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We study a chiral Lagrangian that describes the two- and three-body decays of a pseudoscalar glueball into

scalar and pseudoscalarmesons.Thevariousbranching ratios are a parameter-free predictionof our approach.

We compute the decay channels for a pseudoscalar glueball with a mass of 2.6 GeV, as predicted by lattice

QCDin the quenchedapproximation,which is in the reachof thePANDAexperiment at theupcomingFacility

for Antiproton and Ion Research. For completeness, we also repeat the calculation for a glueball mass of

2.37 GeV that corresponds to the mass of the resonance Xð2370Þ measured in the BESIII experiment.
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I. INTRODUCTION

The fundamental symmetry underlying quantum chro-
modynamics (QCD), the theory of strong interactions, is
the exact local SUð3Þc color symmetry. As a consequence
of the non-Abelian nature of this symmetry, the gauge
fields of QCD, the gluons, are colored objects and therefore
interact strongly with each other. Because of confinement,
one expects that gluons can also form colorless, or
‘‘white,’’ states which are called glueballs.

The first calculations of glueball masses were based on
the bag-model approach [1]. Later on, the rapid improve-
ment of lattice QCD allowed for precise simulations of
Yang-Mills theory, leading to a determination of the full
glueball spectrum [2]. However, in full QCD (i.e., gluons
plus quarks), the mixing of glueball and quark-antiquark
configurations with the same quantum number occurs,
rendering the identification of the resonances listed in the
Particle Data Group [3] more difficult. The search for states
that are (predominantly) glueball represents an active ex-
perimental and theoretical area of research; see Ref. [4]
and references therein. The reason for these efforts is that a
better understanding of the glueball properties would
represent an important step in the comprehension of the
nonperturbative behavior of QCD. However, although up
to now some glueball candidates exist (see below), no
state that is (predominantly) glueball has been unambigu-
ously identified.

In general, a glueball state should fulfill two properties
regarding its decays: it exhibits ‘‘flavor blindness,’’ because
the gluons couplewith the same strength to all quark flavors,
and it is narrow, because QCD in the large-Nc limit shows
that all glueball decay widths scale asN�2

c , which should be
compared to the N�1

c scaling law for a quark-antiquark
state. The lightest glueball state predicted by lattice QCD
simulations is a scalar-isoscalar state (JPC ¼ 0þþ) with a
mass of about 1.7GeV [2]. The resonance f0ð1500Þ shows a
flavor-blind decay pattern and is narrow, thus representing
a good candidate for a state that is (predominantly) a
scalar glueball. Also the resonance f0ð1710Þ is a glueball

candidate because its mass is very close to lattice QCD
predictions, and it is copiously produced in the gluon-
rich decay of the J=c meson. Both scenarios have been
investigated in a variety of works, e.g., Refs. [5–9] and
references therein, in which mixing patterns involving the
scalar resonances f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ are
considered. In particular, in Ref. [9] the decays of the
J=c have been included in a phenomenological fit and
both assignments turn out to be consistent, but slightly
favor a predominant gluonic amount in f0ð1500Þ.
The second lightest lattice-predicted glueball state has

tensor quantum numbers (JPC ¼ 2þþ) and a mass of about
2.2 GeV; a good candidate could be the very narrow
resonance fJð2200Þ [10,11], if the total spin of the latter
will be experimentally confirmed to be J ¼ 2.
The third least massive glueball predicted by lattice

