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Excited state spectra are calculated using lattice QCD for baryons that can be formed from u, d and s

quarks, namely the N, �, �, �, � and � families of baryons. Baryonic operators are constructed from

continuum operators that transform as irreducible representations of SUð3ÞF symmetry for flavor, SUð4Þ
symmetry for Dirac spins of quarks and Oð3Þ symmetry for orbital angular momenta. Covariant

derivatives are used to realize orbital angular momenta. Using the operators, we calculate matrices of

correlation functions in order to extract excited states. The resulting lattice spectra have bands of baryonic

states with well-defined total spins up to J ¼ 7
2 . Each state can be assigned a dominant flavor symmetry

and the counting of states of each flavor and spin reflects SUð6Þ �Oð3Þ symmetry for the lowest negative-

parity and positive-parity bands. States with strong hybrid content are identified through the dominance of

chromomagnetic operators.
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I. INTRODUCTION

The spectra of baryon resonances have been a focus of
study experimentally and theoretically, both for particles
composed of the light u and d quarks, and those containing
one or more of the heavy c and b quarks. There is increas-
ing activity aimed at understanding the spectra of particles
containing one or more s quarks, so-called hyperon phys-
ics, e.g., Ref. [1]. At present the knowledge of the� and�
families is particularly limited with only a few states
experimentally established, and scant knowledge as to their
properties [2].

A quantitative description of the spectra of baryons that
can be constructed from the u, d and s quarks is important
for a number of reasons: firstly, to explore how the effective
degrees of freedom that describe the hadron spectra change
as the masses of the quarks are changed; secondly, to
advance our understanding of QCD in regimes where the
hyperons play a crucial role, such as in the physics of the
early Universe and core collapse in supernovae; and finally,
to address the long-term goal of extracting baryon spectra
from lattice QCD.

In this paper, we present lattice QCD calculations of the
excited state spectra of baryons that can be constructed
from u, d and s quarks: the N, �, �, �, � and � families
of baryons. Our calculations exploit a menu of methods
that we have developed and are key to our studies
of excited state spectra: the use of an anisotropic, clover

action for the generation of gauge configurations [3,4], the
construction of operators that respect the symmetries of the
lattice yet which retain a memory of their continuum
analogues [5], the use of ‘‘distillation’’ [6] to efficiently
compute the correlation functions between those operators,
and finally the application of the variational method [7,8],
exploiting the eigenvectors of matrices of correlation func-
tions to determine the spins and flavors of the extracted
energies. In two earlier works, Refs. [5,9], we applied these
methods to compute the nucleon and � spectra, with the
spins of the states identified clearly; these works revealed
spectra at least as rich as the quark model, with suggestions
of ‘‘hybrid’’ states in which the gluons played an important
structural role. Here we expand upon these works by con-
sidering baryons containing not only the light u and d
quarks, but also one or more s quarks.
The layout of the remainder of the paper is as follows.

In the next section, we describe details of the lattices used,
and outline the construction of the lattice interpolating
operators. In Sec. II B, we recall our procedure for analyz-
ing the hadron correlation functions, and for identifying the
continuum spins of the states. Our results are presented in
Sec. III and a summary of the work is presented in Sec. IV.

II. COMPUTATIONAL METHODS AND DETAILS

A significant challenge in determining the excited state
spectra is to obtain a sufficient number of energy levels in
order to extract their patterns of energies, spins and flavors
before statistical noise overcomes the signal. This requires
accurately resolving the behavior of hadron correlation
functions at short temporal separations. A computationally
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efficient calculation is obtained through the use of an
anisotropic action, with a finer temporal lattice spacing
than that used in the spatial directions, enabling correlation
functions to be resolved over several time slices while
preserving a sufficient spatial volume. The lattice action
used in this work, as well as the method used to tune the
parameters of the action, can be found in Refs. [3,4]. To
summarize, we use improved gauge and fermion actions
with two mass-degenerate light quarks of mass ml and a
strange quark of mass ms. We employ 163 � 128 lattices
having spatial lattice spacing as � 0:123 fm, and a renor-
malized anisotropy, the ratio of the spatial and temporal
lattice spacings, of � � 3:5. The calculation is performed
at three values of the light-quark masses, corresponding to
pion masses of 391, 524 and 702 MeV. The 702 MeV pion
mass corresponds to the SUð3ÞF flavor-symmetric point.
Some details of the lattices are summarized in Table I. The
mass of the � is used to set the scale. It was determined
within an estimated uncertainty of 2% in Ref. [10] on the
same ensembles.

