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We present results from our simulations of quantum chromodynamics with four flavors of quarks: u, d,

s, and c. These simulations are performed with a one-loop Symanzik improved gauge action and the

highly improved staggered quark action. We are generating gauge configurations with four values of the

lattice spacing ranging from 0.06 to 0.15 fm, and three values of the light quark mass, including the value

for which the Goldstone pion mass is equal to the physical pion mass. We discuss simulation algorithms,

scale setting, taste symmetry breaking, and the autocorrelations of various quantities. We also present

results for the topological susceptibility that demonstrate the improvement of the highly improved

staggered quark configurations relative to those generated earlier with the asqtad improved staggered

action.
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I. INTRODUCTION

Over the past decade, we have generated a large library
of gauge configuration ensembles with three flavors of
improved staggered (asqtad) quarks [1]. These ensembles
are publicly available, and they are being used by our group
and several others to study a wide variety of problems in
high-energy and nuclear physics [1]. A number of the most
challenging problems that we and other lattice gauge the-
orists are pursuing, however, require a level of precision
that is beyond the reach of the current asqtad ensembles,
and generating additional ones with smaller lattice spac-
ings and lighter up and down quark masses would be very
computationally expensive. We have therefore begun gen-
erating a new library of gauge configuration ensembles
using the highly improved staggered quark (HISQ) action
introduced by the HPQCD Collaboration [2–4]. In this
paper, we describe the ensembles produced to date and
report on the initial calculations performed with them.

The HPQCD Collaboration developed the HISQ action
to reduce the taste-symmetry violations associated with

staggered quarks and to improve the quark dispersion
relation sufficiently so that charm quarks can be simulated
at lattice spacings accessible with today’s computers.
The HPQCD Collaboration tested the new action using
HISQ valence quarks on quenched gauge configurations
and on ones we had generated with asqtad sea quarks
[2–4]. More recently, they have obtained impressive results
for charm and heavy-light physics again using HISQ
valence quarks on asqtad configurations [5–13]. We have
performed tests of scaling in the lattice spacing using HISQ
valence quarks with gauge configurations generated with
HISQ sea quarks [14]. We found that lattice artifacts for the
HISQ action are reduced by approximately a factor of 3
from those of the asqtad action for the same lattice spacing,
and taste splittings in the pion masses are reduced suffi-
ciently to enable us to undertake simulations with the
mass of the Goldstone pion at or near the physical pion
mass. Moreover, the improvement in the quark dispersion
relation enables us to include charm sea quarks in the
simulations.
Given the successes of the HISQ action, we have

embarked on a project to generate ensembles of gauge
configurations using it along with a one-loop Symanzik
improved gauge action [15]. We are working at four
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different lattice spacings, a � 0:06, 0.09, 0.12, and
0.15 fm, in order to control extrapolations to the continuum
limit. We include up, down, strange, and charm sea quarks.
For most ensembles, the masses of the strange and charm
quarks, ms and mc, respectively, are fixed at their physical
values. For these ensembles, the up and down quark masses
are taken to be degenerate with a common mass ml, which
has a negligible effect (< 1%) on isospin-averaged quan-
tities. We are generating configurations with three values of
the light quark mass: ml ¼ ms=5, ms=10, and the value
such that the Goldstone pion mass is as close as possible to
the physical pion mass, which is approximately ms=27.
Table I shows the current state of these ensembles. Prior to
the simulations, the lattice spacing and the physical values
of the quark masses can only be estimated. Their precise
values are outputs from the analysis described later in this
paper. Note that we have generated three ensembles with
a � 0:12 fm and ml ¼ ms=10 that differ only in their

spatial volumes. The purpose of using three different
volumes is to enable tests of finite-size effects. The factor
governing such effects, e�M�L, varies by a factor of 8 over
this range of spatial sizes, so we expect to have a sufficient
lever arm for these tests. In Table III, we compare the
values of the plaquette, the strange and light quark con-
densates, and r1=a on these three lattices. A comparison
of finite size effects for the pion and kaon masses and
leptonic decay constants on these configurations with the
predictions of chiral perturbation theory can be found
in Ref. [16].
With the HISQ action, as with less improved staggered

fermion actions, each lattice fermion species corresponds
to four ‘‘tastes’’ of fermions in the continuum limit. To
eliminate the three unwanted tastes from the quark sea, we
use the fourth-root procedure for each of the sea-quark
flavors, up, down, strange, and charm. For numerical and
theoretical arguments justifying this fourth-root procedure,
we refer the reader to Refs. [17,18].
We have also generated a limited number of ensembles

with the strange-quark mass lighter than its physical value,
because including such ensembles has proven very useful
in controlling chiral extrapolations of physical quantities.
In one of those ensembles, we also chose different values
for the two light-quark masses, up and down, to probe for
isospin-breaking effects. These ensembles are listed in
Table II.
We note that even though we are generating some

ensembles with the Goldstone pion mass at the physical
value and with the strange-quark mass near its physical
value, controlling the chiral expansion using a variety of
other ensembles with different quark masses is still very
useful for several reasons: (1) The lattice spacing and the

TABLE I. HISQ gauge configuration ensembles with strange
and charm quark masses set at or very close to their physical
values. The first column gives the lattice spacing for which we
were aiming, which in all cases turned out to be a good
approximation to the actual lattice spacing that could only be
determined after the lattices were created. The second column
gives the ratio of the simulation mass of the light quark to the
physical mass of the strange quark, the third the lattice dimen-
sions, the fourth the product of the Goldstone pion mass and the
spatial extent of the lattice, and the fifth the Goldstone pion mass
in MeV. The pion masses were converted to physical units using
the fp4s scale setting described in Sec. III. The quoted errors

include only the statistical errors on the pion mass and fp4s in

lattice units in the individual ensemble; they do not include
systematic errors such as the errors on the physical values of fp4s
in Table VII. The sixth column gives the number of equilibrated
gauge configurations. Where the sixth column is the sum of two
numbers, these are the numbers of lattices generated with the
RHMC and RHMD algorithms, respectively, as discussed in
Sec. II. We plan to save approximately 1000 configurations in
each ensemble, so those for which Nlats � 1000 are considered
to be complete.

�a (fm) ml=ms N3
s � Nt M�L M� (MeV) Nlats

0.15 1=5 163 � 48 3.78 306.9(5) 1021

0.15 1=10 243 � 48 3.99 214.5(2) 1000

0.15 1=27 323 � 48 3.30 131.0(1) 1020

0.12 1=5 243 � 64 4.54 305.3(4) 1040

0.12 1=10 243 � 64 3.22 218.1(4) 1020

0.12 1=10 323 � 64 4.29 216.9(2) 1000

0.12 1=10 403 � 64 5.36 217.0(2) 1029

0.12 1=27 483 � 64 3.88 131.7(1) 1000

0.09 1=5 323 � 96 4.50 312.7(6) 1011

0.09 1=10 483 � 96 4.71 220.3(2) 1000

0.09 1=27 643 � 96 3.66 128.2(1) 235þ 467
0.06 1=5 483 � 144 4.51 319.3(5) 1000

0.06 1=10 643 � 144 4.25 229.2(4) 435þ 227
0.06 1=27 963 � 192 3.95 135.5(2) 240

TABLE II. HISQ gauge configuration ensembles with lighter-
than-physical strange quark masses. All ensembles have a lattice
spacing of a � 0:12 fm and charm-quark mass as close as
possible to its physical value. The first two columns give the
ratio of the light quark masses to the physical strange quark
mass. (We distinguish between the masses of the two light
quarks because in the ensemble in the last row they are differ-
ent.) The third column gives the ratio of the simulation strange-
quark mass to the physical strange-quark mass, and the fourth
column shows the lattice dimensions. The fifth shows the num-
ber of equilibrated configurations.

ml1=ms ml2=ms m0
s=ms N3

s � Nt Nlats

0.10 0.10 0.10 323 � 64 1020

0.10 0.10 0.25 323 � 64 1020

0.10 0.10 0.45 323 � 64 1020

0.10 0.10 0.60 323 � 64 1020

0.25 0.25 0.25 243 � 64 1020

0.20 0.20 0.60 243 � 64 1020

0.175 0.175 0.45 323 � 64 1020

0.10 0.25 0.45 323 � 64 1020
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physical values of the quark masses can only be estimated
prior to the simulations. Their precise values are outputs
from a detailed analysis made after the ensembles have
been created in which the unphysical light- and strange-
quark mass ensembles play important roles. (2) We can
both determine the dependence on the strange sea-quark
mass and extrapolate to the limit where that mass vanishes,
which is important for studies of a variety of physical
quantities. (3) Since the continuum and chiral expansions
are closely connected through staggered chiral perturba-
tion theory, controlling the chiral expansion helps us to
take the continuum limit with small extrapolation errors.
(4) Statistical fluctuations of physical quantities with up
and down sea and valence masses at their physical values
tend to be larger than at somewhat higher masses, so
including higher-mass ensembles in a chiral fit can signifi-
cantly decrease the final errors. (5) Having a range of
strange and light sea-quark masses allows us to determine
low-energy constants of the chiral expansion, which are
important fundamental parameters of QCD in their own
right.

