. Using Schwinger’s proper-time trick, we find
an exponential falloff of the correlator,

GBð�Þ ¼ Z�e
�E0�; (12)

with the energy given by

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ jeBj

q
: (13)

The new correlation functionGBð�Þ allows one clean access
to M and consequently to the magnetic polarizability 
M.

An obvious drawback of the projection method is that the
coordinate-space wave function for the lowest Landau level
is required. On a finite space-time lattice, this wave function
does not have the simple Gaussian form well known from
elementary quantum mechanics. Modifications to the wave
function will arise from the discretization of space, as well
as from the finite spatial volume. We consider each of these
effects below.

III. DISCRETIZATION EFFECTS

We investigate first the effects of discretization on
the lowest Landau level. To this end, we temporarily ignore
the boundary conditions. Addressing finite-size effects is
postponed until the following section. In the absence of
boundary conditions, a natural question remains. Can one
reasonably approximate the lowest Landau level using a
continuum wave function? To investigate the answer to this
question, we consider the theory on an infinite spatial
lattice with a uniform lattice spacing a. The lattice sites
are labeled by a vector of integers, ~n ¼ ðn1; n2; n3Þ, which
corresponds to the coordinate vector ~x ¼ a ~n. For simplic-
ity, we keep the time direction continuous.

The projection method obviously generalizes to the
lattice, where one now requires the lowest lattice Landau
level. It is described by a wave function, c 0;n2 , where we

use the subscript n2 to index the lattice-site dependence.
Generally, we use subscripts for discrete indices; for
example, the lattice version of the interpolating field
�ðxÞ is now written � ~nðx4Þ. With the wave function,
c 0;n2 , we then form the discrete analogue of Eq. (10),

GBð�Þ ¼
X
~n

c �
0;n2

h0j� ~nð�Þ�y
~0
ð0Þj0iB: (14)

Consequently the sum over n2 in the lattice correlator,
Eq. (14), will project out only the lowest energy state in
the tower of lattice Landau levels.

To determine the wave function for the lowest lattice
Landau level, we must know the lattice form of the single-
particle effective action, which is the discretized version of

Eq. (6). Using this action, one solves the discrete eigen-
value equation for the lowest energy eigenstate, and c 0;n2

is then the corresponding eigenvector. We will assume a
highly plausible form for the discrete action of the charged
scalar. When one couples gauge fields to matter fields on a
lattice, gauge invariance requires the use of link variables,
U�;x ¼ exp ðieaA�;xÞ. A lattice form of the effective action

consistent with cubic symmetry, gauge invariance, and
Hermiticity appears as

S ¼ a3
X
~n; ~n0

Z
dx4�

y
~n ðx4ÞD ~n; ~n0�~n0 ðx4Þ; (15)

with

D ~n; ~n0 ¼ �~n; ~n0

�
� @2

@x24
þM2

�

� 1

a2
X3
j¼1

½�~nþĵ; ~n0Uj; ~n þ �~n; ~n0þĵU
y
j; ~n0 � 2�~n; ~n0 �:

(16)

In writing Eq. (16), we have made use of the vanishing of
the temporal component of the gauge field, and the time-
independence of the gauge field. In the absence of the
external field, Eq. (16) leads to a dispersion relation of
the form,

E2 ¼ M2 þ 4

a2
X3
j¼1

sin 2ðapj=2Þ: (17)

One can use the measured spatial momentum dependence
of scalar particle energies to establish the precise form of
the lattice dispersion relation in a given lattice calculation.
For our present purposes, we assume the dispersion rela-
tion to be given by Eq. (17), and the discrete action in
Eq. (16) is merely the corresponding gauged action.
Returning to the assumed form for the discretized

single-particle action in Eq. (16), we see that the gauge
links for the external field, Uj; ~n, introduce explicit lattice-

site dependence. As a result, the x2 component of lattice
momentum is not a good quantum number. This mirrors
the situation in the continuum. The remaining spatial
lattice momenta, p1 and p3, are good quantum numbers,
as is the time component of momentum, p4. It is thus
useful to take the Fourier transform; namely, in terms of
~p� ¼ ðp1; 0; p3; p4Þ, we have

~�n2ð~pÞ ¼
X
n1;n3

Z
dx4e

i~p�x��~nðx4Þ: (18)

In terms of the Fourier transformed field, the action now
appears as

S¼ X
n2;n

0
2

Z þ�
a

��
a

dp1dp3

ð2�Þ2
Z dp4

2�
~�y
n2ð~pÞDn2;n

0
2
ð~pÞ ~�n0

2
ð~pÞ: (19)
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Because we can consider correlation functions with two
vanishing components of spatial lattice momentum, p1 ¼
p3 ¼ 0, we restrict our attention to this sector, in which

Dn2;n
0
2
ðp4Þ ¼ Tn2;n

0
2
þ �n2;n

0
2
½p2

4 þM2 þ Vðn2Þ�; (20)

where the discretized kinetic term is

Tn2;n
0
2
¼ � 1

a2
½�n2;n

0
2
þ1 þ �n2þ1;n0

2
� 2�n2;n

0
2
�; (21)

and the potential term is

Vðn2Þ ¼ 4

a2
sin 2ðea2Bn2=2Þ: (22)