A. Baryon interpolating operators

The construction of the baryon interpolating operators is
described in Ref. [5]. Our starting point is to construct a set
of continuum baryon interpolating operators, which we
express symbolically as

O JP � ðF�F
� ðSPsÞn�S

�D½d�
L;�D

ÞJP ; (1)

where the factors F, S andD describe the flavor, Dirac spin
and derivative structure of the operators, respectively, and
the subscripts, �i, denote the corresponding symmetry
representations with respect to permutations. The Dirac
spin factor, ðSPSÞn�S

, represents the combination of three

Dirac-spinor quark fields with overall angular momentum
S and parity PS, with permutational symmetry �S, while n

labels different constructions. The spatial factor, D½d�
L;�D

, is

expressed in terms of gauge-covariant derivatives acting
on the three quark fields, where ½d� denotes the number of
derivatives, �D is the permutation symmetry, and the de-
rivatives are combined so as to transform as angular mo-
mentum L. Finally, the factors are combined to yield an
interpolator of definite spin and parity, which we label JP.

The construction of operators is guided by symmetry
considerations. Based upon four-component Dirac-spinor

quark fields combined with SUð3Þ flavor plus angular
momentum, the symmetry of the full set of operators is
SUð12Þ �Oð3Þ. An important subset of operators is based
on nonrelativistic quark spins, by which we mean operators
based on the upper two components of Dirac-spinor quark
fields. In this study, we realize angular momenta by
including up to two covariant derivatives, d ¼ 0, 1, 2,
with maximum accessible values of orbital angular
momentum, L, of 0, 1, and 2, respectively. Tables II and
III show the patterns of quantum numbers of operators
based on nonrelativistic spins. Not listed are operator con-
structions based on the lower components of Dirac spinors
(relativistic quark spins), although they outnumber the
nonrelativistic operators in the set used.
Three nonrelativistic quark spins are mixed-symmetric

for S ¼ 1
2 and symmetric for S ¼ 3

2 . Orbital angular

momenta are mixed-symmetric for L ¼ 1 and symmetric,
mixed-symmetric or antisymmetric for L ¼ 2. The combi-
nation of flavor, spin, and space symmetries must be
symmetric to yield an operator that is antisymmetric
when color is included, in accord with the Pauli principle.
We list in the tables the spin-parity, JP, of the distinct
combinations that are allowed. The classification of opera-
tors according to SUð3ÞF flavor symmetry will be exploited
as a means of identifying the dominant flavor structure of
the states in the extracted spectrum.
The operators constructed from nonrelativistic quark

spinors have the spin, parity and flavor quantum numbers
allowed by SUð6Þ �Oð3Þ symmetry. These quantum num-
bers occur in definite patterns that are indicated by the bold
numbers in Tables II and III; i.e., there areN1ðJÞ,N8ðJÞ and
N10ðJÞ operators for SUð3ÞF singlet, octet and decuplet
symmetries, respectively, with total angular momentum
J. If the states in the spectra were to correspond to broken
SUð6Þ �Oð3Þ symmetry, then there would be patterns
with the same numbers of states and the same quantum

TABLE I. Parameters of the 163 � 128 lattices and propaga-
tors used in this work. The pion mass in MeVand the number of
configurations are listed, as well as the number of time sources
and the number of distillation vectors Nvecs.

atm‘ atms m� mK=m� atm� Ncfgs Ntsrcs Nvecs

�0:0743 �0:0743 702 1.00 0.3593(7) 500 7 56

�0:0808 �0:0743 524 1.15 0.3200(7) 500 7 56

�0:0840 �0:0743 391 1.39 0.2951(22) 479 8 56

TABLE II. Allowed spin-parity patterns for one-derivative
operators based on nonrelativistic quark spinors [SUð6Þ �Oð3Þ
symmetry]. For each flavor, the quark spin S and orbital angular
momentum L are listed followed by the allowed JP values. The
total number of operators is listed as N8 for flavor octets, N10 for
flavor decuplets and N1 for flavor singlets.