The details of our simulations and their present status are
given in Sec. II. In this section, we also compare configu-
rations generated with the RHMC and RHMD algorithms.
Although we have used the former for nearly all the
ensembles produced to date, at the smallest lattice spacings
the gauge fields appear to be smooth enough to use the
latter, which leads to a significant savings in computer
time. Scale setting is addressed in Sec. III, where we give
results based both on the Sommer parameter r1 [19,20] and
on the decay constants of (fictitious) pseudoscalar mesons
[21]. In Sec. IV, we present results for the topological
susceptibility of the QCD vacuum obtained from the
HISQ ensembles. Tunneling between different topological
sectors appears to be sufficient for them to equilibrate. The
topological susceptibility provides a particularly stringent
test of the HISQ gauge configurations because it is
computed from them without involving valence quarks.
Thus, comparison of the topological susceptibility on
the asqtad and HISQ configurations directly demonstrates
the improvement in the gauge configurations. In Sec. V,
we discuss taste-symmetry violations in the light-light,

heavy-light, and heavy-heavy pseudoscalar sectors and
demonstrate the improvement in the light-light sector pro-
vided by the HISQ action, while in Sec. VI we discuss
autocorrelation times for a variety of physical variables. In
Sec. VII we present our conclusions, and in the Appendix
we tabulate the taste-symmetry breaking pseudoscalar
meson mass splittings, which can be used in the staggered
chiral perturbation theory analysis of masses and matrix
elements on these ensembles.

II. SIMULATIONS

The details of our simulations were given in Ref. [14].
Here we briefly outline our approach in order to make this
paper self-contained. We are using a one-loop Symanzik
improved gauge action [15] and the HISQ action [2–4].
The gauge action includes 1� 1 and 1� 2 planar Wilson
loops and a 1� 1� 1 ‘‘parallelogram.’’ The coefficients
of these terms are calculated perturbatively and are then
tadpole improved. They include both one-gluon-loop and
one-quark-loop contributions [22]. The HISQ action con-
sists of a Fat7 smearing of the gauge links, then a projec-
tion of each smeared link onto a unitary matrix, followed
by an ‘‘asq’’ smearing with twice the Lepage term and
including the Naik term, a third nearest-neighbor coupling.
This is designed to ensure that the quark action is order a2

improved. The use of two levels of smearing produces a
smooth gauge field seen by the quarks, which leads to the
reduction in taste-symmetry violations mentioned previ-
ously. Finally, a modification of the Naik term [4] improves
the dispersion relation of the charm quark sufficiently that
it can be included in our simulations.
We have used the rational hybrid Monte Carlo (RHMC)

algorithm [23] to generate configurations with three
exceptions discussed below. We use different molecular
dynamics step sizes for the gauge and fermion parts of
the action, with three gauge steps for each fermion one
[24]. The Omelyan integration algorithm is employed for
both the gauge and fermion parts of the action [24,25], and
five pseudofermion fields are used, each with a rational
function approximation for the fractional powers of the
fermion determinants. The projection of links onto U(3)
after the Fat7 smearing can lead to spikes in the fermion
force, which give rise to low acceptance rates, especially
on coarse lattices. These spikes are smoothed out by means
of a guiding Hamiltonian in the molecular dynamics evo-
lution [14], and the algorithm is made exact by means of a
Metropolis accept/reject step at the end of each trajectory,
which employs the exact Hamiltonian.
The simulation parameters for the ensembles with

physical strange-quark mass are given in Table IV and
those for ensembles with lighter-than-physical strange
quarks in Table V.
Obtaining a good acceptance rate with the RHMC

algorithm requires a step size small enough that the change
in the action over a trajectory is of order 1, and on large

TABLE III. Effects of spatial size in the a � 0:12 fm ml ¼
ms=10 ensembles, which differ only in the spatial size of the
lattices. �c c is in units of the lattice spacing and is shown for
both the light quark and strange quark masses. Values for r1=a
come from a fit to the heavy-quark potential over spatial sepa-
rations from 1.5 to 4.0 and time lengths 5 to 7.

L ¼ 24 L ¼ 32 L ¼ 40

Plaquette 0.556621(7) 0.556631(5) 0.556623(3)
�c c l 0.016957(33) 0.017020(18) 0.017068(13)
�c c s 0.061764(18) 0.061719(12) 0.061735(8)

r1=a 2.585(19) 2.626(13) 2.611(9)
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lattices this requires a small simulation time step. However,
this requirement is unphysical in the sense that we are
interested in intensive quantities, not extensive ones. In
our earlier series of simulations with the asqtad quark
action [1], several of the largest ensembles were run with
the RHMD algorithm, which is identical to the RHMC
algorithm, except that the accept/reject step at the end of
each trajectory is omitted. This is an attractive possibility
because it allows running at a step size limited by its effects
on physical quantities, and because the lattice generation
can be done in single precision. (Double precision is
necessary for the RHMC algorithm on large lattices

because the numerical error in evaluating the action at
the beginning and end of the trajectory in order to compute
its change, �S, becomes of order 1, making the accept/
reject step nonsensical. The cost of double precision can be
reduced by running the conjugate gradient in the molecular
dynamics steps in single precision, followed by double
precision refinement of the result.)
It is not possible to use the RHMD algorithm on coarse

lattices because of the occurrence of spikes in the fermion
force. For such lattices, if one uses the RHMD algorithm
with the exact Hamiltonian in the molecular dynamics
evolution of the gauge fields, then it is necessary to use a
very small step size in order to perform the integration of
the molecular dynamics equations accurately, whereas if
one uses the guiding Hamiltonian, which ignores these
spikes, there will be a significant deviation of the resulting
gauge fields from the correct ones. However, as the lattice
spacing decreases, the gauge fields become smoother, and
spikes in the fermion force become less pronounced and
very infrequent. This is fortunate, since it is the very
challenging ensembles with small lattice spacings for
which the RHMD algorithm would provide the greatest
gain if applicable. We have tested the efficacy of the
RHMD algorithm on two of our ensembles, those with
lattice spacing a � 0:09 fm and physical light-quark
mass, and with lattice spacing a � 0:06 fm and ml ¼
ms=10. For the first of these ensembles we have run a
few RHMD trajectories at a number of different step sizes,
and generated a significant fraction of our total sample with
this algorithm at a step size of � ¼ 0:0133, which com-
pares with the step size of 0.0115 used in the RHMC part of

TABLE IV. Parameters of the HISQ ensembles with the strange- and charm-quark masses at or close to their physical values.
The ensembles are listed in the same order as in Table I. The first column gives the gauge coupling constant 10=g2, and the second,
third, and fourth columns the masses of the light, strange, and charm quarks in lattice units. The fifth column is the tadpole coefficient
u0 obtained from the fourth root of the plaquette, and the sixth is the mass-dependent correction to the tree-level improvement of the
charm quark dispersion relation, or Naik term, �N . (The two values of �N with stars use the bare mass, rather than the tree-level mass in
Eq. (26) of Ref. [4], giving rise to a difference that appears at order am6

c.) s is the separation of stored configurations and len., the
length of a trajectory, both in simulation time units. � is the molecular dynamics step size, and acc. is the fraction of the trajectories
accepted.

10=g2 aml ams amc u0 �N s Len. � Acc.

5.80 0.013 0.065 0.838 0.85535 �0:3582� 5 1.0 0.033 0.73

5.80 0.0064 0.064 0.828 0.85535 �0:3484 5 1.0 0.020 0.71

5.80 0.00235 0.0647 0.831 0.85535 �0:3503 5 0.5 0.018 0.68

6.00 0.0102 0.0509 0.635 0.86372 �0:2308� 5 1.0 0.036 0.66

6.00 0.00507 0.0507 0.628 0.86372 �0:2248 5 1.0 0.033 0.68

6.00 0.00507 0.0507 0.628 0.86372 �0:2248 5 1.0 0.025 0.64

6.00 0.00507 0.0507 0.628 0.86372 �0:2248 5 1.0 0.014 0.66

6.00 0.00184 0.0507 0.628 0.86372 �0:2248 5 1.0 0.0091 0.64

6.30 0.0074 0.037 0.440 0.874164 �0:1204 6 1.5 0.031 0.67

6.30 0.00363 0.0363 0.430 0.874164 �0:1152 6 1.5 0.0214 0.66

6.30 0.0012 0.0363 0.432 0.874164 �0:1162 6 1.5 0.0115 0.67

6.72 0.0048 0.024 0.286 0.885773 �0:0533 6 2.0 0.02 0.74

6.72 0.0024 0.024 0.286 0.885773 �0:0533 6 2.0 0.0167 0.76

6.72 0.00084 0.0231 0.274 0.885773 �0:0491 6 2.0 0.0125 n.a.

TABLE V. Parameters of the HISQ ensemble with lighter-
than-physical strange quarks. The ensembles are listed in the
same order as in Table II, and the notation is the same as in
Table IV, except that we distinguish between the masses of
the two light quarks, because for the ensemble in the last row
they are unequal. For all of these ensembles, 10=g2 ¼ 6:00,
u0 ¼ 0:86372, �N ¼ �0:2248, s ¼ 5, and len: ¼ 1:0.

aml1 aml2 ams amc � Acc.

0.00507 0.00507 0.00507 0.628 0.02 0.67

0.00507 0.00507 0.012675 0.628 0.02 0.68

0.00507 0.00507 0.022815 0.628 0.02 0.70

0.00507 0.00507 0.0304 0.628 0.0227 0.68

0.01275 0.01275 0.01275 0.640 0.0278 0.71

0.0102 0.0102 0.03054 0.635 0.0294 0.74

0.0088725 0.0088725 0.022815 0.628 0.02 0.70

0.00507 0.012675 0.022815 0.628 0.02 0.73
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the ensemble. Although the step size used in the RHMD
subensemble is only a little larger than that in the RHMC
subensemble, large gains are realized from running in
single precision and from not rejecting up to one-third of
the trajectories.