QCD (in the quenched approximation) has pseudoscalar
quantum numbers (JPC ¼ 0�þ) and a mass of about
2.6 GeV. Quite remarkably, most theoretical works inves-
tigating the pseudoscalar glueball did not take into account
this prediction of Yang-Mills lattice studies but concen-
trated their search around 1.5 GeV in connection with the
isoscalar-pseudoscalar resonances �ð1295Þ, �ð1405Þ, and
�ð1475Þ. A candidate for a predominantly light pseudo-
scalar glueball is the middle-lying state �ð1405Þ due to the
fact that it is largely produced in (gluon-rich) J=c radia-
tive decays and is missing in �� reactions [12]. In this
framework the resonances �ð1295Þ and �ð1475Þ represent
radial excitations of the resonances � and �0. Indeed, in
relation to � and �0, a lot of work has been done in
determining the gluonic amount of their wave functions.
The KLOE Collaboration found that the pseudoscalar
glueball fraction in the mixing of the pseudoscalar-
isoscalar states � and �0 can be large (�14%) [13], but
the theoretical work of Ref. [14] found that the glueball
amount in � and �0 is compatible with zero (see, however,
also Ref. [15]).
In this work we study the decay properties of a pseudo-

scalar glueball state whose mass lies, in agreement with
lattice QCD, between 2 and 3 GeV. Following Ref. [16] we
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write down an effective chiral Lagrangian that couples the

pseudoscalar glueball field (denoted as ~G) to scalar and
pseudoscalar mesons. We can thus evaluate the widths for

the decays ~G ! PPP and ~G ! PS, where P and S stand
for pseudoscalar and scalar quark-antiquark states. The
pseudoscalar state P refers to the well-known light
pseudoscalars f�;K; �; �0g, while the scalar state S refers
to the quark-antiquark nonet of scalars above 1 GeV:
fa0ð1450Þ;K?

0 ð1430Þ;f0ð1370Þ; f0ð1500Þ or f0ð1710Þg. The
reason for the latter assignment is a growing consensus
that the chiral partners of the pseudoscalar states should
not be identified with the resonances below 1 GeV; see
Refs. [6,17,18] for results within the so-called extended
linear sigma model and also other theoretical works in
Ref. [5,19–21] (and references therein).

The chiral Lagrangian that we construct contains one
unknown coupling constant which cannot be determined
without experimental data. However, the branching ratios
can be unambiguously calculated and may represent a
useful guideline for experimental search of the pseudosca-
lar glueball in the energy region between 2 and 3 GeV. In
this respect, the planned PANDA experiment at the
Facility for Antiproton and Ion Research [22] will be
capable of scanning the mass region above 2.5 GeV. The
experiment is based on proton-antiproton scattering, thus

the pseudoscalar glueball ~G can be directly produced as an
intermediate state. We shall therefore present our results
for the branching ratios for a putative pseudoscalar glueball
with a mass of 2.6 GeV.

On the other hand, it is also possible that the pseudo-

scalar glueball ~G has a mass that is a bit lower than the
lattice QCD prediction and that it has been already
observed in the BESIII experiment where pseudoscalar
resonances have been investigated in J=c decays [23]. In
particular, the resonance Xð2370Þ, which has been clearly
observed in the �þ���0 channel, represents a good
candidate, because it is quite narrow (� 80 MeV) and its
mass lies just below the lattice QCD prediction. For this
reason we repeat our calculation for a pseudoscalar glue-
ball mass of 2.37 GeV and thus make predictions for the
resonance Xð2370Þ, which can be tested in the near future.

This paper is organized as follows. In Sec. II we present
the effective Lagrangian coupling the pseudoscalar glue-
ball to scalar and pseudoscalar quark-antiquark degrees of
freedom, and we calculate the branching ratios for the
decays into PPP and SP. In Sec. III we present our con-
clusions and an outlook.