SUð3ÞF S L JP

8F
1
2 1 1

2

� 3
2

�

3
2 1 1

2

� 3
2

� 5
2

�

N8ðJÞ 2 2 1

10F
1
2 1 1

2

� 3
2

�

N10ðJÞ 1 1 0

1F
1
2 1 1

2

� 3
2

�

N1ðJÞ 1 1 0
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numbers.Wewill compare our spectrawith theSUð6Þ�Oð3Þ
patterns given in Tables II and III.

For d ¼ 2, the mixed-symmetry combination D½2�
L¼1;M

corresponds to the commutator of two covariant deriva-
tives, producing a chromomagnetic field, as explained in
Ref. [9]. We call these hybrid operators because of their
essential gluonic content. The hybrid operators based on
nonrelativistic quark spinors are listed in Table IV. The
patterns of states expected to be created by such hybrid
operators correspond to the numbers M1ðJÞ, M8ðJÞ and
M10ðJÞ.

The final step in the construction of the interpolating
operators is the subduction to the irreducible representa-
tions (irreps) of the cubic group. See Ref. [5] for details.
The number of operators used in each lattice irrep is the
same for both positive and negative parities, which are
denoted by the subscripts g and u, respectively, and the
operators are classified according to the flavor irreps of
SUð3ÞF, as shown in Table V.

In order to reduce the complexity of the analysis,
some relativistic operators are omitted. We include all

nonrelativistic operators based on the upper-component
Dirac spinors. For example, for �, 68 operators in irrep
H are used, with 37 having flavor octet symmetry and 31
having flavor-decuplet symmetry. This set omits 22 rela-
tivistic operators but is sufficient to determine the spec-
trum. Because we omit some relativistic operators, and we
include the ‘‘hybrid’’ operators introduced in Ref. [9], the
number of operators differs from Ref. [5].
The spectra for the baryons made from u and d quarks,

i.e.,N and�, have been explored in earlier works using the
same ensembles and operator constructions we will
employ here, firstly in a calculation of the spectra for
both parities but with the ‘‘hybrid’’ operators excluded

TABLE IV. Allowed spin-parity patterns for hybrid two-
derivative operators based on nonrelativistic quark spinors, fol-
lowing Ref. [9]. The operators correspond to the combination of
three quarks in a color octet with a gluonic field, G, to make a
color singlet as ½ðqqqÞ8cG8c �1c . The gluon field has spin-parity

1þ. The patterns of states expected to be created through the
coupling of a chromomagnetic gluon field coupled to quark
fields in a color octet correspond to the numbers M8 for flavor
octets, M10 for flavor decuplets and M1 for flavor singlets. The
counting of operators is the same as in Table II but the operators
have reversed parity.

SUð3ÞF S L JP

8F
1
2 1 1

2

þ 3
2

þ

3
2 1 1

2

þ 3
2

þ 5
2

þ

M8ðJÞ 2 2 1

10F
1
2 1 1

2

þ 3
2

þ

M10ðJÞ 1 1 0

1F
1
2 1 1

2

þ 3
2

þ

M1ðJÞ 1 1 0

TABLE V. For each SUð3ÞF symmetry, isospin I and strange-
ness S, the numbers of operators are shown in the last three
columns for each lattice irrep G1, H and G2. The constructions
use operators with up to two derivatives. The same numbers of
operators are used for both positive and negative parities.

SUð3ÞF I S G1 H G2

N 8F
1
2 0 22 37 15

� 10F
3
2 0 19 31 12

� 1F 0 0 17 27 10

� 8F 0 0 22 37 15

� 8F 1 �1 22 37 15

� 10F 1 �1 19 31 12

� 8F
1
2 �2 22 37 15

� 10F
1
2 �2 19 31 12

� 10F 0 �3 19 31 12

TABLE III. Allowed spin-parity patterns for two-derivative
operators based on nonrelativistic quark spinors [SUð6Þ �Oð3Þ
symmetry]. For 8F, two distinct operators with different internal
symmetries are allowed for L ¼ 0 combined with S ¼ 1

2 and

for L ¼ 2 combined with S ¼ 1
2 . Hybrid operators are listed

separately in Table IV. The total number of operators for each
spin is listed as N8 for flavor octets, N10 for flavor decuplets and
N1 for flavor singlets.