We have compared several quantities computed separately
on the RHMC and RHMD subensembles. Results for the
plaquette and the light- and strange-quark condensates h �c c i
on the a � 0:09 fm physical quark mass ensemble are
shown in Fig. 1. The plaquette shows the expected effect
proportional to �2, while the strange-quark condensate is less
regular, and the light-quark condensate has large errors. The
points with small error bars at �2 ¼ ð0:0133Þ2 � 0:000177
(third point from the left) are the points where production
runningwas donewith theRHMDalgorithm. To estimate the
physical significance of these effects, we may suppose that
the effect is largely a change in the lattice spacing,

�a ¼ @a

@Plaq

@Plaq

@�2
�2: (1)

Using the difference of the plaquettes at � ¼ 0 and
� ¼ 0:0133, and the differences in plaquettes among
ensembles at a � 0:12, 0.09 and 0.06 fm, we find that this
corresponds to a shift in the lattice spacing of about
1:4� 10�5 fm, or a fractional shift of about 1:6� 10�4.

The black fancy diamonds and green diamonds in Fig. 1
show the plaquette and strange h �c c i for the a � 0:06 fm
ml ¼ ms=10 run at � ¼ 0 (RHMC) and � ¼ 0:0143
(RHMD), with an arbitrary constant added to put them in
the range of this graph. Here the effects are somewhat
smaller than in the a � 0:09 fm ensemble, likely because
the gauge configurations are smoother at the smaller lattice
spacing.

While the plaquette and h �c c si are determined accu-
rately enough so that the step size effects are visible, it is
much more interesting to see how physical quantities are
affected by the step size errors. Unfortunately, the only
such quantities that can be determined with the required
precision are the pseudoscalar meson masses. Table VI
shows masses for the light-light, strange-strange, and
charm-charm pseudoscalar mesons in the RHMC and
RHMD subensembles.
From these results, we see that the use of the RHMD

algorithm introduces a small systematic error, in compari-
son to other uncertainties. For all but a few quantities, this
error is also smaller than the statistical error. Among our
current projects, the only quantity for which we cannot use
the RHMD results is the interaction measure in high
temperature QCD, where a delicate subtraction of the
plaquette and h �c c i between the hot and cold lattices is
needed.With this one exception, we believe that it is safe to
use the RHMD algorithm for a � 0:09 fm, although we
did use RHMC for the a � 0:09 fm, ml ¼ ms=5, and
ms=10 ensembles. We are mostly using RHMD for the
a � 0:06 fm, physical quark mass ensemble.

FIG. 1 (color online). Comparison of the RHMC and RHMD algorithms for the a � 0:09 fm, physical quark mass and a � 0:06 fm,
ml ¼ ms=10 ensembles. The RHMD points are plotted at the value of the molecular dynamics step size � for which they were
generated and are given by red squares for the a � 0:09 fm ensemble and by green diamonds for the a � 0:06 fm one. The RHMC
points are plotted at � ¼ 0 and are given by blue bursts for the a � 0:09 fm ensemble and by fancy black diamonds for the
a � 0:06 fm one. The left panel shows the plaquette, the central panel the strange-quark h �c c i, and the right panel the light-quark
h �c c i, all as a function of �2. A significant fraction of the total sample for a � 0:09 fm was run at �2 ¼ 0:000177, which is why the
error bars at that point are so small. Both the light and strange-quark h �c c i are given in lattice units, and both are calculated in double
precision. The points for the a � 0:06 fm ensemble have been shifted vertically to move them into the range of the graph, the plaquette
downward by 0.031643, the strange- and light-quark h �c c i upward by 0.0157497 and 0.00185230, respectively.

TABLE VI. Pseudoscalar meson masses for the a � 0:09 fm
physical quark mass RHMC and RHMD (� ¼ 0:0133) sub-
ensembles. The fit ranges and fit forms are not necessarily those
that would be used for a final spectrum analysis, but care has
been taken to use the same fit ranges in each subensemble.

RHMC RHMD Difference

aM� 0.05716(9) 0.05717(5) 0.00001(11)

aM�ss 0.30608(14) 0.30624(10) 0.00016(17)

aM�c
1.32708(6) 1.32718(5) 0.00010(8)
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III. SETTING THE LATTICE SCALE

Since lattice computations produce quantities in units of
the lattice spacing, converting to physical units, such as
MeV or fm, requires accurate knowledge of the lattice
spacing. This is done by computing some physical quantity
that is experimentally well known and can be accurately
computed on the lattice. Examples in common use include
the �� mass, the splittings of charmonium levels, and the
pion or kaon decay constant. These quantities can be used to
fix the lattice spacing in physical units, and thus to convert
other measurements to physical units. In simulation
programs with multiple ensembles, it is often convenient
to use an intermediate interpolating quantity that is easily
measured on the lattice, but may not be an experimentally
accessible quantity, such as the commonly used Sommer
scales r0 and r1 [19,20]. This interpolating quantity can be
fixed by calculating a physical quantity on some of the
ensembles, often with a fitting or smoothing procedure, or
even from a completely different set of simulations.

Strictly speaking, observables measured on the lattice
take on their physical values only in the continuum limit
at physical valence- and sea-quark masses. Therefore,
the definition of the lattice spacing for unphysical
quark masses or nonzero lattice spacings is somewhat
arbitrary. The definition can be made by requiring that

the interpolating quantity be independent of the lattice
spacing and sea-quark masses, or by fixing its dependence
on these quantities to some plausible Ansatz, such as that
predicted by chiral perturbation theory at some order. Of
course, different Ansätze are expected to give identical
results only in the continuum, physical quark-mass limit.
Here we present determinations of the lattice scale on

the HISQ ensembles from two such interpolating quanti-
ties, r1 and fp4s. The first of these is calculated from the

static-quark potential and was used extensively in our
earlier simulation program using the asqtad action as
described in Ref. [1]. The second quantity, fp4s, is a variant

of a method suggested in Ref. [21]. This is the decay
constant of a pseudoscalar meson with valence-quark
masses 0.4 times the strange-quark mass. Ultimately, we
expect that our preferred scale setting will be based on f�.
The scale setting via f� will largely follow the same
approach as described for fp4s here, since f� and fp4s
are determined from the same types of correlators and
differ only in the quark masses. The value 0:4ms was
chosen to be heavy enough to allow relatively cheap deter-
mination on the lattice ensembles but light enough that
chiral perturbation theory can accurately describe its
dependence on the valence- and sea-quark masses.
Since we do not know the correct valence strange-quark

mass until after the lattice spacing is fixed, fp4s and 0:4ms

must be determined self-consistently. Roughly speaking,
this is done by finding the valence-quark mass amq where

afp4s and aMp4s, the mass of the pseudoscalar meson with

valence quark mass 0:4ms, have their expected ratio, as we
now explain.
For now, we use ‘‘physical’’ values of fp4s and Mp4s

determined from fits to pseudoscalar meson masses
and amplitudes in the MILC 2þ 1 flavor asqtad action
ensembles [1]. In practice, these come from evaluating the

TABLE VII. The decay constant fp4s, the meson mass Mp4s,
and their ratio from the 2þ 1 flavor asqtad analysis. The
numbers in parentheses are the statistical and systematic errors,
in that order.

ml=ms fp4s (MeV) Mp4s (MeV) Ratio

1=5 157.7(0.1)(0.8) 437.6(0.5)(2.0) 0.3604(5)(30)

1=10 155.5(0.2)(0.6) 435.1(0.3)(1.1) 0.3575(6)(18)

1=27 154.0(0.4)(0.6) 434.5(0.1)(0.6) 0.3544(10)(15)

TABLE VIII. r1=a, afp4s, and amp4s measured on the ensembles with physical strange- and
charm-quark masses. These quantities are used to determine the lattice spacing, which is given in
the next table. (Note that mp4s is the quark mass corresponding to fp4s.)

10=g2 aml ams amc r1=a afp4s amp4s

5.80 0.013 0.065 0.838 2.059(23) 0.12150(18) 0.02744(9)

5.80 0.0064 0.064 0.828 2.073(13) 0.12042(11) 0.02744(5)

5.80 0.00235 0.0647 0.831 2.089(8) 0.11948(6) 0.02762(3)

6.00 0.0102 0.0509 0.635 2.575(17) 0.09780(12) 0.02139(6)

6.00 0.00507 0.0507 0.628 2.585(19) 0.09614(14) 0.02111(7)

6.00 0.00507 0.0507 0.628 2.626(13) 0.09613(9) 0.02118(5)

6.00 0.00507 0.0507 0.628 2.614(9) 0.09605(7) 0.02113(4)

6.00 0.00184 0.0507 0.628 2.608(8) 0.09530(5) 0.02130(2)

6.30 0.0074 0.037 0.440 3.499(24) 0.07093(11) 0.01482(5)

6.30 0.00363 0.0363 0.430 3.566(14) 0.06953(6) 0.01467(3)

6.30 0.0012 0.0363 0.432 3.565(13) 0.06865(4) 0.01462(2)

6.72 0.0048 0.024 0.286 5.342(16) 0.04660(7) 0.00918(3)

6.72 0.0024 0.024 0.286 5.376(14) 0.04545(5) 0.00896(2)
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chiral-continuum extrapolation fit function for the pseudo-

scalar meson mass and decay constant at the appropriate

bare-quark masses: strange sea-quark ms ¼ m
physical
s ,

light-to-strange sea-quark mass ratio ml=ms equal to the

simulated value for that ensemble, and degenerate

valence-quark masses mvalence ¼ 0:4mphysical
s .

These values are shown in Table VII. Clearly, when a

similar analysis of the HISQ pseudoscalar mesons is avail-

able, fp4s and mp4s from that analysis will be used instead.