The eigenfunctions that diagonalize the operator T þ V are
solutions to the lattice Landau level problem. The lowest
level, for example, satisfies the coordinate-space eigenvalue
equation, ðT þ VÞc 0;n2 ¼ �0c 0;n2 . As a consequence, the

� contribution to the lattice two-point correlation function
in Eq. (14) has the simple exponential form,

GBð�Þ ¼ Z�e
�E0�; (23)

with the energy eigenvalue given by

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ �0

q
: (24)

Let us investigate the form of the eigenvalue equation
for the lattice Landau level problem more closely. In the
auxiliary proper-time quantum mechanics, the operator
T þ V appears as (twice) the Hamiltonian and can be
written in the abstract form,

T þ V ¼ 4

a2
½sin 2ðap̂2=2Þ þ sin 2ðeaBx̂2=2Þ�: (25)

In the continuum limit, we have (twice) the Hamiltonian of
the simple harmonic oscillator,

T0 þ V0 ¼ p̂2
2 þ e2B2x̂22; (26)

which respects the canonical transformation ðx̂2; p̂2Þ !
ð p̂2

jeBj ; jeBjx̂2Þ. The lattice Landau level problem, Eq. (25),

also respects this canonical transformation.
The dimensionless parameter governing the expansion

of the Hamiltonian in Eq. (25) about the continuum limit is
the magnetic field in lattice units, namely

b ¼ jea2Bj: (27)

As quantized magnetic fields on a lattice will satisfy
Eq. (1), we have b ¼ 6�jn�j=N2

L, where NL is the number
of spatial sites. Typically one needs at least four values of
the magnetic field strength to extract a polarizability with
confidence, so ðn�Þmax ¼ 4. The number of spatial sites
must be at least NL ¼ 32 to have pertubatively small fields
compared to hadronic scales with a typical lattice spacing

of a ¼ 0:1 fm. Thus in practice, we are limited to
b & 1=10, and an expansion in b is well justified.
When we are near the continuum limit, the wave func-

tion of the lowest Landau level, c ð0Þ
0 ðx2Þ in Eq. (11),

restricts the coordinate to values x2 & jeBj�1
2. Thus when

we series expand the potential V about the continuum limit,
V ¼ P1

j¼0 V2j, the jth term,

V2j / 1

a2
ðeaBx2Þ2jþ2 & bjV0; (28)

is suppressed by j powers of b. The kinetic operator T can
also be expanded near the continuum limit, T ¼ P1

j¼0 T2j.

In the lowest Landau level, the momentum p2 is also

restricted, p2 & jeBj12 on account of the canonical trans-
formation. Consequently, the jth term in the expansion,

T2j / 1

a2
ðap2Þ2jþ2 & bjT0; (29)

is also suppressed by j powers of b. Hence, we address the
leading-order effects of discretization by treating T2 þ V2

as a perturbation of the continuum result.
The explicit form of the expansion to second order is

T2 þ V2 ¼ � 1

12a2
½ðap̂2Þ4 þ b4ðx̂2=aÞ4�: (30)

The computation now amounts to basic Rayleigh-
Schrödinger perturbation theory. We compute the leading
correction to the energy eigenvalue, as well as the wave
function. Writing the eigenvalue of the lowest lattice
Landau level as

�0 ¼ �ð0Þ
0 þ �ð1Þ

0 þ � � � ; (31)

with a2�ð0Þ
0 ¼ b, we have at once

a2�ð1Þ
0 ¼ �b2

8
: (32)

Having deduced this correction, we can write down the
perturbative expansion in b of the the energy eigenvalue
E0 in Eq. (24). Given in lattice units, we find

a2E2
0 ¼ a2M2 þ b�

�
1

8
þ 


�
b2 þOðb3Þ; (33)

where the 
 term depends on the magnetic polarizability

M in the form


 ¼ aM

M

	a3
; (34)

with the fine-structure constant 	 ¼ e2

4� . Polarizabilities of

hadrons have values of natural size in units of 10�4 fm3,
although one expects smaller values for polarizabilities at
larger-than-physical pion masses. For a physical mass
pion, M ¼ m�, and a lattice spacing of a ¼ 0:1 fm, we
expect 
� 1. From this value, we see that the discretiza-
tion correction to the energy of the lowest Landau level
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will affect the extracted value of the polarizability by
�10–20% if ignored.7

To investigate the discretization corrections to the
ground-state wave function, we similarly write the
coordinate wave function as a perturbative expansion about
the continuum limit

c 0ðx2Þ ¼ c ð0Þ
0 ðx2Þ þ c ð1Þ

0 ðx2Þ þ � � � ; (35)

and we find

c ð1Þ
0 ðx2Þ ¼ b

16
ffiffiffi
6

p c ð0Þ
4 ðx2Þ: (36)

For magnetic field strengths of size b & 0:1, the correction

to the wave function c ð1Þ
0 ðx2Þ in Eq. (36) is quite small. We

can exhibit this by considering the difference in the
ground-state wave function relative to the continuum one,

�c 0ðx2Þ ¼ c 0ðx2Þ � c ð0Þ
0 ðx2Þ

c ð0Þ
0 ðx2Þ

: (37)

This relative difference is plotted in Fig. 1 for the value
b ¼ 0:1. In practice, magnetic fields of this size and
smaller are required to probe the magnetic polarizability
of the �. From the figure, we see that corrections to the
continuum wave function will be less than 1% for such
magnetic fields.

