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The diffractive photon production at large momentum transfer and large energies is a probe

of the parton dynamics of the diffractive exchange. In this paper we revisit the leading order

Balitsky-Fadin-Kuraev-Lipatov equation approach for this process and estimate, for the first time,

the differential and total cross sections considering the next-to-leading order corrections for the

Balitsky-Fadin-Kuraev-Lipatov characteristic function. We obtain a reasonable agreement with the

DESY-HERA data.

DOI: 10.1103/PhysRevD.87.054035 PACS numbers: 12.38.Bx, 13.60.Hb

I. INTRODUCTION

The description of exclusive diffractive processes
has been proposed as a probe of the Quantum
Chromodynamics (QCD) dynamics in the high energy
limit (For recent reviews see, e.g., Ref. [1]). It is expected
that the study of these processes provides insight into the
parton dynamics of the diffractive exchange when a hard
scale is present. In particular, the diffractive vector meson
and photon production at large momentum transfer is ex-
pected to probe the QCD Pomeron, which is described
by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation
[2–5]. In the last years, the H1 and ZEUS Collaborations
at DESY-HERA have measured the exclusive production
of �, �, J=� and � with hadron dissociation and large
values of jtj, the square of the four-momentum trans-
ferred across the associated rapidity gap. The experimen-
tal data for vector meson production are quite well
described in terms of the BFKL formalism at leading
order [6–11]. In contrast, for photon production, the
analysis presented in Ref. [12] indicates that this ap-
proach describes the energy dependence of the cross
section, but it is unable to describe its jtj dependence.
It is important to emphasize that in Ref. [12] the free
parameters present in the BFKL formalism at leading
order have been constrained using the experimental
data for the total cross section, and the differential cross
section was predicted and compared with the data. This
procedure is the opposite of that used in Refs. [6,7] in
order to describe the vector meson data, where the
experimental data for the differential cross section for a
fixed energy were used to constrain the free parameters,
and the energy dependence of the total cross section was
predicted by the LO BFKL equation. The possibility that
the use of a different procedure allows us to obtain a
better description of the experimental data is our first
motivation to revisit the description of the diffractive

photon production in the BFKL formalism. The second
one is associated to the fact that in the last years the
next-to-leading order (NLO) corrections to the BFKL
kernel were determined [13,14] and the origin of the
instabilities in the perturbative series was understood
and the problem solved using methods based on the
combination of collinear and small-x resummations
[15–18]. It allows us to include, for the first time, the
NLO corrections for the BFKL characteristic function in
the analysis of the diffractive photon production at
large jtj. This is a first step in the direction of a full
NLO calculation, since we are not including the NLO
corrections to the impact factor associated with the
photon-photon transition. It has been calculated in
Refs. [19–23], and its analytical form was recently
presented in Ref. [24]. Thus, we are aware that our
phenomenological study is an educated guess to a com-
plete NLO calculation. However, we hope that this offers
some insight into the underlying QCD dynamics.
The paper is organized as follows. In the next section we

present a brief discussion about the diffractive photon
production at large t in ep collisions. In Sec. III we present
the formalism for the calculation of the cross section and
the next-to-leading order corrections to the BFKL kernel
are briefly revised, as well as the different schemes used to
improve the convergence of the perturbative series. In
Sec. IV we present our predictions and compare with the
available data. Finally, a summary of our main conclusions
is presented in Sec. V.

II. DIFFRACTIVE PHOTON PRODUCTION

Diffractive processes such as ep ! eXY, where X and Y
are hadronic systems of the dissociated photon and proton,
respectively, have been studied extensively at HERA in the
last decades (For a recent review see, e.g., Ref. [1]). One of
the cleanest of the diffractive processes is that of diffractive
photon production (X ¼ �), with the final state photon
having a large transverse momentum and being well sepa-
rated in rapidity from the hadronic system Y. The cross
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section for the process of electron-proton scattering mea-
sured in HERA is directly related with photon-proton
scattering by the relation [12],

d�ðep!eþ�þYÞ
dQ2dydt

¼�ðy;Q2Þd�ð�
�p!�þYÞ
dt

; (1)

where y ¼ W2=s, W is the center-of-mass energy of
the ��p system and �ðy;Q2Þ is the Weizsäcker-Williams
approximation of the flux of photons produced by the
electron given by [25],

�ðy;Q2Þ ¼ �em

2�

�
2m2

ey

Q4
þ 1þ ð1� yÞ2

yQ2

�
: (2)

In the photoproduction regime studied by the H1
Collaboration, this flux is integrated over the range Q2 <
Q2

max ¼ 0:01 GeV2 [12], which implies

�ðyÞ¼�em
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�
2m2

ey

�
1
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�
; (3)

with Q2
min ¼ m2

ey
2=ð1� yÞ.