The determination of afp4s on one ensemble begins with

calculating pseudoscalar meson masses and decay con-

stants for several valence-quark masses. In our ensembles,
the valence-quark masses used include 0:3m0

s, 0:4m
0
s, and

0:6m0
s, where m0

s is the strange-quark mass estimated be-

fore the ensemble was started, which in most cases is the

same as the strange sea-quark mass used in generating the

ensemble. We then interpolate the square ðMp4s=fp4sÞ2 as a
quadratic function of the bare valence-quark mass. We use

ðMp4s=fp4sÞ2 rather than alternatives, such as fp4s=Mp4s,

since we expect M2
p4s to be approximately linear in amq

and fp4s to be approximately constant. The valence-quark

mass at which ðMp4s=fp4sÞ2 has the desired value is then

the physical 0:4ms. The decay constant in lattice units
afp4s is then found by similarly interpolating ðafp4sÞ2 as

a quadratic function of the bare quark masses and evaluat-
ing it at 0:4ms. Next, the lattice spacing is obtained by
requiring that fp4s on this ensemble equals the desired

value. Finally, Mp4s is found from fp4s and the ratio.

Errors on this quantity are found by a jackknife analysis,
where blocks of 16 lattices are omitted from the completed
ensembles and blocks of 8 lattices from the ensembles that
are approximately 50% completed. The resulting values for
afp4s, amp4s, and the lattice spacing in Fermi are shown in

Tables VIII, IX, and X. In these tables, the error in ar1
(afp4s) (fm) includes the statistical and systematic errors in

the physical value of r1 (fp4s), combined in quadrature

with the statistical error in r1=a (afp4s). For the physical

value of r1 we use r1 ¼ 0:3106ð8Þð14Þð4Þ, obtained from

TABLE IX. Lattice spacing and the retuned strange- and charm-quark masses, set by using r1 and fp4s quantities for ensembles with
physical strange- and charm-quark masses. For the aml ¼ 0:00184 ensemble the J=�mass is not available, so the �c mass was used in
tuning instead.

10=g2 aml ams amc ar1 (fm) afp4s (fm) amr1 ;tuned
s am

fp4s;tuned
s amr1;tuned

c am
fp4s;tuned
c

5.80 0.013 0.065 0.838 0.1510(20) 0.1520(8) 0.0668(15) 0.0678(3) 0.8472(16) 0.8514(16)

5.80 0.0064 0.064 0.828 0.1499(14) 0.1528(6) 0.0671(3) 0.0686(1) 0.8407(7) 0.8489(7)

5.80 0.00235 0.0647 0.831 0.1488(11) 0.1531(7) 0.0655(5) 0.0690(1) 0.8351(9) 0.8522(9)

6.00 0.0102 0.0509 0.635 0.1207(11) 0.1224(6) 0.0516(7) 0.0535(2) 0.6363(9) 0.6489(10)

6.00 0.00507 0.0507 0.628 0.1202(12) 0.1220(5) 0.0514(7) 0.0528(2) 0.6310(10) 0.6375(10)

6.00 0.00507 0.0507 0.628 0.1184(10) 0.1220(5) 0.0500(5) 0.0530(1) 0.6241(8) 0.6376(8)

6.00 0.00507 0.0507 0.628 0.1189(9) 0.1219(5) 0.0504(4) 0.0528(1) 0.6263(7) 0.6372(7)

6.00 0.00184 0.0507 0.628 0.1191(7) 0.1221(6) 0.0507(3) 0.0533(1) 0.6271(10) 0.6378(10)

6.30 0.0074 0.037 0.440 0.0888(8) 0.0887(5) 0.0367(5) 0.0370(2) 0.4396(7) 0.4393(7)

6.30 0.00363 0.0363 0.430 0.0872(7) 0.0882(4) 0.0358(3) 0.0367(1) 0.4288(5) 0.4325(5)

6.30 0.0012 0.0363 0.432 0.0871(6) 0.0880(4) 0.0357(3) 0.0365(1) 0.4294(5) 0.4323(5)

6.72 0.0048 0.024 0.286 0.0582(4) 0.0583(3) 0.0225(1) 0.0230(1) 0.2768(3) 0.2772(3)

6.72 0.0024 0.024 0.286 0.0578(4) 0.0577(2) 0.0224(1) 0.0224(1) 0.2750(2) 0.2755(3)

TABLE X. r1=a, afp4s, and amp4s for the ensembles with unphysical strange-quark mass. The lattice spacings determined
from these quantities are given in the last two columns. Since the purpose of these lattices is to study dependence as the quark
masses are varied, and because we do not know the dependence of the physical fp4s on the strange-quark mass, the value appropriate

for ml ¼ ms=10, 155.5(2)(6) MeV, is used for all of these ensembles. (As in Table VIII, m4ps is the quark mass corresponding to f4ps.)

aml1 aml2 ams amc r1=a afp4s amp4s ar1 (fm) afp4s (fm)

0.00507 0.00507 0.00507 0.628 2.675(16) 0.08973(9) 0.01900(5) 0.1161(10) 0.1139(10)

0.00507 0.00507 0.012675 0.628 2.676(16) 0.09109(9) 0.01944(4) 0.1161(9) 0.1156(5)

0.00507 0.00507 0.022815 0.628 2.653(13) 0.08973(10) 0.01903(4) 0.1171(8) 0.1139(5)

0.00507 0.00507 0.0304 0.628 2.647(15) 0.09383(8) 0.02042(4) 0.1173(9) 0.1191(5)

0.01275 0.01275 0.01275 0.640 2.642(21) 0.09391(14) 0.02038(6) 0.1176(11) 0.1192(5)

0.0102 0.0102 0.03054 0.635 2.593(19) 0.09569(15) 0.02099(6) 0.1198(11) 0.1214(5)

0.0088725 0.0088725 0.022815 0.628 2.646(16) 0.09416(12) 0.02055(4) 0.1174(9) 0.1195(5)

0.00507 0.012675 0.022815 0.628 2.664(16) � � � � � � 0.1166(9) � � �
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an analysis of pseudoscalar decay constants on lattices
generated with the asqtad quark action [26]. Errors in the
physical lattice spacings in these tables combine the errors
in the physical value of r1 with the statistical errors in r1=a.
Again, we will eventually determine the physical r1 with
the HISQ ensembles. Because r1 is not experimentally
observable, however, we will still need to use a measured
quantity such as f� or the� 1S–2S mass splitting to obtain
r1 in physical units.

To find the tuned charm-quark mass, we calculated
pseudoscalar and vector charmonium masses for two
valence-quark masses: the sea charm-quark mass and
0.9 times the sea charm-quark mass. Using linear interpo-
lation, we find the valence charm quark mass where the
spin-averaged charmonium mass has its physical value. Of
course, this depends on the previous determination of the
lattice spacing, so we quote two values, where the lattice
spacing was determined from r1 or from fp4s.

In Table IX we compare lattice spacings and retuned
strange- and charm-quark masses based on the r1 and fp4s
scales. In general, we observe good agreement in the lattice
spacing and the strange-quark mass, with the largest
difference in the latter of about 5%–6% for some of the
a � 0:12 and 0.15 fm ensembles. As expected, the differ-
ence in the lattice spacing and retuned quark masses
decreases towards the continuum and is small on the finest,
a � 0:06 fm ensembles.

IV. TOPOLOGICAL SUSCEPTIBILITY

The topological susceptibility

�t ¼ h�2i=V (2)

measures fluctuations in the total topological charge �
in the space-time volume V. The angle brackets represent
an average over the gauge-field configurations. These fluc-
tuations are suppressed at small quark mass. Leading-order
continuum chiral perturbation theory predicts [27] that

�tV � x � V�m0; (3)

where � is the chiral condensate parameter and m0 is the
reduced mass of the quarks:

1=m0 ¼ 1=mu þ 1=md þ 1=ms þ � � � : (4)

The relation (3) is valid provided x 	 1, which is the case
for our simulations.

For equal up- and down-quark masses we may use the
Gell-Mann-Oakes-Renner relation, also from leading-order
chiral perturbation theory, to rewrite this expression as

f2�=ð4�tÞ ¼ 2=M2
�;I þ 1=M2

ss;I þ � � � ; (5)

where M2
ss;I ¼ 2M2

K;I �M2
�;I is the squared mass of the

fictitious pseudoscalar meson containing two nonannihilat-
ing quarks with masses equal to the strange quark. In our
normalization the pion decay constant f� is approximately

130 MeV. In leading-order staggered chiral perturbation
theory, the meson masses appearing in Eq. (5) are taste-
singlet masses, as indicated by the subscript I.
Confirming Eq. (3) provides an essential test of the

fourth-root treatment of the fermion determinant, since it
gives a nearly direct measure of the influence of sea quarks
on the gauge field. Since the right-hand side depends on the
taste-singlet mass splitting, it also tests the degree of
improvement of the staggered action.
In Ref. [28] we presented results for the topological

susceptibility over a wide range of light-quark masses
and lattice spacings with 2þ 1 flavors of improved
(asqtad) quarks. Here, we use the same methods to deter-
mine the topological susceptibility in the presence of
2þ 1þ 1 flavors of HISQ sea quarks and compare results
with the asqtad study. We have studied five of the HISQ
ensembles, namely, three with ml ¼ ms=5 and a � 0:06,
0.09, and 0.12 fm, and two at the physical Goldstone pion
mass with ml � ms=27 and a � 0:09 and 0.12 fm.
In brief, we use the Boulder discretization [29,30] of the

topological charge density

�ðxÞ ¼ 1

32�2
Fa
��

~Fa
��; (6)

measured after three hypercubic blocking sweeps [31]
of the gauge field. The topological susceptibility is then
obtained from density-density correlations:

�t ¼
Z

d4xCðrÞ with CðrÞ ¼ h�ðxÞ�ð0Þi: (7)