Notice that the relative correction actually grows as a
function of n2 because it is proportional to a Hermite

polynomial, namely H4ð
ffiffiffi
b

p
n2Þ. While this polynomial is

unbounded, large corrections only occur when the wave
function is exponentially small. For example, to get a 10%

discretization correction to the wave function in a field of
b ¼ 0:1, one must go out to a distance n2 � 9 from the
origin. But the ratio of the wave function at this point to its

value at the origin is c ð0Þ
0 ðan2Þ=c ð0Þ

0 ð0Þ � 10�2. Because a

determination of the correlation function itself to much
better than 1% is not likely, the resulting discretization
correction to the wave function can be safely neglected.

Said another way, plots of c ð0Þ
0 ðx2Þ and c ð0Þ

0 ðx2Þ þ c ð1Þ
0 ðx2Þ

for b ¼ 0:1 are indistinguishable, unless we zoom in on the
tails of the Gaussian.
In practice, one will need to verify the lattice form

of the dispersion relation for the particle of interest in order
to address the effects of discretization. While the form
of the dispersion relation need not be exactly that assumed
in Eq. (17), our power-counting arguments readily general-
ize to other forms. For small values of b, only the Oða2Þ
corrections to the proper-timeHamiltonianwill be required,

�H ¼ � 1

12a2
½C1ðap̂2Þ4 þ C2b

4ðx̂2=aÞ4�: (38)

This differs from Eq. (30) by the introduction of two
arbitrary coefficients, C1 and C2. The coefficient C1 can
be determined numerically by studying the deviation of the
dispersion relation from the continuum one,

E2 ¼ M2 þ ~p2 � a2C1

12

X3
j¼1

ðpjÞ4 þ � � � ; (39)

where we have made use of cubic invariance, and
eliminated the term proportional to ð ~p2Þ2 by making a field
redefinition. The coefficient C2 appearing in Eq. (38) is not
an independent parameter; it is fixed by gauge invariance.
The effective action describing a particlewith Eq. (39) as its

dispersion relation is gauged by the replacement p̂j !
p̂j þ eÂj. After projecting the good components of mo-

mentum, p1 and p3, to zero in such an effective action, we
arrive at Eq. (38) with C2 ¼ C1. Notice that additional
terms, such as ðp̂2Þ2ðx̂2Þ2, are forbidden by the combination
of cubic symmetry and gauge invariance. Thus to address
the effects of discretization on the lowest Landau level, we
perturb about the continuum with the interaction,

�H ¼ � C1

12a2
½ðap̂2Þ4 þ b4ðx̂2=aÞ4�: (40)

The results presented above employ the value C1 ¼ 1;
however, this coefficient should be determined nonpertur-
batively for the particular lattice QCD action employed
in actual calculations. For the pseudoscalar Goldstone me-
sons, one generally expects the breaking of rotational in-
variance in Eq. (39) to be quite small [24], while for baryons
this is not necessarily the case [25].

IV. FINITE VOLUME EFFECTS

Having established that discretization corrections can be
treated in a perturbative expansion about the continuum,

6 5 4 3 2 1 0 1 2 3 4 5 6
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0.000
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0.004

0.006

n2

0

FIG. 1 (color online). Discretization corrections to the coor-
dinate wave function of the lowest Landau level. Shown as a
function of n2 is the relative difference �c 0ðan2Þ defined in
Eq. (37). In lattice units, the magnetic field strength is taken to be
b ¼ 0:1. Values this size and smaller are required in practice.

7With respect to finite lattice spacing effects, we must also
remark that the electromagnetic current receives Oða2Þ correc-
tions. Such discretization corrections have nothing to do with
Landau levels and are thus present even for neutral hadron
correlation functions. Discretization corrections to the polariz-
ability due to the electromagnetic current are proportional to
ða�QCDÞ2, which, on a lattice with a ¼ 0:1 fm, is expected to be
& 4% for �QCD & 400 MeV.
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we now turn to finite volume effects. To study these effects,
we consider the theory defined on a continuous torus of
length L in each of the three spatial directions, with the
temporal extent kept infinite. In our analytic approach, we
do not consider a discrete torus, i.e., a finite lattice, because
the combination of both discretization and volume correc-
tions is a doubly small effect. This will be verified by our
numerical investigation in Sec. V. To determine the finite
volume modifications to the projection technique, we must
understand the behavior of charged particle two-point
functions under spatial translations by L.