II. THE EFFECTIVE LAGRANGIAN

Following Ref. [16] we introduce a chiral Lagrangian that

couples the pseudoscalar glueball ~G � jggi with quantum
numbers JPC ¼ 0�þ to scalar and pseudoscalar mesons

Lint
~G
¼ ic ~G�

~Gðdet�� det�yÞ; (1)

where c ~G� is a coupling constant,

� ¼ ðSa þ iPaÞta (2)

represents the multiplet of scalar and pseudoscalar quark-
antiquark states, and ta are the generators of the group
UðNfÞ. In this work we consider the case Nf ¼ 3, and the

explicit representation of the scalar and pseudoscalar me-
sons reads [18,24]

�¼ 1ffiffiffi
2

p

ð�Nþa0
0
Þþið�Nþ�0Þffiffi

2
p aþ0 þ i�þ Kþ

S þ iKþ

a�0 þ i�� ð�N�a0
0
Þþið�N��0Þffiffi

2
p K0

Sþ iK0

K�
S þ iK� �K0

Sþ i �K0 �Sþ i�S

0
BBBB@

1
CCCCA:

(3)

Under ULð3Þ �URð3Þ chiral transformations the multiplet

� transforms as � ! UL�Uy
R where UL and UR are Uð3Þ

matrices. The determinant of� is invariant under SUð3ÞL �
SUð3ÞR but not under Uð1ÞA. On the other hand, the pseu-

doscalar glueball field ~G is invariant under Uð3ÞL �Uð3ÞR
transformations. Under parity,� ! �y and ~G ! � ~G, thus
the effective Lagrangian of Eq. (1) is invariant under
SUð3ÞL � SUð3ÞR and under parity. Notice that Eq. (1) is
not invariant under UAð1Þ, in agreement with the so-called
axial anomaly in the isoscalar-pseudoscalar sector. The rest
of the mesonic Lagrangian, which describes the interactions
of� and also includes (axial-)vector degrees of freedom, is
presented in Part 1 of the Appendix. For more details, see
Refs. [18,24,25].
The assignment of the quark-antiquark fields in this

paper is as follows. (i) In the pseudoscalar sector the fields
~� and K represent the pions or the kaons, respectively [3].

The bare fields �N � j �uuþ �ddi= ffiffiffi
2

p
and �S � j�ssi are the

nonstrange and strange contributions of the physical states
� and �0 [3]:

� ¼ �N cos’þ �S sin’;

�0 ¼ ��N sin’þ �S cos’;
(4)

where ’ ’ �44:6� is the mixing angle [24]. Using other
values for the mixing angle, e.g., ’ ¼ �36� [26] or ’ ¼
�41:4�, as determined by the KLOE Collaboration [13],
affects the presented results only marginally. (ii) In the
scalar sector we assign the field ~a0 to the physical isotriplet
state a0ð1450Þ and the scalar kaon fields KS to the reso-
nance K?

0 ð1430Þ. As a first approximation, the nonstrange

bare field �N � j �uuþ �ddi= ffiffiffi
2

p
is assigned to the physical

isoscalar resonance f0ð1370Þ and the bare field �S � j�ssi
is assigned either to f0ð1710Þ or to f0ð1500Þ. In a more
complete framework, �N , �S and a bare scalar glueball
fieldGmix and generate the physical resonances f0ð1370Þ,
f0ð1500Þ, and f0ð1710Þ; see the discussion below.
In order to evaluate the decays of the pseudoscalar

glueball ~G we have to take into account that the sponta-
neous breaking of chiral symmetry takes place, which
implies the need of shifting the scalar-isoscalar fields by
their vacuum expectation values �N and �S,
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�N ! �N þ�N and �S ! �S þ�S: (5)

In addition, when (axial-)vector mesons are present in the
Lagrangian, one also has to ‘‘shift’’ the axial-vector fields
and to define the wave-function renormalization constants
of the pseudoscalar fields:

~� ! Z� ~�; Ki ! ZKK
i; �j ! Z�j

�j; (6)

where i ¼ 1, 2, 3, 4 runs over the four kaonic fields and
j ¼ N, S. The numerical values of the renormalization
constants are Z� ¼ 1:709, ZK ¼ 1:604, ZKS

¼ 1:001,

Z�N
¼ Z�, and Z�S

¼ 1:539 [24]. Moreover, the conden-

sates �N and �S read

�N ¼ Z�f� ¼ 0:158 GeV;

�S ¼ 2ZKfK ��Nffiffiffi
2

p ¼ 0:138 GeV;

(7)

where the standard values f� ¼ 0:0922 GeV and
fK ¼ 0:110 GeV have been used [3]. Once the operations
in Eqs. (5) and (6) have been performed, the Lagrangian in
Eq. (1) contains the relevant tree-level vertices for the

decay processes of ~G; see the Appendix (Part 2).