Although in the continuum limit this definition suffers
from ultraviolet singularities that require regularization
[32], such complications are unimportant at our range of
lattice spacings [28].
As in Ref. [28], we reduce the variance in the integral in

Eq. (7) by fitting CðrÞ at large r to a model that includes the
required contributions from the � and �0 mesons. The
relative strength of the two contributions is also fixed using
tree-level chiral perturbative mixing. The integral is then
evaluated as

�t ¼
Z
r<rcut

d4xCðrÞ þ
Z
r>rcut

d4xCðrÞ; (8)

where the contribution for r > rcut is derived from the
asymptotic fit and for r < rcut it is based on the raw data.
In practice, we take rcut � 1:2 fm.
An interesting question for any lattice QCD simulation

is whether the tunneling rate between topological charge
sectors is sufficient to bring those sectors to equilibrium.
To investigate this question, we show in Fig. 2 the time
history of the topological charge for five HISQ ensembles:
those withml ¼ ms=5 and a � 0:12, 0.09 and 0.06 fm, and
with ml ¼ ms=27 � 0:037ms for a � 0:12 and 0.09 fm.
(We do not yet have sufficient data to make a similar plot
for the a � 0:06 fm, physical quark-mass ensemble.)
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To the right of each time history plot, we show a histogram
of the topological charge. As expected, the tunneling rate
decreases with the lattice spacing, whereas the fluctuations
of the charge increase as the light-quark mass is decreased.
It is clear from this figure that the simulation is exploring a
wide range of topological charges. The topological suscep-
tibility determined from the widths of these histograms is
consistent with the results in Table XI, although with larger
statistical errors.

Results are tabulated in Table XI and compared with
those for asqtad in Fig. 3. The comparison with the asqtad
results provides a clear demonstration of the improvement

in the HISQ configurations. Because the susceptibility is
computed without involving valence quarks, this compari-
son directly tests whether the change in sea-quark action
leads to the expected improvement in the gauge configu-
rations. We observe in Fig. 3 that the HISQ points with
a � 0:12, 0.09 and 0.06 fm are near the asqtad curves with
a � 0:09, 0.06 and 0.045 fm, respectively. The HISQ
points are to the left of the corresponding asqtad points
because the horizontal axis is the mass of the taste singlet
pion (the heaviest pion taste), and the reduction in taste-
symmetry breaking moves the HISQ points to the left. It is
the decrease of the susceptibility for the HISQ configura-
tions relative to those of the asqtad configurations that
represents the improvement in the gauge configurations.

V. TASTE SYMMETRY

For theml ¼ ms=5 ensembles at each lattice spacing, we
have measured the masses of pseudoscalar mesons of
all 16 possible tastes: I, ��, ���, ��5, and �5, with ��� �
½��; ��
=2 and ��5 � ���5. Figure 4 shows the difference

in squared mass between pions of a given taste and that of
the Goldstone pion (taste �5), plotted versus 	2

Sa
2, the

expected dependence of the leading taste-violating effects.

FIG. 2. The time history of the topological charge for five HISQ gauge configuration ensembles. The histogram to the right of each
time history shows the distribution of charges.

TABLE XI. Topological susceptibility for the indicated HISQ
ensembles vs taste-singlet pion mass squared in units of r0.

�a (fm) ml=ms M2
�;Ir

2
0 �tr

4
0

0.12 1=5 1.006 0.0170(5)

0.12 1=27 0.560 0.0108 (2)

0.09 1=5 0.736 0.0124 (7)

0.09 1=27 0.282 0.0059 (4)

0.06 1=5 0.603 0.0075 (8)
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The splittings for the corresponding asqtad ensembles are
also shown for comparison. Here ‘‘pion’’ means the unitary
meson with degenerate valence masses equal to ml. Tastes
are labeled by their index or indices, i.e., ij denotes taste
�ij, with i and j labeling generic spatial directions. Results

for different spatial taste indices have been averaged since
exact (discrete) lattice symmetries imply that their masses
are equal. In most cases, the differences between squared
masses have been calculated with a jackknife procedure.

One can see that the HISQ splittings are typically a
factor of 3 smaller than the asqtad ones at the same lattice
spacing. In fact the improvement with HISQ increases as
the lattice spacing decreases, so that at a � 0:06 fm, the
HISQ splittings are a factor of 6 to 8 smaller than the
asqtad ones. Indeed the HISQ splittings at a given lattice
spacing are comparable to, but somewhat smaller than, the
asqtad splittings at the next smaller lattice spacing, i.e.,
HISQ splitting at a � 0:09 fm are a bit smaller than asqtad
splittings at a � 0:06 fm.

For the strong coupling 	S, we use 	V , the coupling
from the asqtad heavy-quark potential, calculated in

Ref. [33] at next-to-leading order in tadpole-improved
lattice perturbation theory [34]:

�lnðplaqÞ¼3:0682ð2Þ	Vð3:33=aÞ
�½1þ	Vf�0:770ð4Þ�0:09681ð9Þnfg
; (9)

where plaq is the average plaquette of the ensemble, nf is

the number of sea-quark flavors, and the scale q� ¼ 3:33=a
for the plaquette is set by the Brodsky, Lepage, Mackenzie
procedure [35]. For taste-violations with asqtad quarks,
one expects the appropriate scale to be somewhat lower,
since the asqtad smearings are designed to remove
coupling of the quarks to gluons with any momentum
component equal to �=a. In Fig. 4, we choose scale
q� ¼ 2=a for 	V (the adjustment of scale is made using
the universal two-loop formula). For the HISQ action, the
perturbative calculation corresponding to Eq. (9) has not
to our knowledge been performed. However, since the
dependence on nf in Eq. (9) is fairly small, we think it is

reasonable also to use the asqtad formula for HISQ, at least
in this qualitative comparison of discretization effects. One
can see that the HISQ points are shifted to the right relative
to the corresponding asqtad ones; this is the effect of using
nf ¼ 4 rather than nf ¼ 3.

FIG. 3 (color online). Topological susceptibility vs taste-
singlet pion mass squared in units of r0, comparing results
from five HISQ ensembles (filled symbols) with previously
published asqtad results [28] (open symbols). Solid curves are
from a joint chiral-continuum fit to the asqtad data for the four
lattice spacings shown in the figure. The lowest (black) curve
indicates the resulting continuum extrapolation of the asqtad fit
with two representative points displaying the extrapolation
errors. The (red) dot-dashed curve shows the leading-order
prediction in chiral perturbation theory. The (green) arrow above
the (green) 0.12 fm asqtad curve indicates the asqtad point with a
light-quark mass comparable to that of the upper solid (green)
HISQ square. Similarly, the (blue) arrow above the (blue)
0.09 fm asqtad curve indicates the asqtad point with a light-
quark mass comparable to the upper solid (blue) HISQ octagon,
and the (red) arrow below the (red) 0.06 fm asqtad curve locates
the asqtad point with a light-quark mass comparable to the solid
(red) HISQ diamond.

FIG. 4 (color online). Pion taste splitting of pions for asqtad
(blue) and HISQ (red) actions. For clarity, the HISQ splittings
are also enclosed in dashed-dotted boxes, and nearly degenerate
masses have been displaced slightly in the horizontal direction.
Differences between the squared masses of various taste pions
and that of the Goldstone pion are shown in units of r1 and
plotted versus the expected leading dependence of taste viola-
tions in the theory, 	2

Sa
2, also in r1 units. Here, we use 	S ¼ 	V

at scale q� ¼ 2=a. The two diagonal lines are not fits, but merely
lines with slope 1, showing the expectation if the splittings are
linear in 	2

Sa
2. The vertical line at the upper left shows the

displacement associated with a factor of 3 in splittings. The
numerical values of the HISQ taste splittings plotted here are
given in Table XIV of the Appendix.
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By comparing the asqtad splittings in Fig. 4 with the
upper line (which has slope 1), one can see that the asqtad
splittings are almost proportional to 	2

Vð2=aÞa2 but fall

very slightly faster as a decreases. The HISQ splittings
fall still more rapidly at the smallest lattice spacings,
presumably because the proper choice of q� is significantly
smaller in the HISQ case. That is reasonable, since the
greater smearing present in the HISQ action should pro-
duce greater damping of the couplings of gluons to quarks
at high momenta. On the other hand, the HISQ splittings
fall more slowly than 	2

Vð2=aÞa2 at the coarsest lattice

spacings (between 0.15 and 0.12 fm), which is evidence
for higher order (	3

Sa
2 or a4) contributions.

For comparison, Fig. 5 shows the effect of choosing
a somewhat lower scale, q� ¼ 1:5=a, in other words
	S ¼ 	Vð1:5=aÞ. Now the asqtad splittings fall slightly
slower than 	2

Sa
2 as a decreases, while the HISQ splittings

are closer to linear, but still fall faster between 0.09 and
0.06 fm. We could continue to reduce q� until this drop
became linear, but it would be an arbitrary exercise since
we do not have the correct perturbative formula in the
HISQ case.

In Figs. 4 and 5, both the HISQ and asqtad masses show
an approximate SOð4Þ taste symmetry: The masses form
five multiplets with tastes P, A, T, V, and I (pseudoscalar,
axial-vector, tensor, vector, and singlet tastes). This is an
‘‘accidental’’ symmetry, because the exact lattice symme-
tries do not require this structure but would allow all
eight multiplets listed in the legends to be nondegenerate.
The origin of the SOð4Þ taste symmetry of pions [36] is
explained briefly below.