On a torus, there is a discrete magnetic translation group,
see, e.g., Ref. [26], a few aspects of which are required to
address volume corrections. The gauge potential A� given

in Eq. (5) is periodic up to a gauge transformation,

A1ðxþ x̂2LÞ ¼ A1ðxÞ þ @1�ðxÞ; (41)

with all other directions strictly periodic. The gauge trans-
formation function appearing above is �ðxÞ ¼ �BLx1.
The corresponding gauge transformed matter field must
then satisfy the magnetic periodic boundary condition,

�ðxþ x̂2LÞ ¼ eieBLx1�ðxÞ; (42)

with the other directions periodic. The boundary condi-
tions in the x1 and x2 directions can only be consistent if
the magnetic flux through the x1, x2 plane is quantized. We
will label coordinates in this plane simply by ~x?. For
down-quark fields of fractional electron charge, the quan-
tization condition is given in Eq. (1); and, in turn, this gives
a magnetic flux quantum of N� ¼ 3n� for a scalar hadron
� having unit charge.

To generalize the projection technique to the torus, we
must isolate the lowest Landau level. The ground-state
wave function on a torus must be a sum of images of the
infinite volume wave function [26],

c FV
0 ð ~x?Þ ¼

X
�

c ð0Þ
0 ðx2 þ �LÞe�2�iN��x1=L; (43)

in order to maintain magnetic periodicity. Notice that this
particular finite volume wave function corresponds to a
state with zero momentum in the x1 direction. With a
lattice determination of the two-point function,8

GFV
B ð ~x?; �Þ ¼

Z L
2

�L
2

dx3h0j�ð ~x?; x3; �Þ�yð~0?; 0; 0Þj0iFVB ;

(44)

we then form the finite volume generalization of Eq. (10)

GFV
B ð�Þ ¼

Z L
2

�L
2

d~x?c �FV
0 ð ~x?ÞGFV

B ð ~x?; �Þ: (45)

Appealing to Schwinger’s proper-time trick, and a resolu-
tion of the identity in the infinte ~x? plane in terms of cells
of area L2 indexed by integers ð�1; �2Þ, we find the �
contribution to the correlator indeed has a simple form,

GFV
B ð�Þ ¼ Z�e

�E0�; (46)

with the energy, E0, the same as in infinite volume,
Eq. (13).9

Taking a pion interpolating field for �, the coordinate-
space correlator in Eq. (44) remains positive definite in an
external magnetic field. In projecting out the ground state
with the wave function in Eq. (43), we thus restrict our
attention to the real part of GFV

B ð�Þ, which depends on the
real part of c FV

0 ð ~x?Þ. Consider the change in the finite

volume wave function relative to the infinite volume one,

�c FV
0 ð ~x?Þ ¼ Re½c FV

0 ð ~x?Þ� � c ð0Þ
0 ðx2Þ

c ð0Þ
0 ðx2Þ

: (47)

This relative change takes the form

�c FV
0 ð ~x?Þ ¼ 2

X1
�¼1

e��2�N� cos ð2�N��x1=LÞ

� cosh ð2�N��x2=LÞ: (48)

Physically we expect volume corrections to be largest in
the smallest magnetic field. The smallest magnetic field
allowed on the torus has the flux quantum N� ¼ 3. A plot
of the relative change in the wave-function �c FV

0 ð ~x?Þ is
shown in Fig. 2 for a magnetic field with flux quantum
N� ¼ 3 on a lattice of size L ¼ 24a. The relative change
shown in the figure overwhelmingly arises from the wind-
ing number � ¼ 1. Contributions from � ¼ 2, for example,
are suppressed by at least e�6�, as we show below. Not
surprisingly, the largest finite volume corrections arise at
the x2 boundary of the lattice.
Let us carefully analyze the relative change �c FV

0 ð ~x?Þ
by considering the contribution from a generic winding
number � in the series. The x1 dependence of this contri-
bution enters through the cosine, cos ð2�N��x1=LÞ, and so

8We consider the lattice to extend from � L
2 to

L
2 in each of the

spatial directions. This is an inessential choice and serves to
simplify the discussion of finite volume corrections in the wind-
ing number expansion. For a lattice that extends from 0 to L in
each of the spatial directions, the relative change in the ground-
state wave function is exactly the same as in Eq. (48). As x2 now
extends to L in this case, there is a very large finite volume
correction from the � ¼ �1 image. This is essentially the peak
of the ground-state wave function located at the origin because,
due to magnetic periodicity, the origin, x2 ¼ 0, is equivalent to
x2 ¼ L up to an x1-dependent phase. As such a setup is conve-
nient for lattice calculations, we will adopt the asymmetric
formulation in our numerical investigation below.