SUð3ÞF S L JP

8F
1
2 0 1

2

þ

1
2 0 1

2

þ

1
2 1 1

2

þ 3
2

þ

1
2 2 3

2

þ 5
2

þ

1
2 2 3

2

þ 5
2

þ

3
2 0 3

2

þ

3
2 2 1

2

þ 3
2

þ 5
2

þ 7
2

þ

N8ðJÞ 4 5 3 1

10F
1
2 0 1

2

þ

1
2 2 3

2

þ 5
2

þ

3
2 0 3

2

þ

3
2 2 1

2

þ 3
2

þ 5
2

þ 7
2

þ

N10ðJÞ 2 3 2 1

1F
1
2 0 1

2

þ

1
2 2 3

2

þ 5
2

þ

3
2 1 1

2

þ 3
2

þ 5
2

þ

N1ðJÞ 2 2 2 0
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from the basis [5], and then of the positive-parity spectra
using all operators, including the ‘‘hybrid’’ operators [9].
In this work we consider excited states of both parities for
baryons that can be formed from u, d and s quarks.

B. Correlator analysis

The variational method we use in our analysis involves
the computation of a matrix of correlation functions,

C�
ijðt � tf � tiÞ ¼ h0 j OiðtfÞOy

j ðtiÞ j 0i; (2)

for operators i and j that lie in a given cubic irrep, �. With
the large operator basis introduced above, it is essential
to have an efficient computational method for computing
the baryon correlation functions. We use distillation [6],

which provides a smearing function while enabling the
full matrix of correlators to be constructed for all the
operators at both source and sink. Following our earlier
work using these lattices, we employ N ¼ 56 eigenvectors
of the gauge-covariant Laplacian when constructing the
distillation operator, and compute correlation functions
from Ntsrcs time sources, as listed in Table I.

Our fitting strategy follows exactly that outlined
in Refs. [5,9]. In summary, we solve the generalized
eigenvalue equation,

CðtÞvnðt; t0Þ ¼ �nðt; t0ÞCðt0Þvnðt; t0Þ; (3)

and thereby obtain the masses from the principal correla-
tors, �nðt; t0Þ;n ¼ 1 . . . dim ðCÞ, by fitting to,

FIG. 1 (color online). Fits to principal correlators for nine states in irrep Hg that are identified as J ¼ 3
2

þ
. Fits are obtained using

Eq. (4). For plotting, we divide out the first exponential factor; thus, the plots show values of emnðt�t0Þ�nðtÞ as the data points. Lines
show the fits according to the form emnðt�t0Þ�nðtÞ ¼ 1� An þ Ane

�ðm0
n�mnÞðt�t0Þ, with t0 ¼ 9. The fits approach the constant value,

1� An, for large t. The bands indicate the fits with the central fit values along with one-standard-deviation uncertainties.
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�nðt; t0Þ ¼ ð1� AnÞe�mnðt�t0Þ þ Ane
�m0

nðt�t0Þ: (4)

The corresponding eigenvectors, vnðt; t0Þ, are aligned
with those at reference time slice, t ¼ tref , and they provide
information as to the optimal interpolating operator for the

state n, namely
P

iv
i
nO

y
i . Figure 1 shows fits of principal

correlators for the ground state and eight excited states in
the � spectrum for irrep Hg, where each state is identified

as having spin-parity JP ¼ 3
2
þ . These states will be dis-

cussed later when we show how their spins and flavors
can be identified and when we show that they form part of
a pattern of states within the � spectrum.
As in Ref. [5], we make extensive use of the operator

‘‘overlap factors,’’ Zn
i � hnjOy

i j0i, that occur in the spec-
tral decomposition of the matrices of correlation functions,

CijðtÞ ¼
X

n

Zn�
i Zn

j

2mn

e�mnt: (5)