The SOð4Þ symmetry is seen even more clearly in the �ll
(pion) masses in Fig. 6. Up to quite small errors, no break-
ing of the symmetry is visible. The �ll masses also obey a
rough ‘‘equal spacing rule’’ of squared masses between the
P, A, T, V, and I tastes (and with that ordering). The equal

spacing is familiar from the asqtad case [1]. It arises in
staggered chiral perturbation theory (S�PT) [36,37] from
the fact that the dominant taste-breaking chiral operator
(i.e., the one with the largest coefficient) is

O4 ¼ a2 Trð�
5��5
�Þ þ H:c:; (10)

where H.c. stands for the Hermitian conjugate, and
� ¼ exp ði�=fÞ, with � the pion field and f the LO
pion decay constant.
Operators such as O4 are representatives, at the chiral

level, of taste-symmetry-breaking four-quark operators in
the Symanzik effective theory. The four-quark operators
may be labeled by the spin and taste of the bilinears from
which they are constructed. In particular, O4 is generated
by the operators [I � A], [T � A] and [P� A], where, for
example,

½T � A
 � a2ð �q��� � �
5qÞð �q��� � �5
qÞ; (11)

with ��� � ½��; ��
=2. This notation is basically that of

Lee and Sharpe [36], except that we use I instead of S to
denote scalar spin or taste, to avoid confusion with s for
‘‘strange.’’ The four-quark operators that give rise to O4

are what are known as ‘‘type-A’’ operators, which are
invariant under SOð4Þ of taste, as well as the SOð4Þ of
Euclidean space-time rotations. There are also ‘‘type-B’’
operators that couple spin and taste indices and break these
SOð4Þ symmetries down to a diagonal subgroup of joint
spin-taste 90� rotations. An example is

FIG. 5 (color online). Same as Fig. 4 but with 	S ¼
	Vðq� ¼ 1:5=aÞ.

FIG. 6 (color online). Meson taste splittings on the a �
0:15 fm, ml ¼ ms=5 ensemble. As in Fig. 4, the squared mass
splitting between pseudoscalar mesons of different tastes and the
lightest one with taste �5 (the Goldstone pion for the �ll case) is
given in units of r1. The types of quarks in the mesons are shown
on the abscissa: l, s, and c stand for light ðu; dÞ, strange, and
charm quarks, respectively. All mesons are the unitary ones, with
each valence quark mass equal to one of the sea quark masses.
Note, however, that all mesons here are treated as flavor-charged,
so that even in the �ss and �cc cases, no quark-disconnected
diagrams are included. The numerical values of most of these
taste splittings are given in Tables XIV and XVof the Appendix.
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½T� � A�
 � a2
X4
�¼1

ð �q��� � ��5qÞð �q��� � �5�qÞ: (12)

The accidental SOð4Þ taste symmetry of the pions results
from the fact that the type-B operators do not have chiral
representatives at LO. The nontrivial space-time structure
in the type-B case requires more than two derivatives in the
chiral operators, making their representatives next-to-
leading order (NLO) in the chiral expansion [36].

Moving up in meson mass in Fig. 6, one sees that SOð4Þ
is still a good symmetry for the �ls (kaon) and �ss states,
although some small symmetry violations are coming into
view in the �ss case. The SOð4Þ violations for �ss can be seen
most clearly in Table XIV, where they are significant
(though still quite small) at a � 0:15 fm. This is reason-
able, since, as both the mass and lattice spacing increase,
NLO chiral corrections are less suppressed, and these can
violate SOð4Þ.

At still higher mass, ordinary light-meson S�PT ceases
to be applicable, and a heavy-light version is necessary. For
the case here, where both light and heavy quarks have the
staggered action, the heavy-light chiral theory has recently
been worked out [38]. In that theory (‘‘all-staggered heavy
meson chiral perturbation theory’’—ASHM�PT), the LO
heavy-light chiral Lagrangian is of order k, the heavy-light
meson residual momentum, which is taken to be of the
order of the pion momentum pM�. This is different
from the light-light case, in which the LO Lagrangian is
order M2

�. Taste violations are LO in the light-light case
because the taste splittings in squared masses can be com-
parable to M2

�; in other words we assume a2 M2
� (with

appropriate factors of �QCD inserted to make the dimen-

sions the same). In the heavy-light case, on the other hand,
taste violations are NLO since a2 � M�. This rough pic-
ture is actually consistent with what is seen in Fig. 6, where
the splittings in squared masses remain comparable from
the �ll case through the �sc case, and in Table XV, where
we show the splittings in the �lc and �sc systems for the
a � 0:15 fm, ml ¼ ms=5 ensemble. The splittings in the
masses themselves are thus much smaller for �lc or �sc
mesons than they are for �ll mesons. For example, the
measured taste splitting between the root-mean-squared
(rms) Ds meson and the lightest (taste �5) Ds meson at
a � 0:12 fm is only about 10 MeV, while it is about
110 MeV when the taste �5 pion takes its physical mass.
Fortunately, it is possible to show in ASHM�PT that the
one-loop diagrams give taste-invariant masses to the
heavy-light mesons, even though the diagrams contain
pion propagators that break taste symmetry. This means
that all taste-violations in the heavy-light masses at NLO
come from analytic terms in the ASHM�PT Lagrangian
and may be analyzed straightforwardly.

There are other key differences between the light-light
and heavy-light chiral theories. The nonrelativistic nature
of the heavy quark in heavy-light systems breaks

space-time SOð4Þ invariance and thereby introduces the
four-velocity v� of the heavy quark explicitly into the
heavy-light chiral theory. Factors of v� can substitute for
derivatives in the chiral Lagrangian and thereby allow
type-B operators to have chiral representatives that are
the same order in the chiral expansion as those from
type-A operators. In addition, heavy-quark spin symmetry,
which produces (approximate) degeneracy of the pseudo-
scalar (e.g., D) and vector (e.g., D�) mesons, introduces
spin degrees of freedom into the chiral theory. The gamma
matrix �� can then play a role similar to that of v�, also

allowing type-B chiral operators to appear at the same
order as type-A operators. The presence of type-B opera-
tors is visible in the breaking of SOð4Þ symmetry for the
heavy-light �lc and �sc mesons in Fig. 6. The splittings
within SOð4Þ multiplets are particularly clear in the �sc
case, where the statistical errors are smaller.
One can go further and study the particular pattern of

taste splittings [both SOð4Þ invariant and SOð4Þ breaking]
for heavy-light mesons. For this discussion, we assume
that the lattice is sufficiently fine, or the charmed
quark is sufficiently improved, that it may be treated as
‘‘continuumlike,’’ and corrections of order ðamcÞ2 may be
neglected. This means that the contributions of the heavy
quark to the Symanzik effective theory are identical to those
of a light quark. In particular, the same four-quark operators
that dominated for light quarks, namely, [I � A], [T � A]
and [P� A], will be the dominant type-A operators in
the heavy-light case. Taste splittings of heavy-light
meson masses can come only from the ‘‘heavy-light’’
versions of these operators, ½I � A
hl, ½T � A
hl and
½P� A
hl, which couple heavy and light bilinears, e.g.,

½T � A
hl � a2ð �Q��� � �
5QÞð �q��� � �5
qÞ; (13)

where Q and q are the heavy- and light-quark fields,
respectively.
In ASHM�PT, we define the heavy-light meson field

Hj by
1

Hj ¼ 1þ 6v
2

½��D
�
�j þ i�5Dj
; (14)

where j labels the light flavor, Dj and D�
�j are fields that

annihilate pseudoscalar and vector mesons, respectively,
and Hj, Dj, and D�

�j are all 4� 4 matrices in taste space.

Then the four-quark operators above have the following
chiral representatives:

½I� A
hl ! a2 Trð �H�
5H�5
Þ; ½P� A
hl ! 0;

½T � A
hl ! a2 Trð �H����
5H����5
Þ; (15)

1For ease of comparison with the light-light case, we discuss
the heavy-light chiral theory in Euclidean space, in contrast to
what was done in Ref. [38].
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where Tr is the trace over Dirac, taste, and flavor indices.
Here we have set the pion field � to zero since we are
not interested in couplings to pions, and have omitted
two-trace terms, which vanish in that limit. The operator
½P� A
hl has no chiral representative in the heavy-light
case because ð1þ 6vÞ�5ð1þ 6vÞ ¼ 0. (Only ‘‘upper com-
ponents’’ of the heavy-quark field appear, while �5 couples
upper and lower components.) Performing the traces in
Eq. (15), the chiral operators give the relative contributions
to the heavy-light pseudoscalar masses shown in Table XII.
[The contributions from the two operators are proportional
to each other because ��� in Eq. (15) commutes with �5

from Eq. (14).] Note that the same equal-spacing rule and
P, A, T, V, I ordering that appeared for light-light mesons
also appears in the heavy-light case. This overall pattern
is evident in the heavy-light lattice data in Fig. 6, although
of course the taste-SOð4Þ breaking produces additional
structure.

For type-B operators, we have no experience from
the light-light case as to which one or ones might give
the largest contributions. However, we can guess that the
four-quark operator ½T� � A�
hl would be dominant, since

it is the only type-B operator that has the same spin and
taste as one of the dominant type-A operators. The chiral
operator generated is

½T� � A�
hl ! a2
X
�

Trð �H����5�H�����5Þ; (16)

where the same simplifications as in Eq. (15) have been
made. Table XIII shows the pattern of mass splittings
resulting from this operator. We have assumed that the
overall sign of the operator is the same as that of the
(net) type-A operator that generated Table XII. Note first
that the overall effect on the ‘‘centers of gravity’’ of the
SOð4Þ multiplets (average masses, taking into account
multiplicities) is the same as for the type-A operators in
Table XII.