9It should be noted that there are also dynamical finite volume
corrections which affect the extraction of M2 that we are
neglecting. These corrections are suppressed by exp ð�m�LÞ;
but, their treatment is subtle due to the holonomy of the external
field [27,28]. Dirichlet boundary conditions can be employed to
remove such effects [29]; however, the cost is the introduction of
different finite-size effects.
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is always bounded by unity. The �th term in the series
depends exponentially on the magnitude of x2 through the
hyperbolic cosine. Because the x2 coordinate is bounded,
jx2j 	 L

2 ; however, we have cosh ð2�N��x2=LÞ 	 1
2 e

��N�

to exponential accuracy. Thus the contribution to the finite
volume effect from a generic winding number � is bounded

by e��ð��1Þ�N� , i.e., finite volume effects are suppressed by
an exponential factor involving the magnetic flux quantum.
This suppression occurs provided the winding number is
greater than one. When � ¼ 1, there is no exponential
suppression in the relative change when x2 approaches
the boundary of the lattice.

At the x2 boundary of the lattice, we have

�c FV
0 ðx1 ¼ 0; x2 ¼ 
L=2Þ ¼ 1; (49)

to exponential accuracy, which is independent of the flux
quantum N�. While this corresponds to the maximal value
for the relative change, we should also consider the size of
the ground-state wave function at the x2 boundary, because
this is where the wave function is the smallest. The ratio of
the infinite volume wave function at the boundary to its
value at the origin is given by

c ð0Þ
0 ðx2 ¼ 
L=2Þ=c ð0Þ

0 ð0Þ ¼ e��
4N� ; (50)

which is remarkably independent of the lattice size L.
Unlike discretization corrections to the wave function,
finite volume corrections are generally non-negligible.
For example, in the smallest magnetic field, N� ¼ 3, the
boundary-to-origin ratio�0:1 is not considerably less than
unity and one must consider the �100% correction to the
infinite volume wave function from the � ¼ 1 image.

The independence of this result on the lattice size L brings
us to our final point. There is a subtlety in taking the infinite
volume limit. The finite volume correction in Eq. (48) does
not vanish in the limit L ! 1. This is due to the magnetic

field quantization condition. As L is made larger, the mag-
netic fields allowed on the torus becomes smaller. When the
magnetic field becomes smaller, however, the ground-state
wave function spreads out in space. In this way, increasing
the volume need not result in smaller finite volume effects.
The tacit assumption in this approach to infinite volume is
that the flux quantum N� remains fixed as L ! 1. This is
likely to be the case in practice, as one will generate larger
lattices and then focus on the smallest allowed values of the
magnetic field on these lattices. To recover the infinite
volume limit, however, the magnetic field should be fixed10

as L ! 1, which in turn requires N� / L2. While there are
still �100% finite volume corrections to the wave function
from Eq. (48), these occur at the x2 boundary, which is now
precisely where the wave function is exponentially sup-

pressed in the volume, / e�1
8jeBjL2

. With such corrections
buried in the tails of the Gaussian wave function, the infinite
volume limit is recovered.

V. NUMERICAL TEST

To demonstrate the proposed method, we provide a
numerical test using the lattice action for a scalar particle
coupled to an external magnetic field. Unlike our approx-
imations above, the theory is rendered on a finite, four-
dimensional Euclidean lattice with sites x� ¼ an�, using

the notation n� ¼ ðn1; n2; n3; n4Þ to label a four-vector of

integers. In this way, effects of both the discretization and
finite volume are included simultaneously, and the analytic
approach we detail above can be tested in a controlled
setting. The scalar particle action has the form,

S ¼ a4
XNL�1

~n; ~n0¼0

XNT�1

n4;n
0
4
¼0

�y
nDn;n0�n0 ; (51)

with the length of the time direction given by T ¼ aNT ,
and the length of each of the three spatial directions given
by L ¼ aNL. In our numerical investigation, we shall use a
lattice havingN3

L � NT ¼ 323 � 64 sites. We keep explicit
powers of the lattice spacing only to employ consistent
notation. In the actual computation of correlation func-
tions, lattice units are naturally employed. The action is
specified by the matrix Dn;n0 , which has the form

Dn;n0 ¼ � 1

a2
X4
�¼1

�
�nþ�̂;n0U�;n þ �n;n0þ�̂U

y
�;n0

� 1

4
ð8þ a2M2Þ�n;n0

�
: (52)

L

2 a
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FIG. 2 (color online). Finite volume corrections to the
coordinate wave function of the lowest Landau level. The plot
shows the relative difference �c FV

0 ðx1 ¼ 0; x2 ¼ an2Þ defined
in Eq. (48) as a function of n2. We choose the minimal flux
quantum, N� ¼ 3, and a relatively small lattice size, L ¼ 24a,
for which the corresponding value of the magnetic field is
b ¼ 0:033. Finite volume corrections for x1 � 0 are bounded
in absolute value by those shown in the plot.