The branching ratios of ~G for the decays into three
pseudoscalar mesons are reported in Table I for both
choices of the pseudoscalar masses, 2.6 and 2.37 GeV
(relevant for PANDA and BESIII experiments, respec-
tively). The branching ratios are presented relative to the
total decay width of the pseudoscalar glueball �tot

~G
.

(For details of the calculation of the three-body decay we
refer to Part 3 of the Appendix.)

Next we turn to the decay process ~G ! PS. The results,
for both choices of M ~G, are reported in Table II for the
cases in which the bare resonance �S is assigned to
f0ð1710Þ or to f0ð1500Þ.

Concerning the decays involving scalar-isoscalar me-
sons, one should go beyond the results of Table II by
including the full mixing pattern above 1 GeV, in which
the resonances f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ are
mixed states of the bare quark-antiquark contributions

�N � j �uuþ �ddi= ffiffiffi
2

p
and �S and a bare scalar glueball

field G. This mixing is described by an orthogonal
ð3� 3Þ matrix [5–9]. In view of the fact that a complete
evaluation of this mixing in the framework of our chiral
approach has not yet been done, we use the two solutions
for the mixing matrix of Ref. [7] and the solution of
Ref. [8] in order to evaluate the decays of the pseudoscalar
glueball into the three scalar-isoscalar resonances
f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ. In all three solutions
f0ð1370Þ is predominantly described by the bare configu-

ration �N � j �uuþ �ddi= ffiffiffi
2

p
, but the assignments for the

other resonances vary: in the first solution of Ref. [7] the
resonance f0ð1500Þ is predominantly gluonic, while in
the second solution of Ref. [7] and the solution of Ref. [8]
the resonance f0ð1710Þ has the largest gluonic content. The
results for the decay of the pseudoscalar glueball into scalar-
isoscalar resonances are reported in Table III.
In Fig. 1 we show the behavior of the total decay

width �tot
~G
¼ � ~G!PPP þ � ~G!PS as function of the coupling

constant c ~G� for both choices of the pseudoscalar glueball

mass. (We assume here that other decay channels, such as
decays into vector mesons or baryons are negligible.) In the
case of M ~G ¼ 2:6 GeV, one expects from large-Nc con-
siderations that the total decay width �tot

~G
& 100 MeV. In

fact, as discussed in the Introduction, the scalar glueball
candidate f0ð1500Þ is roughly 100 MeV broad and the
tensor candidate fJð2220Þ is even narrower. In the present
work, the condition �tot

~G
& 100 MeV implies that c ~G� & 5.

Moreover, in the case of M ~G ¼ 2:37 GeV in which the

identification ~G � Xð2370Þ has been made, we can indeed
use the experimental knowledge on the full decay width
(�Xð2370Þ ¼ 83� 17 MeV [23]) to determine the coupling

constant to be c ~G� ¼ 4:48� 0:46. (However, we also refer
to the recent work of Ref. [27], where the possibility of a
broad pseudoscalar glueball is discussed.)
Some comments are in order:
(i) The results depend only slightly on the glueball

mass, thus the two columns of Tables I and II are
similar. It turns out that the channel KK� is the
dominant one (almost 50%). Also the ��� and

TABLE I. Branching ratios for the decay of the pseudoscalar
glueball ~G into three pseudoscalar mesons.