The main implication of Table XIII, however, is the
pattern of SOð4Þ violations it predicts. In the axial taste
multiplet, the spatial component �i5 is raised relative to the

time component �05, but this situation is reversed in the
tensor and vector multiplets. Furthermore, the absolute
value of the time-space taste splitting is the same in each
of the three multiplets. This structure is exactly what is
observed in Fig. 6. We make the comparison with the
lattice data more quantitative in Fig. 7, where the
SOð4Þ-breaking mass differences are plotted for the �lc
and �sc cases. These mass differences have been calculated
directly with a jackknife procedure (rather than simply
propagating the errors from the differences with the
Goldstone meson shown in Fig. 6) in order to take advan-
tage of the correlations to reduce the error in the splittings.
In the �sc case, there is good evidence that the splittings
have the sign and relative magnitude predicted in
Table XIII. The �lc case is much noisier, but the signs and
magnitudes are at least consistent with expectations. Note
also that there is no evidence for a light-mass dependence
of the splittings, which is as expected at this order in
ASHM�PT.
There is no chiral effective theory to analyze the split-

tings for heavy-heavy mesons (the �cc case in Fig. 6).
Nevertheless, it is interesting to see that the SOð4Þ break-
ing, already clear in the �sc and �lc cases, gets very strong in
the �cc case. In particular, the spacings between some
members of different SOð4Þ multiplets (�0 and I, or �i0

and �i), are smaller than the splittings within multiplets.

VI. THERMALIZATION AND
AUTOCORRELATION TIMES

At the start of a new simulation, the system will not be in
equilibrium, and gauge configurations generated before it
has thermalized should not be included in measurements of
physical quantities. The amount of running discarded for
thermalization was determined from time histories of the

TABLE XII. Relative contributions to the masses of heavy-
light mesons of given tastes due to the (apparently) dominant
type-A operators, Eq. (15).

�5 �5� ��� �� I

�4 �2 0 þ2 þ4

TABLE XIII. Relative contributions to the masses of heavy-
light mesons of given tastes due to the (apparently) dominant
type-B operator, Eq. (16).

�5 �05 �i5 �ij �i0 �i �0 I

�6 �6 �2 �2 þ2 þ2 þ6 þ6

FIG. 7 (color online). Heavy-light taste splittings that break
SOð4Þ taste symmetry on the a � 0:15 fm, ml ¼ ms=5
ensemble. As in Fig. 6, �lc is a light-charm meson, and �sc is a
strange-charm meson. The errors in the squared-mass differences
have been calculated with a jackknife procedure. The numerical
values of these splittings are given in Table XV.
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plaquette and chiral condensate, and, when available later,
spectrum measurements. The equilibration time varies
among the ensembles, and is typically 200 time units, or
300 time units for ensembles starting far from equilibrium.
Figure 8 shows the approach to equilibrium in the en-
semble with a � 0:09 fm and ml ¼ ms=10, which started
from a configuration very far from equilibrium.

Because each successive gauge configuration is gener-
ated from the previous one via a molecular dynamics-based
evolution in ‘‘simulation time,’’ it will resemble the
previous configuration to some degree. This leads to cor-
relations between the values of various observables mea-
sured on configurations that are nearby in simulation time.
If these correlations are not taken into account, statistical
analysis of lattice data will tend to underestimate the
errors, since the standard methods for estimating covari-
ance matrices assume that each sample is uncorrelated.
We have chosen to save a gauge configuration every five
(for a > 0:09 fm) or six (for a � 0:09 fm) units of simu-
lation time, on the grounds that observables measured on
configurations separated by less than five units will be so
strongly correlated that the small amount of extra informa-
tion that can be gleaned from them is not worth the effort
required to extract it. For many observables, however, five
time units is not sufficient separation to eliminate auto-
correlations. The choice to save a configuration every five
or six time units represents a middle ground: two configu-
rations five units apart differ sufficiently that it is worth
saving them both but are correlated enough that these
correlations must be considered when conducting statisti-
cal analyses.
We have computed the autocorrelations between the

values of various observables on pairs of configurations
as a function of the simulation-time separation of the pair.
We define the autocorrelation of observable O at a simu-
lation time separation t as

CðO; tÞ ¼ hOiOji � hOiihOji
hO2i � hOi2

��������j¼iþt
; (17)

where the expectation values in the numerator are taken
over all pairs of configurations i, j separated by t units of

FIG. 8 (color online). Equilibration of the plaquette and �c c in
the ensemble with a � 0:09 fm and ml ¼ ms=10. The quantities
are rescaled so that their standard deviations, obtained from the
equilibrated part of the run, are one and shifted so that the
distributions center at 0, 10, and 20. Horizontal lines for each
quantity show the �1 standard deviation range of the equili-
brated quantity, obtained from averaging over simulation times
300 to 6300. (Only the first 1000 time units are shown here.) The
vertical line at T ¼ 300 shows where we began taking measure-
ments in analysis projects. This particular ensemble was started
from a configuration very far from equilibrium, so the warmup
effects are dramatic in this plot.

FIG. 9 (color online). Autocorrelations of various quantities in simulation time on the ensembles with ml ¼ ms=5 and a � 0:06 fm
(left) and a � 0:09 fm (right).
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molecular dynamics time. Note that this value is unity by
construction for t ¼ 0.

This definition suffices for observables like the average
plaquette, which has a uniquely measurable value on each
configuration. However, we use stochastic estimators to
measure the quark scalar condensates. Fluctuations in the
measured value of the scalar condensate between different
gauge configurations are partly due to physically mean-
ingful fluctuations of the gauge fields, and partly due to
fluctuations in the stochastic estimator. Naı̈ve application
of Eq. (17) to such quantities will underestimate the degree
of autocorrelation between the scalar condensates on
nearby lattices, since the numerator includes extra fluctua-
tions from the variation in the stochastic estimator on
different configurations, while the denominator does not.

Fortunately, on many ensembles, we have multiple
measurements using different stochastic sources for the
condensate. This enables us to disentangle the two sources
of fluctuation, by instead defining

CðO; t � 0Þ ¼ hOiOji � hOiihOji
hOaObi � hOi2

��������a�b;j¼iþt
; (18)

where a and b are different stochastic sources on the
same configuration. [A similar redefinition of the numera-
tor for the t ¼ 0 case recovers the result that CðO; 0Þ ¼ 1.]
This method obviously does not apply to ensembles where
only a single stochastic source has been run on each
configuration.

Figure 9 shows the autocorrelations of several observ-
ables in simulation time on two different ensembles. The
errors on the autocorrelation at different separations are
highly correlated. We present results for the topological
charge, the plaquette, the light and strange sea-quark
condensates, and the (pseudoscalar) pion propagator at a

separation corresponding roughly to the shortest length
used in fits to determine M�. On the finer of these
ensembles (a � 0:06 fm), the topological charge has an
extremely long autocorrelation length, followed by the
strange- and light-quark condensates; on the coarser one
(a � 0:09 fm), the autocorrelation length of the topologi-
cal charge is comparable to that of the condensates. The
autocorrelation length for the plaquette and the pion
propagator are quite short. Nonetheless, even for the pion
propagator, there are non-negligible correlations between
the propagator on lattices separated by only a few time
units, so some blocking procedure is necessary to correctly
estimate the covariance matrix for the propagator when
performing fits.
We have three gauge ensembles that differ only in their

spatial volume. They have a � 0:12 fm, ml ¼ ms=10, and
lattice volumes of 243 � 64, 323 � 64, and 403 � 64.
These ensembles provide us with an opportunity to exam-
ine whether the autocorrelation length depends on the
lattice volume; we observe no such dependence.
In Fig. 10 we show the autocorrelation function for

the strange-quark condensate at four lattice spacings with
light-quark masses ml ¼ ms=5 and ms=10. The ml ¼
ms=10 data suggest a trend toward increasing autocorrela-
tion time with decreasing lattice spacing, although the
noisy a � 0:06 fm data do not fall along that trend.
Indeed, the ml ¼ ms=5 data display this trend more
strongly, with a greatly enhanced autocorrelation time for
the finest ensemble. The measurements required to do a
similar comparison on the physical ml ensembles have not
been completed. Topological charge data are available for
all of the ml ¼ ms=5 ensembles, and a similar trend is
apparent there, including a greatly enhanced autocorrela-
tion time for the a � 0:06 fm, ml ¼ ms=5 ensemble.

FIG. 10 (color online). Lattice spacing dependence of autocorrelations in the strange-quark condensate for light sea-quark mass
ml ¼ ms=5 (left panel) and ml ¼ ms=10 (right panel).
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It should be noted that the autocorrelation times for this
ensemble, particularly for the topological charge, are so
long that they create difficulties in estimating the uncer-
tainty in the autocorrelation function.

As discussed in Sec. II, for large lattices there are
advantages to using the RHMD algorithm instead of
RHMC. Use of RHMD will naı̈vely result in a decrease
of autocorrelation lengths by a factor equal to the
Metropolis acceptance rate, generally about 70%. To test
for this effect, we compare autocorrelation lengths on the
RHMC and RHMD segments of the a � 0:09 fm, physical
light-quark mass ensemble that has roughly an equal num-
ber of time steps with each algorithm. In anticipation of
this decrease in the autocorrelation length we have saved a
gauge configuration every four time units in the RHMD
evolution, under the assumption that this corresponds
approximately to every six time units using RHMC. Such
a comparison is shown in Fig. 11. The expected decrease in
the autocorrelation length is visible in both the plaquette
and the topological charge. It would be natural to do a
similar analysis for the strange-quark condensate, as the
quantity typically used to probe for thermalization, but
those data are too noisy on this ensemble to make any
claim about the presence or absence of the expected effect.