10Actually one need not be this restrictive to recover the infinite
volume limit. As long as the flux quantum scales with some
positive power p of the lattice size, the infinite volume limit will
be recovered. The finite volume correction to the wave function
remains �100% at the x2 boundary, but the size of the wave
function at the x2 boundary is / exp ð� �

4 N�Þ which will be
exponentially small in the volume for N� / Lp.
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The gauge links, U�;n, are lattice site-dependent phases

specified by

U�;n ¼ exp ð�ibn2��;1Þ exp ðþibn1NL��;2�n2;NL�1Þ;
(53)

with b subject to the quantization condition in Eq. (1).
Written in lattice units, we have b ¼ 6�

N2
L

n�. The additional

factor of three appearing in the quantization condition
reflects that, even though we choose the scalar to have
unit charge, we imagine it composed from quarks having
fractional electric charges. In the continuum and infinite
volume limits, the links generate a uniform magnetic field.
The parameter M appearing in the action is that in
Eq. (7);11 however, we fix the value of the polarizability
to the expected size, namely,

a2M2 ¼ a2M2 � b2; (54)

with the definition 
 � 1. The scalar particle is thus point-
like with a nonminimal coupling to the external field which
is its magnetic polarizability.

Using the action specified by Eq. (52), we can numeri-
cally compute various two-point correlation functions of
the scalar particle. The two-point functions that we calcu-
late can be written in a generic form,

Gð	Þ
B ð�Þ ¼ XNL�1

~n¼0

gð	ÞB ðn1; n2Þh0j�~n;�a
�y

~0;0
j0i; (55)

with gð	ÞB as functions that possibly depend on the lattice
sites. We consider three such functions. The first corre-
sponds to the zero momentum projection,

gð1ÞB ¼ 1; (56)

as in Eq. (8). The second corresponds to a naı̈ve projection
of the lowest Landau level and is specified by

gð2ÞB ðn2Þ ¼ c ð0Þ
0 ðan2Þ þ c ð0Þ

0 ðan2 � LÞ: (57)

Here we employ the continuum wave function for the
lowest Landau level, as in Eq. (14). Because the scalar
source is not located symmetrically in the middle of the
lattice, we include the naı̈ve image. Given the properties of
the magnetic translation group, however, the correct image
from Eq. (43) requires the phase factor, exp ð�ibNLn1Þ,
which reflects the holonomy of the gauge field. By omitting

this phase factor, the function gð2ÞB only depends on n2,
rather than on both n1 and n2. Finally, we choose a third
function, which corresponds to our best guess based on our
analytic study. This function depends on both n1 and n2 in
the form

gð3ÞB ðn1; n2Þ ¼ c ð0Þ
0 ðan2Þ þ e�ibNLn1c ð0Þ

0 ðan2 � LÞ
þ eibNLn1c ð0Þ

0 ðan2 þ LÞ
þ e�2ibNLn1c ð0Þ

0 ðan2 � 2LÞ: (58)

Weighting the two-point correlator with this function
corresponds to projection of the lowest Landau level
using the continuum wave function and the first non
trivial images including the proper phases. We argued
above that additional magnetic-periodic images are expo-
nentially suppressed and that the leading discretization
correction to the wave function should similarly be small.

For these reasons, we deem gð3ÞB to be our best guess. We
could obviously improve the projection should the data
require it.
We numerically computed the three correlation func-

tions, Gð	Þ
B ð�Þ for 	 ¼ 1–3, for the lowest four magnetic

flux quanta, n� ¼ 1–4. From the correlators, we determine
the effective energy from the ratio of their values on
neighboring time slices. Specifically we take into account
periodicity in time by solving the equation,

Re½Gð	Þ
B ð�þ aÞ�

Re½Gð	Þ
B ð�Þ� ¼ cosh ½Eð	Þ

eff ðT2 � ð�þ aÞÞ�
cosh ½Eð	Þ

eff ðT2 � �Þ� ; (59)

for Eð	Þ
eff as a function of �. In Fig. 3, we plot the resulting

effective energies for two choices of the mass parameter.
We consider a light scalar of mass aM ¼ 0:2 and a heavy
scalar of mass aM ¼ 0:6. If we imagine the lattice spacing
to be a ¼ 0:1 fm, then the light scalar corresponds to a
particle with mass �400 MeV, while the heavy scalar
corresponds to a particle with mass �1:2 GeV. Thus the
case of the light scalar we imagine to be relevant for a
heavier-than-physical charged pion, while that of the heavy
scalar is more relevant for the proton, minus the spin
degrees of freedom of course.
The figure exhibits trends discussed above. Despite de-

scribing only a single hadron, the zero-momentum corre-

lator,Gð1Þ
B ð�Þ, requires long times to exhibit a plateau in the

effective energy. In a magnetic field, the zero-momentum
state of the � is a superposition of Landau levels, each
having a different energy. The figure shows that a plateau is
reached faster in Euclidean time for the light scalar particle
compared to the heavy scalar. Additionally for a fixed
mass, a plateau is reached earlier in stronger magnetic
fields. Both of these features are easily explained in terms
of the spacing between Landau levels. The splitting be-
tween adjacent Landau levels is given by a�E ¼ b=ðaMÞ.
Thus the larger the mass (or the smaller the magnetic field),
the more challenging the spectroscopy. In a lattice QCD
calculation, excited-state hadrons will also contribute to
the two-point function. For the nucleon, the signal-to-noise
problem will restrict one to fitting correlator data at early
times. From the plots for the heavy scalar particle, restrict-
ing the zero-momentum correlator to times �=a < 16 will