Although parton fragmentation, production of a resolved
photon and the Bethe-Heitler process contribute to this
process [26], the exchange of gluons in the t channel
dominates over the other contributions at large s, which
implies that the leading contribution in the high energy
regime comes from the Pomeron exchange (See Fig. 1). In
this regime, the cross section for the process photon-proton
can be fully calculated in the factor impact representation
and is given by the convolution of the hard partonic cross
section with the parton distribution function in the proton
[27–31]. The final expression is

d�ð��p!�þYÞ
dtdxj

¼
�
81

16
Gðxj;jtjÞþ

X
j

ðqjðxj;jtjÞþ �qjðxj;jtjÞÞ
�

�d�̂

dt
ð��q!�qÞ; (4)

where Gðxj; jtjÞ and qjðxj; jtjÞ are the gluon and quark

distribution functions, respectively, and d�̂=dt is the
differential cross section for the subprocess ��q ! �q.
The basic idea is that at large-jtj, the gluonic ladder probes
a parton inside the target and the struck parton initiates a
jet that carries the fraction xj of the longitudinal momen-

tum of the incoming hadron, being given by xj ¼
�t=ð�tþM2

Y �m2Þ, where MY is the mass of the prod-
ucts of the target dissociation and m is the mass of the
target. The minimum value of xj, xmin is calculated con-

sidering the experimental cuts on MY . In what follows we
consider a fixed value xmin ¼ 10�2 following Ref. [12]
and the theoretical studies presented in Refs. [6–11].
Experimentally, in diffractive photon production at
large-jtj, a backscattering photon is produced with a small
angle in the detector, and the transverse momentum of the
photon is counterbalanced by the momentum of the jet
scattered in the frontal region. The photon and the jet are
separated by a large rapidity gap among them.
The diffractive photon production can be modeled in the

rest frame of the proton by a sequence of three events: first,
the fluctuation of the incoming photon into a quark-
antiquark pair a long distance from the proton target;
second, the interaction of the pair with the parton q via
the exchange of a color singlet state (the gluon ladder); and
finally, the annihilation of the final q �q pair into a real
photon. When the ladder interacts with the parton in the
proton, it transfers momentum and dissociates the proton,
whose fragments hadronize. This process has been studied
in Refs. [27–31] and its description is closely related to the
diffractive production of vector mesons at large jtj, dis-
cussed in detail in Refs. [8–11]. The main advantage
present in photon production is that the theoretical calcu-
lations are simplified by the absence of a vector meson
wave function, with the only nonperturbative part being the
parton distribution functions of the proton. However, the
cross section is suppressed relative to that of vector meson
production by the electromagnetic coupling of the q �q pair
to the final state photon. In the next section we present a
brief review of the description of this process in the BFKL
formalism.

III. BFKL FORMALISM

The energy and momentum transfer dependences of the
cross section for the diffractive photon production are
directly related to the description of the differential cross
section for the partonic process ��q ! �q, which can be
expressed by [29,30],

d�̂

dt
ð��q!�qÞ¼ 1

16�s2
fjAðþ;þÞðs;tÞj2þjAðþ;�Þðs;tÞj2g;

(5)

where the scattering amplitudes Aðþ;�Þ depend on the

polarization states of the photons (represented by the

FIG. 1. Diffractive production of a photon with high-t
exchange (hard Pomeron) in a virtual photon-proton scattering,
producing a hadronic (Y) system.
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plus/minus signs) through the impact factors for the tran-
sition �� ! �. As the Pomeron couples directly to the
partons in the proton, the scattering amplitude factorizes
in the impact factor associated with the transition of the
virtual photon into the real photon, the gluonic ladder and
the coupling of the Pomeron with the parton in the proton.
At leading order the amplitudes are given by [30]

Aðþ;þÞ ¼ i��2
s

X
q

e2q
�

6
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�
s

s0

�
!ð�ÞZ 1=2þi1

1=2�i1
dz

2�i

�
Q2

jtj
��z=2

��ð1=2� i��z=2Þ�ð1=2þ i��z=2Þ
j�ð1=2þ i�Þj2

��ðz=2Þ�ðz=2þ1Þ½z2þ11þ12�2�; (6)
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where � is a fine structure constant; �s is the strong
coupling constant (comes from the impact factor and will
be kept fixed); eq is the quark charges; s0 is an energy

scale, chosen to be c1 �Q2 þ c2 � jtj (c1 and c2 are free
parameters) as the meson production case [6] (see discus-
sion below); !ð�Þ is the BFKL characteristic function; Q2

is the photon virtuality; and �ðzÞ is the gamma function.
These results have been derived using the Mueller-Tang
[32] prescription for the parton-Pomeron coupling and
have considered only the contribution associated with the
lowest conformal spin (m ¼ 0). In Ref. [33] these results
have been rederived, and it was shown that the only non-
zero contribution for highest conformal spin, m ¼ 2, is
small. In the photoproduction and large-t regimes of inter-
est in our analysis (jtj � 4 GeV2), the amplitudes are given
by (For details see Ref. [29])
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s
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; (8)
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: (9)