Quantity

Case (i):

M ~G ¼ 2:6 GeV
Case (ii):

M ~G ¼ 2:37 GeV

� ~G!KK�=�
tot
~G

0.049 0.043

� ~G!KK�0=�tot
~G

0.019 0.011

� ~G!���=�
tot
~G

0.016 0.013

� ~G!���0=�tot
~G

0.0017 0.00082

� ~G!��0�0=�tot
~G

0.00013 0

� ~G!KK�=�
tot
~G

0.47 0.47

� ~G!���=�
tot
~G

0.16 0.17

� ~G!�0��=�
tot
~G

0.095 0.090

TABLE II. Branching ratios for the decay of the pseudoscalar
glueball ~G into a scalar and a pseudoscalar meson. In the last two
rows �S is assigned to f0ð1710Þ or to f0ð1500Þ (values in the
parentheses).

Quantity

Case (i):

M ~G ¼ 2:6 GeV
Case (ii):

M ~G ¼ 2:37 GeV

� ~G!KKS
=�tot

~G
0.060 0.070

� ~G!a0�
=�tot

~G
0.083 0.10

� ~G!��N
=�tot

~G
0.0000026 0.0000030

� ~G!�0�N
=�tot

~G
0.039 0.026

� ~G!��S
=�tot

~G
0.012 (0.015) 0.0094 (0.017)

� ~G!�0�S
=�tot

~G
0 (0.0082) 0 (0)
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�0�� channels are sizable. On the contrary, the two-
body decays are subdominant and reach only 20% of
the full mesonic decay width.

(ii) The decay of the pseudoscalar glueball into three
pions vanishes:

� ~G!��� ¼ 0: (8)

This result represents a further testable prediction of
our approach.

(iii) The decays of the pseudoscalar glueball into a
scalar-isoscalar meson amount only to 5% of the
total decay width. Moreover, the mixing pattern in
the scalar-isoscalar sector has a negligible influ-

ence on the total decay width of ~G. Nevertheless,
in the future it may represent an interesting and
additional test for scalar-isoscalar states.

(iv) Once the shifts of the scalar fields have been per-
formed, there are also bilinear mixing terms of the

form ~G�N and ~G�S that lead to a nondiagonal mass
matrix. In principle, one should take these terms
into account, in addition to the already mentioned

�N�S mixing, and solve a three-state mixing prob-
lem in order to determine the masses of the pseudo-
scalar particles. This will also affect the calculation
of the decay widths. However, due to the large mass

difference of the bare glueball fields ~G to the other
quark-antiquark pseudoscalar fields, the mixing of
~G turns out to be very small in the present work, and
can be safely neglected. For instance, it turns out that
the mass of the mixed state which is predominantly
glueball is (at most) just 0.002 GeV larger than the
bare mass M ~G ¼ 2:6 GeV.

(v) If a standard linear sigma model without (axial-)
vector mesons is studied, the replacements Z� ¼
ZK ¼ Z�N

¼ Z�S
¼ 1 need to be performed. Most

of the results of the branching ratios for the three-
body decay are qualitatively, but not quantitatively,
similar to the values of Table I (variations of about
25%–30%). However, the branching ratios for the
two-body decay change sizably with respect to the
results of Table II. This fact shows once more that
the inclusion of (axial-)vector degrees of freedom
has sizable effects also concerning the decays of the
pseudoscalar glueball.

(vi) In principle, the three-body final states for the
decays shown in Table I can also be reached
through a sequential decay from the two-body final
states shown in Table II, where the scalar particle S
further decays into PP, for instance, K?

0 ð1430Þ !
K�. There are then two possible decay amplitudes,
one from the direct three-body decay and one from
the sequential decay, which have to be added co-
herently before taking the modulus square to obtain
the total three-body decay width. Summing the
results shown in Tables I and II gives a first estimate
(which neglects interference terms) for the magni-
tude of the total three-body decay width. We have
verified that the correction from the interference
term to this total three-body decay width in a given
channel is at most of the order of 10% for M ~G ¼
2:6 GeV and 15% for M ~G ¼ 2:37 GeV. For a full

1 2 3 4 5 6
c

G

0.05

0.10

0.15

to
t

G
eV

FIG. 1 (color online). Solid (blue) line: Total decay width of
the pseudoscalar glueball with the bare mass M ~G ¼ 2:6 GeV as

function of the coupling c ~G�. Dashed (red) line: Same curve for

M ~G ¼ 2:37 GeV.