11Alternatively we could include the polarizability using the
discretized form of the s-wave and d-wave couplings in Eq. (3).
This approach leads to additional terms of order b4 that are
negligible in our study.
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FIG. 3 (color online). Effective energy plots for a light scalar particle (left panels) and a heavy scalar particle (right panels). Shown
are the effective energies as a function of time � for the lowest four accessible magnetic flux quanta, n� ¼ 1–4. The squares, circles,

and diamonds show the effective energy determined from the correlators Gð1Þ
B , Gð2Þ

B , and Gð3Þ
B , respectively. Because of temporal

periodicity, we only show results up to time � ¼ ðT � aÞ=2.
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not allow one to determine the energy to better than several
percent in the smallest two magnetic fields. As the effect
from the magnetic polarizability is itself at most a few
percent effect, the zero-momentum projection will not be
practicable to extract the polarizability. For the pion, one is
not restricted by statistical noise, and data at larger time
separations can be utilized. From the plots for the light
scalar particle, extracting the energy at the percent level or
better from the long-time behavior of the correlator should
not pose any problem. We should note, however, that the
energy shift due to the magnetic field is already at the 20%
level for the smallest magnetic field. Even though the
Landau levels do not look problematic for the light scalar,
one may not be in the regime of sufficiently small magnetic
fields. On a larger lattice, of size 483 � 96, for example,
one will have access to smaller magnetic fields, but then
the Landau level spacing for the light scalar will be com-
parable to that of the heavy scalar on 323 � 64 lattices.

The Landau levels of charged particles present a system-
atic effect that can be completely removed by the projec-
tion method. To this end, we consider the naı̈ve projection

used to form the Gð2Þ
B ð�Þ correlation function. Figure 3

shows that the naı̈ve projection does not offer much
improvement over using the zero-momentum correlator.
While naı̈ve projection would work in the infinite volume
and continuum limits, the effective energy exhibits non-
trivial � dependence, which is indicative of contributions
from multiple energy eigenstates rather than the lowest
lattice Landau level. The effective energies do not decrease
monotonically, moreover, which suggests a mismatch of
phase factors in the spectral decomposition of the two-
point function. Fortunately this situation can be remedied.
Using the analytic observations from above, we know how
to improve the projection technique and accordingly form

the best-guess correlator, Gð3Þ
B ð�Þ. From the plots of the

effective energy resulting from the best-guest correlator,
we see that it is precisely what is needed to remove the
systematic effect due to Landau levels. The effective
energies exhibit a plateau immediately in Euclidean time.
In fact, the time variation of the effective energies shown is
at most a few parts in 10�4, and is an order of magnitude
greater than the precision of lattice data required to extract
the polarizability (see Table I). The value of the effective
energy extracted from the best-guess correlator lines up
with the analytic expectation,

4sinh 2ðaE=2Þ ¼ ðaMÞ2 þ b�
�
1

8
þ 1

�
b2; (60)

where we have taken into account the temporal discretiza-
tion. This analytic value, moreover, matches with the
numerical determination of the lowest eigenvalue of the
action, which should be considered the exact solution to
the lattice Landau level problem. With the lowest lattice
Landau level confidently isolated, one can fit lattice data at
earlier times with the only excited-state contamination

arising from exited-state hadrons, just as in the absence
of magnetic fields.

VI. SUMMARY

Above we explore the correlation functions of charged
spinless hadrons in external magnetic fields. For magnetic
fields that are small compared to the hadron’s mass,
jeBj=M2 � 1, the hadron’s magnetic properties can, in
principle, be measured from lattice QCD simulations.
Such computations, in practice, require modification of
standard lattice spectroscopic techniques. This modifica-
tion is necessitated by closely spaced Landau levels that
cannot be cleanly resolved from the long-time limit of
Euclidean correlation functions. To handle this complica-
tion, we develop a projection technique to isolate the
lowest Landau level. The technique requires a modified
two-point correlation function, Eq. (10), that depends on
the coordinate-space wave function of the lowest Landau
level. To put the technique into practice, one needs to write
out the coordinate-time dependence of the correlator data.
This procedure allows one to later convolve the lattice data
with the ground-state wave function, as one may wish to
use a continuum wave function or include effects from
discretization and the finite volume.
We investigate the effects of discretization on the lowest

Landau level by assuming a form for the discrete action of
charged scalar field. For typical lattice sizes, the effects of
discretization can be treated in perturbation theory about
the continuum limit. The perturbative corrections to the

TABLE I. Effective energies extracted from the best-guess
correlator compared to the exact results. For the best-guess
effective energy, we choose the worst possible value, namely,
that calculated from the first two time slices. The exact value
quoted is the numerically determined smallest eigenvalue and, in
each case, agrees to five significant digits with the analytic value
obtained from Eq. (60). The relative difference � is defined by