Using the orthogonality condition for the eigenvectors
vnyCðt0Þvm ¼ �n;m, the overlap factors are related to the

eigenvectors through Zn
i ¼ ffiffiffiffiffiffiffiffiffi

2mn

p
emnt0=2vn�

j Cjiðt0Þ.
The baryon operators used in this work are constructed

in two stages. The first stage is to construct operators in

FIG. 2 (color online). Magnitudes of the elements of the corre-
lator matrix, Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
, at time slice 5 are shown for � atm� ¼

391 MeV according to the darkness scale at the bottom. The blocks
along the diagonal correspond to operators with the following spin-
flavorcombinations: 32 ð10FÞ, 32 ð8FÞ, 52 ð10FÞ, 52 ð8FÞ, 72 ð10FÞ and 7

2ð8FÞ.

FIG. 3 (color online). ‘‘Matrix’’ plot of values of operator overlaps, Zn
i , for state n and operator i, normalized according to

Zn
i

max n½Zn
i � so

that the largest overlap across all states for a given operator is unity. For each of the n ¼ 0 to 21 states of � in the Hg irrep, the

magnitude of each operator’s overlap is shown for m� ¼ 391 MeV. Darker pixels indicate larger values of the operator overlaps as in
Fig. 2. Column labels indicate nonrelativistic (NR) and relativistic (R) operators, as well as hybrid (h) and nonhybrid (nh) operators. In
addition the flavor irrep is indicated as ð10FÞ for decuplet or ð8FÞ for octet and continuum spins of the operators are shown by 3

2 ,
5
2 and

7
2 .

State 0, the ground state, and excited states 2, 8 and 15 are identified as JP ¼ 3
2

þ
states with dominant decuplet flavor symmetry. States

1, 4, 5, 7 and 13 are identified as JP ¼ 3
2

þ
, excited states with dominant octet symmetry. States 16 and 17 are JP ¼ 3

2

þ
excited states

with strong hybrid content and dominant octet flavor symmetry.
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the continuum that have definite spin quantum numbers.
In principle, these operators would produce a matrix of
correlation functions that is orthogonal, i.e., proportional to
�J;J0 , where J and J0 are the spins of the source and sink

operators. In the second stage of the construction, the
operators are subduced to the irreps of the cubic group so
that they can be used on a finite lattice. We observe that
after the subduction, there remains a remarkable degree of
rotational symmetry in the matrices of correlation func-
tions that are obtained for baryons. They exhibit approxi-
mately the orthogonality property that holds in the
continuum. An example of this is shown in Fig. 2, where
the � correlator matrix, CijðtÞ, is shown at t ¼ 5 for irrep

Hg, after normalizing each operator so that the diagonal

elements are equal to 1. The matrix indices range over 68
operators as follows: 19 J ¼ 3

2 , 10F operators; 22 J ¼ 3
2 , 8F

operators; 9 J ¼ 5
2 , 10F operators; 12 J ¼ 5

2 , 8F operators;

3 J ¼ 7
2 , 10F operator; and 3 J ¼ 7

2 , 8F operators. The

matrix is approximately block diagonal with respect to J.
Similar block-diagonal matrices of correlation functions
are observed within other irreps and they stem from the
construction of operators starting from definite continuum
spins. These approximately orthogonal matrices are key to
the identification of the continuum spin of states.

Although flavor symmetry remains a broken symmetry
in the continuum because the strange quark in our calcu-
lations is heavier than the u and d quarks, the correlator
matrix is approximately block diagonal with respect to
flavor. As shown in Ref. [11], which uses the same lattices,
the breaking of SUð3ÞF symmetry is weak also for the
mesons. When the operators of a given flavor symmetry
are dominant, we exploit that feature to identify the domi-
nant flavor composition of a state, and when hybrid opera-
tors play a substantial role we use that to identify states
with strong hybrid content. Figure 3 illustrates how such
identifications are made for states in the Hg irrep of the �.