TABLE III. Branching ratios for the decays of the pseudoscalar glueball ~G into � and �0,
respectively, and one of the scalar-isoscalar states: f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ by using
three different mixing scenarios of these scalar-isoscalar states reported in Refs. [7,8]. The mass
of the pseudoscalar glueball is M ~G ¼ 2:6 GeV and M ~G ¼ 2:37 GeV (values in the brackets),

respectively.

Quantity Solution 1 of Ref. [7] Solution 2 of Ref. [7] Solution of Ref. [8]

� ~G!�f0ð1370Þ=�
tot
~G

0.00093 (0.0011) 0.00058 (0.00068) 0.0044 (0.0052)

� ~G!�f0ð1500Þ=�
tot
~G

0.000046 (0.000051) 0.0082 (0.0090) 0.011 (0.012)

� ~G!�f0ð1710Þ=�
tot
~G

0.011 (0.0089) 0.0053 (0.0042) 0.00037 (0.00029)

� ~G!�0f0ð1370Þ=�
tot
~G

0.038 (0.026) 0.033 (0.022) 0.043 (0.029)

� ~G!�0f0ð1500Þ=�
tot
~G

0.0062 (0) 0.00020 (0) 0.00013 (0)

� ~G!�0f0ð1710Þ=�
tot
~G

0 (0) 0 (0) 0 (0)
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understanding of the contribution of the various
decay amplitudes to the final three-body state, one
needs to perform a detailed study of the Dalitz plot
for the three-body decay.

III. CONCLUSIONS AND OUTLOOK

In this work we have presented a chirally invariant
effective Lagrangian describing the interaction of the
pseudoscalar glueball with scalar and pseudoscalar mesons
for the three-flavor case Nf ¼ 3. We have studied the

decays of the pseudoscalar glueball into three pseudoscalar
quark-antiquark fields and into a scalar and pseudoscalar
quark-antiquark field.

The branching ratios are parameter free once the mass of
the glueball has been fixed. We have considered two pos-
sibilities. (i) In agreement with lattice QCD in the
quenched approximation we have chosen M ~G¼2:6GeV.
The existence and the decay properties of such a hypo-
thetical pseudoscalar resonance can be tested in the up-
coming PANDA experiment [22]. (ii) We assumed that the
resonance Xð2370Þ, measured in the experiment BESIII, is
(predominantly) a pseudoscalar glueball state, and thus we
have also used a mass of 2.37 GeV [23]. The results for
both possibilities have been summarized in Tables I and II:
we predict that KK� is the dominant decay channel,
followed by (almost equally large) ��� and �0�� decay
channels. On the contrary, the decay into three pions is
predicted to vanish. In the case of BESIII, by measuring the
branching ratio for other decay channels than the measured
�0��, one could ascertain if Xð2370Þ is (predominantly) a

pseudoscalar glueball. In the case of PANDA, our results
may represent a useful guideline for the search of the
pseudoscalar glueball.
Future studies should consider possible mixing of the

pseudoscalar glueball with charmonia states and an im-
proved description of the scalar-isoscalar sector. New lattice
results for the pseudoscalar glueball mass, which go beyond
the quenched approximation and include the effect of dy-
namical fermions, would be very useful for model building.
Moreover, the mechanism of the glueball production via
proton-antiproton annihilation using the so-called mirror
assignment [28] represents an interesting outlook [29].
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APPENDIX: DETAILS OF THE CALCULATION