� ¼ jEð3Þ
eff � Eexactj=Eexact. The zero-field values are included for

reference. Tabulated values for 1
2bðaMÞ�2 give the relative shift

in energy due to the zero-point Landau energy, while values of
1
2b

2ðaMÞ�2 give the relative shift in energy due to the value

chosen for the polarizability, cf. Eq. (60).

aM n�
1
2bðaMÞ�2 1

2b
2ðaMÞ�2½10�4� aEð3Þ

eff Eexact �½10�4�
0.2 0 0 0 0.19967 0.19967 <0:1

0.2 1 0.23 42 0.24028 0.24031 1.2

0.2 2 0.46 170 0.27347 0.27354 2.6

0.2 3 0.69 380 0.30171 0.30183 3.9

0.2 4 0.92 680 0.32630 0.32647 5.1

0.6 0 0 0 0.59135 0.59135 <0:1

0.6 1 0.026 4.7 0.60552 0.60554 0.4

0.6 2 0.051 19 0.61873 0.61880 1.2

0.6 3 0.077 42 0.63105 0.63118 2.1

0.6 4 0.10 75 0.64254 0.64274 3.1
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eigenvalue and wave function of the lowest Landau level
are given in Eqs. (32) and (36), respectively. The discreti-
zation correction to the energy could affect the extraction of
the polarizability at the �10–20% level. On the other hand,
the discretization corrections to the wave function of the
lowest Landau level are shown to be negligible. Effects of
boundary conditions are also considered. The wave function
for the lowest Landau level on a torus, Eq. (43), is used to
account for finite volume effects. While the size of finite
volume corrections is generally set by an exponentially
small factor involving the magnetic flux quantum and the
winding number �, there is no exponential suppression
from contributions with � ¼ 1. We show that such finite
volume corrections near the lattice boundary can be im-
portant even as the lattice volume increases. This pernicious
effect owes to the magnetic flux quantization required on a
torus. Caution must be exercised in assessing the size of
finite volume corrections to the wave function even on large
lattices. Nonetheless, we show how to determine the dis-
cretization and volume corrections to the projection tech-
nique and thereby how to isolate the lowest Landau level
from lattice correlation function data.

To test the approach, we implement the method for a
pointlike scalar particle coupled to a magnetic field. We
compare the case of a light scalar in a magnetic field to that
of a heavy scalar on a lattice of size 323 � 64. As expected,
the heavy scalar is more susceptible to a pileup of Landau
levels, and the zero-momentum correlator cannot be used
to determine the ground-state energy to better than several
percent in the smallest magnetic fields. Because the ex-
traction of the polarizability requires at least percent-level
accuracy, the Landau levels must be treated directly. The
projection technique is shown to isolate the lowest lattice
Landau level efficiently when the first nontrivial magnetic
periodic images are included. Results of our numerical
investigation line up precisely with the expectations from
our analytic study. While the correlation functions for the
light scalar particle do not suffer a severe problem from the
Landau levels, the strength of the magnetic field is not
necessarily perturbatively small in this case. Nonetheless,
the systematic effect from Landau levels can be eliminated
with the projection technique, and allows one to utilize
correlator data at earlier times.

Further work will allow one to extend the technique.
Inclusion of spin degrees of freedom is necessary to handle
proton correlation functions. As the typical magnetic field
strengths are semirelativistic, one must account for the fact
that the current and anomalous magnetic moment operators
in the effective proton Hamiltonian do not commute.
A method to treat Landau levels and Zeeman splittings in
a relativistic context should be sought. Another avenue for
investigation is to consider the effects of discretization in
external electric fields. The functional form of single-
particle correlation functions employed by Refs. [16,17]
is modified by these effects. Fortunately these studies
employed anisotropic lattices with a temporal lattice
spacing of at ¼ 0:035 fm. On isotropic lattices, however,
discretization effects might be important. One can use the
methods established here to investigate the finite lattice
spacing corrections to the extraction of the electric prop-
erties of hadrons using background field correlators.
Finally, although this work deals with weak magnetic
fields, there has been considerable interest in studying
lattice QCD in strong magnetic fields due to applications
relevant for heavy-ion collisions; see, for example,
Refs. [30–37]. As stronger magnetic fields are more sus-
ceptible to discretization effects, one could use the meth-
ods developed here to investigate finite lattice spacing
corrections in chiral perturbation theory with strong-field
power counting, jeBj �m2

�, or in perturbative QCD.
Sustained progress in lattice QCD has led, in particular,

to the generation of gauge ensembles on large physical
volumes. Such volumes will soon permit the study of QCD
properties in uniform magnetic fields that are perturba-
tively weak compared to hadronic scales. This opens up
the possibility to study the magnetic properties of hadrons
using the external field method. With the projection tech-
nique developed here, charged hadrons can be studied by
confronting the Landau levels directly. We look forward to
exploratory lattice studies employing the technique.
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