The plot shows the overlaps, Zn
i , of operators that create

each state, with operators grouped by their continuum spin
and flavor as indicated in the column labels at the top. The
columns also are labeled by whether the operators are based
on relativistic (R) or nonrelativistic (NR) Dirac spinors, or
hybrid constructions (h) or nonhybrid ones (nh). The op-
erator overlaps provide a reasonable identification of the
spin, flavor and hybrid content of the� states in irrepHg of

the cubic group. In particular, the identifications of states
with spin-parity 3

2
þ , and flavor irreps 8F or 10F, are noted

in the caption. Similar identifications are made to extract
the patterns of other states in our spectra.

III. RESULTS

In the following, we present the spectra in units of the�
mass.

The spectra of N, �, �, �,� and� families of baryons
for spins up to 7

2 and both parities are shown at two different

pion masses in Figs. 4 and 5. The dominant flavor irrep is
indicated by color: blue for 8F, yellow for 10F, and beige
for 1F. At the SUð3ÞF-symmetric point, the spectra are
shown in Fig. 6, now classified according to their SUð3ÞF
flavor irrep: 8F, 10F or 1F. Results for the positive parity N
and � spectra were presented earlier in Ref. [9]. The �
masses determined with the operators used in this work
differ by about 1% from the values given in Table I, which
is within the estimated uncertainty.
A general feature of the lattice spectra is that there

are bands of excited states with alternating parities for
each family of baryons: the lowest band of states for
each parity is shown inside the slanted boxes. In the lowest
negative-parity band, the numbers of states of each spin
and flavor agree with the expectations shown in Table II,
the table that shows the quantum numbers allowed by
SUð6Þ �Oð3Þ symmetry for one-derivative operators.
In the lowest positive-parity band, the numbers of states

for each spin and flavor agree with the expectations shown
in Table III, the table that shows the quantum numbers
allowed by SUð6Þ �Oð3Þ symmetry for two-derivative
operators. While at the SUð3ÞF symmetric point the count-
ing involves a single flavor irrep, for the �, � and �, the
correct numbers of states are obtained from summing the
numbers for each of the two flavor irreps involved. This
agreement between spectra and the expectations based on
nonrelativistic quark spins provides a clear signature of
SUð6Þ �Oð3Þ symmetry in the spectra.
As noted in the caption of Fig. 3, the overlaps of

the different operators classified according to their flavor
structure provide a means of identifying the dominant
flavor composition of the states in the spectra. Although
the mixing of flavors increases as one moves away from the
SUð3ÞF-symmetric point, the dominant flavor identifica-
tions are shown by the different colors used in the plots of
spectra. It is clear from our analysis that for the mixed-
flavor states, the �, � and �, we find spectra that exhibit
the multiplicities expected from exact SUð3ÞF flavor sym-
metry for each of the flavor-identified multiplets. In sum-
mary, the baryon spectra are remarkably consistent with
the SUð6Þ �Oð3Þ expectations. It is this symmetry that is
the basis for the quark model and the lowest bands of
lattice states include the same quantum numbers that occur
in the quark model [12–14].
In addition to the three-quark states that correspond to

the quark model, a number of states are identified by their
strong overlaps with hybrid interpolating operators, imply-
ing that they have a strong hybrid content. These states, in
which the gluons play a substantive role, are shown for
positive parity by symbols with thick borders in Figs. 4–6.
The two J ¼ 3

2
þ , � states in Fig. 4 with strong hybrid

content and masses near 1:6m� are Hg states 16 and 17 in

Fig. 3. Note that the states with strong hybrid content
generally are at high energy, typically about 0:7m�, or
more, above the ground state.
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FIG. 4 (color online). Results for baryon excited states using the ensemblewithm� ¼ 391 MeV are shownversus JP. Colors are used to
display the flavor symmetry of dominant operators as follows: blue for 8F inN,�,�, and�; beige for 1F in�; yellow for 10F in�,�,�,
and�. The lowest bands of positive- and negative-parity states are highlighted within slanted boxes. The eight excited states of �, with
JP ¼ 3