VII. CONCLUSIONS

We are nearing completion of the first phase of our
project to generate gauge configurations with four flavors
of quarks with the HISQ action. In this phase of our effort,
we are generating ensembles with four values of the lattice
spacing ranging from 0.06 to 0.15 fm, and three values of
the light-quark mass, including the value for which the
Goldstone pion mass is equal to the physical pion mass.

As can be seen from Tables I and II, we have completed all
but three of the planned ensembles with a � 0:06 fm. We
hope to finish the remaining ones in the coming year. In the
second phase of this project we plan additional ensembles
at lattice spacings a � 0:045 fm and 0.03 fm. Most of the
HISQ ensembles have been generated using the RHMC
algorithm, but we have found that for a � 0:09 fm, the
gauge configurations are smooth enough that one can
use the RHMD algorithm, which results in a large savings
in computer resources. For a � 0:09 fm, the RHMD
algorithm introduces a systematic error, which is small
compared to other uncertainties, and, for all but a few
quantities, is smaller than the statistical error. Even for
the worst case given in Table VI, the systematic difference
between the RHMC and RHMD results is only 1.2 times
the statistical error.
We have determined the lattice spacings of the ensem-

bles by two different methods. In one, we extract the
Sommer parameter r1 in lattice units from the heavy-quark
potential, and in the other we calculate the leptonic decay
constant fp4s of a fictitious pseudoscalar meson with

valence quarks of mass 0:4ms, again in lattice units. Both
of these quantities can be determined quickly and accu-
rately for a given ensemble. To obtain the lattice spacing
in physical units, we must also determine r1 or fp4s in

physical units using one piece of experimental input.
Ultimately, this will be done on the HISQ lattices, but for
the moment, we take the physical results for r1 and fp4s
from our more extensive data on the asqtad ensembles. We
find excellent agreement between the two approaches.
We have calculated the topological susceptibility on five

of the HISQ ensembles, including two with physical mass
light quarks, and one with lattice spacing a � 0:06 fm. We
see from Fig. 2 that the simulation samples a wide range of

FIG. 11 (color online). Dependence of autocorrelation length on whether the Metropolis accept/reject step is present (RHMC) or
absent (RHMD) in gauge generation, on the ensemble with a � 0:09 fm, ml ¼ ms=27. The left plot shows the plaquette, and the right
plot shows the topological charge.
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values for the topological charge, and does not appear to
become stuck in any sector. The topological susceptibility
provides an excellent illustration of the improvement of the
HISQ ensembles relative to the asqtad ones, because it is
calculated without involving valence quarks. Figure 3
shows this improvement, and also demonstrates the de-
crease in the susceptibility with pion mass in accordance
with the expectation from chiral perturbation theory.

Taste-symmetry breaking for pseudoscalar mesons is
discussed in detail in Sec. V, and a variety of results for
it are tabulated in the Appendix. We find that the �ll, �ls, and
�ss systems can be understood in terms of S�PT. They all
exhibit an accidental SOð4Þ symmetry, but some small

breaking of this symmetry is present in the �ss system at
the coarsest lattice spacing. For the �lc and �sc systems,
S�PT is not applicable, and the appropriate effective field
theory is ‘‘all staggered heavy meson chiral perturbation
theory,’’ ASHM�PT. SOð4Þ symmetry is broken, but the
pattern of taste splittings can be understood using
ASHM�PT. There is no chiral effective theory available
to analyze the �cc system. We see from the data that the
breaking of SOð4Þ symmetry is very strong for this case,
but the relative taste splittings are much smaller than in the
light meson sector. Indeed, the difference between the rms
pseudoscalar mass and the mass of the taste �5 pseudosca-
lar (the Goldstone pion in the case of the �ll system) is

TABLE XIV. Taste splittings for pseudoscalars with equal valence-quark masses on the ms=5 ensembles. These are the splittings for
the pseudoscalar mesons with valence quark masses equal to the light sea-quark mass, ms=5, equal to the sea strange-quark mass, and
equal to the sea charm-quark mass. For each non-Goldstone taste � we tabulate the squared mass difference r21a

2�� ¼ r21ðM2
� �M2

5Þ,
where the errors are statistical only. ‘‘j’’ indicates the error comes from a jackknife analysis, and ‘‘s’’ indicates the error is just the error
from the mass of the non-Goldstone pion. This is a reasonable approximation of the true statistical error in the squared-mass splitting
when either (i) the uncertainty in the Goldstone pion mass is much smaller than that of the non-Goldstone pion, and/or (ii) the
Goldstone and non-Goldstone pion masses are strongly correlated.

�a (fm) �0�5 �i�5 �i�0 �i�j �0 �i 1

Light-light

0.15 0.1000(71j) 0.1033(8j) 0.1959(29j) 0.1901(57j) 0.2855(46j) 0.2872(114j) 0.3678(441j)

0.12 0.0553(28s) 0.0542(11s) 0.1031(21s) 0.1013(48s) 0.1516(32s) 0.1616(72s) 0.2068(172s)

0.09 0.0180(19j) 0.0180(5j) 0.0335(10j) 0.0328(26j) 0.0493(14j) 0.0485(32j) 0.0631(51j)

0.06 0.0031(5j) 0.0033(1j) 0.0062(2j) 0.0064(6j) 0.0090(3j) 0.0093(7j) 0.0128(7j)

Strange-strange

0.15 0.0948(14s) 0.1009(12s) 0.1853(19s) 0.1806(19s) 0.2626(24s) 0.2504(29s) 0.3186(50s)

0.12 0.0464(23s) 0.0486(15s) 0.0932(17s) 0.0897(23s) 0.1320(23s) 0.1303(23s) 0.1674(36s)

0.09 0.0212(47s) 0.0157(39s) 0.0283(40s) 0.0315(47s) 0.0386(48s) 0.0458(48s) 0.0601(56s)

0.06 0.0028(10j) 0.0027(1j) 0.0049(4j) 0.0059(11s) 0.0071(4j) 0.0071(5j) 0.0092(6j)

Charm-charm

0.15 0.3229(25s) 0.5432(27s) 0.7847(33s) 0.6354(27s) 0.9431(37s) 0.8224(33s) 0.9617(41s)

0.12 0.1394(34s) 0.2227(34s) 0.3446(39s) 0.2754(36s) 0.4324(41s) 0.3706(39s) 0.4485(44s)

0.09 0.0486(78s) 0.0719(78s) 0.1129(85s) 0.1000(74s) 0.1410(85s) 0.1355(85s) 0.1748(91s)

0.06 0.0143(21s) 0.0189(3j) 0.0317(6j) 0.0275(21s) 0.0423(7j) 0.0376(6j) 0.0462(7j)

TABLE XV. Taste splittings for the heavy-light pseudoscalars on the a � 0:15 fm ms=5 ensemble. Since the breaking of the
approximate SOð4Þ symmetry is important here, and all the masses are correlated so naive combination of errors is incorrect, we
tabulate all of the splittings. As in Table XIV, we tabulate r21ðM2

�2
�M2

�1
Þ, where �2 and �1 are the tastes in the row and column labels.

Since this matrix is antisymmetric, we have placed the light-charm splittings in the upper triangle and the strange-charm splittings in
the lower triangle. All errors are estimated using a jackknife procedure. The SOð4Þ breaking splittings are shown in bold.

Light-charm

�5 �0�5 �i�5 �i�0 �i�j �0 �i 1
�5 � � � 0.088(17) 0.118(17) 0.164(23) 0.137(19) 0.205(29) 0.151(28) 0.185(31)

�0�5 �0:085ð4Þ � � � 0:031ð20Þ 0.076(26) 0.049(19) 0.117(30) 0.063(31) 0.097(33)

�i�5 �0:126ð4Þ �0:041ð4Þ � � � 0.045(23) 0.019(20) 0.086(30) 0.033(29) 0.066(35)

�i�0 �0:205ð6Þ �0:120ð7Þ �0:079ð6Þ � � � �0:027ð25Þ 0.041(26) �0:013ð24Þ 0.021(29)

�i�j �0:174ð5Þ �0:088ð4Þ �0:048ð5Þ 0:031ð8Þ � � � 0.068(37) 0.014(33) 0.048(35)

�0 �0:266ð8Þ �0:181ð8Þ �0:140ð7Þ �0:061ð5Þ �0:092ð10Þ � � � �0:054ð29Þ �0:020ð26Þ
�i �0:229ð7Þ �0:144ð7Þ �0:103ð6Þ �0:025ð5Þ �0:056ð8Þ 0:036ð6Þ � � � 0.034(33)

1 �0:290ð8Þ �0:205ð8Þ �0:164ð8Þ �0:085ð6Þ �0:116ð9Þ �0:024ð7Þ �0:060ð6Þ � � �
Strange-charm
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61 Mev, 26 MeV, and 19 MeV for the �ll, �ss, and �cc
systems, respectively, on the a � 0:12 fm, ml ¼ ms=5
ensemble.

We save a gauge configuration every five molecular
dynamics time units for ensembles with a > 0:09 fm, and
every six time units for ensembles with a � 0:09 fm time
units. Successive gauge configurations are, of course, corre-
lated, and these correlations must be taken into account
when analyzing the statistical uncertainties of measure-
ments. The autocorrelation length depends on the quantity
being measured, the lattice spacing, and the light-quark
mass. A number of examples are given in Sec. VI.

We plan to make these gauge ensembles publicly
available, and we believe that they will be useful for the
study of a wide range of problems in high-energy and
nuclear physics.
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APPENDIX: TASTE SPLITTING OF
PSEUDOSCALAR MESONS

In Tables XIVand XV, we tabulate the taste splittings of
the pseudoscalar mesons made from combinations of light,
strange, and charm quarks.
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