1. The full mesonic Lagrangian

The chirally invariantUðNfÞL �UðNfÞR Lagrangian for

the low-lying mesonic states with (pseudo)scalar and
(axial-)vector quantum numbers has the form

Lmes ¼ Tr½ðD��ÞyðD��Þ� �m2
0 Trð�y�Þ � �1½Trð�y�Þ�2 � �2 Trð�y�Þ2 � 1

4
Tr½ðL��Þ2 þ ðR��Þ2�

þ Tr

��
m2

1

2
þ �

�
ðL2

� þ R2
�Þ
�
þ Tr½Hð�þ�yÞ� þ c1ðdet�� det�yÞ2 þ i

g2
2
fTrðL��½L�; L��Þ

þ TrðR��½R�; R��Þg þ h1
2

Trð�y�ÞTrðL2
� þ R2

�Þ þ h2 Tr½jL��j2 þ j�R�j2� þ 2h3 TrðL��R��yÞ; (A1)

where

L� ¼ 1ffiffiffi
2

p

!
�
Nþ	�0ffiffi

2
p þ f

�
1N
þa

�0
1ffiffi

2
p 	�þ þ a�þ

1 K?�þ þ K�þ
1

	�� þ a��
1

!
�
N�	�0ffiffi

2
p þ f

�
1N
�a

�0
1ffiffi

2
p K?�0 þ K�0

1

K?�� þ K��
1

�K?�0 þ �K�0
1 !�

S þ f�1S

0
BBBBB@

1
CCCCCA

and

R� ¼ 1ffiffiffi
2

p

!
�
Nþ	�0ffiffi

2
p � f�

1N
þa�0

1ffiffi
2

p 	�þ � a
�þ
1 K?�þ � K

�þ
1

	�� � a
��
1

!
�
N�	�0ffiffi

2
p � f

�
1N
�a

�0
1ffiffi

2
p K?�0 � K

�0
1

K?�� � K��
1

�K?�0 � �K�0
1 !�

S � f�1S

0
BBBBB@

1
CCCCCA:

For details see Refs. [6,18,24,25]. In the present context we are interested in the wave-function renormalization constants
Zi introduced in Eq. (6). Their explicit expressions read [24,25]
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2. Explicit form of the Lagrangian in Eq. (1)

After performing the field transformations in Eqs. (5) and (6), the effective Lagrangian (1) takes the form
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The latter expression is used to determine the coupling of the field ~G to scalar and pseudoscalar mesons.

3. Three-body decay

For completeness we report the explicit expression for the three-body decay width for the process ~G ! P1P2P3 [3]:

� ~G!P1P2P3
¼ s ~G!P1P2P3
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and
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2 ¼

m2
12 �m2

1 þm2
2

2m12

; E�
3 ¼

M2
~G
�m2

12 �m2
3

2m12
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The quantities m1, m2, m3 refer to the masses of the three pseudoscalar states P1, P2, and P3, M ~G!P1P2P3
is the

corresponding tree-level decay amplitude, and s ~G!P1P2P3
is a symmetrization factor (it equals 1 if all P1, P2, and P3

are different, it equals 2 for two identical particles in the final state, and it equals 6 for three identical particles in the final
state). For instance, in the case ~G ! K�Kþ�0 one has j�iM ~G!K�Kþ�0 j2 ¼ 1

4 c
2
~G�
Z4
KZ

2
�, m1 ¼ m2 ¼ mK ¼ 0:494 GeV,

m3 ¼ m�0 ¼ 0:135 GeV, and M ~G ¼ 2:6 GeV. Then,

� ~G!K�Kþ�0 ¼ 0:00041c2~G�
½GeV�: (A8)

The full decay width into the channel KK� results from the sum

� ~G!KK� ¼ � ~G!K�Kþ�0 þ � ~G!K0 �K0�0 þ � ~G! �K0Kþ�� þ � ~G!K0K��þ ¼ 6� ~G!K�Kþ�0 : (A9)

The other decay channels can be calculated in a similar way.
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