2
þ , that are shown within a slanted box, are Hg states 1, 2, 4, 5, 7, 8, 13 and 15. Fits for the same states are shown in Fig. 1 and

identifications of their spins and flavors are noted in Fig. 3.
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FIG. 5 (color online). Results for baryon excited states using the ensemble with m� ¼ 524 MeV are shown versus JP. Symbols are
as described in Fig. 4.
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In this work we have no three-derivative operators.
Because of that, and because the relativistic operators
generally play an important role at higher energies, it is
not meaningful to interpret the observed states at higher
energies in terms of SUð6Þ �Oð3Þ symmetry. However,
one sees qualitative similarity of the higher bands in
Figs. 4 and 5 to the corresponding bands found at the
flavor-symmetric point in Fig. 6.
It also is not meaningful to identify states with strong

hybrid content in our negative-parity spectra and none are
shown. Signals for states with significant hybrid content
exist in negative-parity states at high energy, but they are
based on the relativistic operators, whereas the three-
derivative, nonrelativistic operators that are absent may
be equally, or more, important. Without a clear under-
standing of the relative importance of all the relevant
operators, we cannot identify negative-parity states with
strong hybrid content.
The baryon spectrum does not admit the ‘‘spin-parity

exotics’’ that provide a useful indication of hybrid states
in the meson spectrum, and indeed we observe that hybrid
operators can have a significant, albeit not dominant, con-
tribution to many states. Some examples can be found in
Fig. 3, notably the lowest-lying spin- 32 decuplet.

The patterns and multiplicities of positive-parity states
with strong hybrid content can be compared with the
expectations based on nonrelativistic quark spins that are
listed in Table IV. At the flavor-symmetric point with
m� ¼ 702 MeV, which is shown in Fig. 6, and at m� ¼
524 MeV, which is shown in Fig. 5, one sees all the
positive-parity hybrid states corresponding to Table IV.
At m� ¼ 391 MeV, which is shown in Fig. 4, most of the
hybrid states are seen. One decuplet, the J ¼ 1

2
þ hybrid

state, is missing for �. An octet, the J ¼ 3
2
þ state, and a

decuplet, the J ¼ 3
2
þ state, are missing for �. These

baryons involve mixings of 8F and 10F flavor symmetries
and their spectra are particularly dense when subduced to
the lattice irreps. For example, an Hg state must be found

for each J ¼ 3
2 ,

5
2 and

7
2 state in the spectrum. The�, J ¼ 5

2

state with strong hybrid content was found as the 29th
state in the Hg spectrum and was the highest state deter-

mined. The fact that a few of the states observed at higher
values of the pion mass are not found at our lowest value
of m� may be because not all states have been determined.
Overall, the lowest states with strong hybrid content are
in reasonable accord with the expectations based on
Table IV.
The excited states in the lowest bands of negative parity

are particularly well determined: Fig. 7 shows the ones that
are created predominantly by flavor-octet operators and
Fig. 8 shows the ones that are created predominantly
by flavor-decuplet and -singlet operators. Note that we
show the data for the mass of state n, namely mn, in
physical units that are obtained from the formula, mn ¼
1672:45

mn;latt

m�;latt
, where m�;latt is the� mass on the ensemble

FIG. 6 (color online). Results for baryon excited states in
flavor irreps 8F, 10F and 1F obtained using the flavor-symmetric
point, with m� ¼ 702 MeV, are shown versus JP. Symbols are
as described in Fig. 4.
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as given in Table I. Thus, the physical � mass is used to
set the scale. The patterns of these states are very similar
for the different baryons. For the flavor-octet states,
there are two 1

2
� states, two 3

2
� states and one 5

2
� state.

For each baryon, the energy increases with spin J and the
highest energy is about 300 MeVabove the lowest energy,
independent of the baryon. For the flavor-decuplet case,
there is one 1

2
� state and one 3

2
� state with about

70 to 100 MeV splitting, �10 being an exception.

The flavor-singlet case has the same pattern except that
the energies are lower and the splitting is larger.
In a previous analysis of the nucleon spectrum using

Nf ¼ 2 QCD, we obtained five low-lying negative-

parity states in the lattice irreps G1u, Hu and G2u [15].
They could be interpreted as two Nð12�Þ states, two Nð32�Þ
states and one Nð52�Þ state, thus agreeing with the present

work. A later analysis based on Nf ¼ 2þ 1 QCD obtained

a sixth low-lying state, namely a third Nð32�Þ [10]; however
that extra state was not as well determined. Both of the
mentioned works yielded two low-lying Nð12�Þ states, as
does this work. The extra low-lying Nð32�Þ state is not

obtained in this work. We conclude that the third Nð32�Þ
state is spurious, and that the low-lying spectrum has a total
of five negative-parity states, with strong evidence for low-
lying bands consistent with SUð6Þ �Oð3Þ symmetry.
Reference [16] provides the masses of a few low-lying,

negative-parity states of the nucleon based on several pion
masses, including m� ¼ 156 MeV. For m� values close to
400 MeV, there is good agreement with our masses for the
two lowest Nð12�Þ states shown in Fig. 7. Reference [17]

provides masses for several low-lying, negative-parity �
states. Lower pion masses were used in Ref. [17]; however,
for the three lowest �ð12�Þ states obtained at m� �
280 MeV, there is acceptable agreement with our results
at m� ¼ 391, namely for the �1ð12�Þ state in Fig. 8 and the
two �8ð12�Þ states in Fig. 7. Reference [18] also provides

masses for three low-lying�ð12�Þ states at several values of
m� using a larger lattice volume. Those results are reason-
ably consistent with the masses of our three lowest-lying
�ð12�Þ states.
We note that there are several important limitations of

the present study. They have been discussed in Ref. [5] and
we conclude with a brief summary of them. The 163 � 128
lattice used is small, with spatial dimensions of about
1.9 fm on a side. The pion masses used are significantly
larger than the physical mass. No operators that efficiently
couple onto scattering states (e.g., �N) are included.
Studies of the resonances that correspond to the three-
quark states will require improvements that overcome
each of these limitations.

IV. SUMMARY

This work presents results for baryons based on lattice
QCD using the 163 � 128 anisotropic lattices that were
developed in Ref. [4]. Excited state spectra are calculated
for baryons that can be formed from u, d and s quarks,
namely the N, �, �, �, � and � families of baryons, for
two pion masses, 391 MeV and 524 MeV, and at the
SUð3ÞF-symmetric point corresponding to a pion mass of
702 MeV.
The interpolating operators used incorporate covariant

derivatives in combinations that correspond to angular-
momentum quantum numbers L ¼ 0, 1 and 2. The angular

FIG. 8 (color online). The lowest negative-parity states that are
flavor singlets (beige) and decuplets (yellow) are shown for
m� ¼ 391 MeV.

FIG. 7 (color online). The lowest negative-parity states that are
flavor octets are shown for m� ¼ 391 MeV.
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momenta are combined with quark spins to build operators
that transform according to good total angular momentum,
J, in the continuum. As noted in earlier works, approximate
rotational symmetry is realized at the scale of hadrons,
enabling us to identify reliably the spins in the spectrum
up to J ¼ 7

2 from calculations at a single lattice spacing.

The operators we have employed are classified accord-
ing to the irreducible representations of SUð3ÞF flavor. At
the pion masses used, the SUð3ÞF symmetry is broken only
weakly and states in the spectra can be identified as being
created predominantly by operators of definite flavor sym-
metry 8F, 10F or 1F.

We find bands of states with alternating parities and
increasing energies. Each state has a well-defined spin
and generally a dominant flavor content can be identified.
The number of nonhybrid states of each spin and flavor in
the lowest-energy bands is in agreement with the expecta-
tions based on weakly broken SUð6Þ �Oð3Þ symmetry.
These states correspond to the quantum numbers of the
quark model.

Chromomagnetic operators are used to identify states
that have strong hybrid content. Usually these states are at
higher masses, about 0:7m�, or more, above the lowest
nonhybrid states. There is reasonable agreement between
the number of positive-parity states with strong hybrid
content and the expectations of Table IV that are based
on nonrelativistic quark spins, although a few of the ex-
pected states are not found at the lowest pion mass.

With the inclusion into our basis of multihadron opera-
tors, which couple efficiently onto multihadron scattering

states, we expect to find an increased number of levels in
the spectrum. As demonstrated in Ref. [19], using the
technique of moving frames where the total momentum
of the system is nonzero, the increased number of levels
allows for the extensive mapping of the energy dependence
of scattering amplitudes, and hence, the determination of
resonances. The prospect of determining the properties of
resonances provides a strong motivation for continued
work on the spectra of baryons.
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