The BFKL characteristic function !ð�Þ is, in general,
expressed as follows

!ð�Þ ¼ �s�ð�Þ; (10)

where �s ¼ ðNc�sÞ=�, Nc is the number of colors and
� ¼ 1=2þ i�. The function � is given at leading order by
[2–5]

�LOð�Þ ¼ 2c ð1Þ � c ð�Þ � c ð1� �Þ; (11)

where c ðzÞ is the digamma function. This characteristic
function has been used in Refs. [29–31] in order to estimate
the diffractive photon production. However, several
shortcomings are present in a leading-order calculation.
First, the energy scale s0 is arbitrary, which implies that the
absolute value to the total cross section is therefore
not predictable. Second, �s is not running at LO BFKL.
Finally, the power growth with energy violates the
s-channel unitarity at large rapidities. Consequently, new
physical effects should modify the LO BFKL equation at
very large s, making the resulting amplitude unitary. A
theoretical possibility for modifying this behavior in a way
consistent with the unitarity is the idea of parton saturation
[34], where nonlinear effects associated to high parton
density are taken into account. Another possible solution,
which is expected to diminish the energy growth of the
total cross section, is the calculation of higher-order cor-
rections to the BFKL equation. After an effort of several
years, the next-to-leading order (NLO) corrections were
obtained [13,14], with the � function being given by

�ð�Þ ¼ �LOð�Þ þ �s�
NLOð�Þ; (12)

where the correction term �NLO is given by [13,14]

�NLOð�Þ ¼ C�LOð�Þ þ 1

4
½c 00ð�Þ þ c 00ð1� �Þ�

� 1

4
½�ð�Þ þ�ð1� �Þ� � �2 cos ð��Þ

4sin 2ð��Þð1� 2�Þ
�

�
3þ

�
1þ Nf

N3
c

� ð2þ 3�ð1� �ÞÞ
ð3� 2�Þð1þ 2�Þ

�

þ 3

2
	ð3Þ � 
0

8Nc

ð�LOð�ÞÞ2; (13)

where C¼ð4��2þ5
0=NcÞ=12, 
0 ¼ ð11Nc � 2NfÞ=3
is the leading coefficient of the QCD 
 function, Nf is the

number of flavors, c ðnÞðzÞ is the poligamma function, 	ðnÞ
is the Riemann zeta function and

�ð�Þþ�ð1��Þ¼ X1
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þ 1
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c 0
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�c 0
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1þm

2

��
: (14)

The main problem associated with these NLO contribu-
tions is that they are so large that the problem appears
perturbatively unstable. In particular, they imply negative
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corrections to the leading-order kernel, resulting in a com-
plex functional structure (pole positions) that gives an
oscillating cross section [35]. Moreover, there are also
problems associated with the choice of energy scale, the
renormalization scheme and related ambiguities.

An alternative to cure the highly unstable perturbative
expansion of the BFKL kernel was proposed in Ref. [15],
whose authors realized that the large NLO corrections
emerge from the collinearly enhanced physical contri-
butions. A method, the ! expansion, was then developed
to resum collinear effects at all orders in a systematic way.
The resulting improved BFKL equation was consistent
with renormalization group requirements through match-
ing to the DGLAP limit and resummation of spurious
poles. In this approach the kernel is positive in a much
larger region which includes the experimentally accessible
one. This approach was revisited in Ref. [18], obtaining an
expression for the collinearly improved BFKL kernel,
which does not mix longitudinal and transverse degrees
of freedom and reproduces very closely the results from
Ref. [15]. The characteristic function proposed in
Ref. [18], denoted ‘‘All-poles’’ hereafter, is given by

!All�poles

¼ �s�
LOð�Þ þ �2

s�
NLOð�Þ

þ
�X1
m¼0

��X1
n¼0
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2nn!ðnþ 1Þ!

ð�s þ a�2
sÞnþ1

ð�þm� b�sÞ2nþ1

�

� �s

�þm
� �2

s

�
a

�þm
þ b

ð�þmÞ2 �
1

2ð�þmÞ3
��

þ f� ! 1� �g
�
; (15)

where

a¼ 5
0

12Nc

�13Nf

36N3
c

�55

36
b¼� 
0

8Nc

� Nf

6N3
c

�11

12
: (16)

Another alternative to solve the spurious singularities
present in the original NLO kernel was proposed in
Ref. [16]. Differently from Refs. [13,14], where the calcu-
lations were performed by employing the modified mini-

mal subtraction scheme (MS) to regulate the ultraviolet
divergences with arbitrary scale setting, in Ref. [16] they
propose to solve the energy scale ambiguity using the
Brodsky-Lepage-Mackenzie (BLM) optimal scale setting
[36] and the momentum space subtraction (MOM) scheme
of renormalization. In this approach, the BFKL character-
istic function is given by

!MOM
BLM ¼�LOð�Þ�MOMðQ̂2ÞNc

�

�
1þ r̂ð�Þ�MOMðQ̂2Þ

�

�
; (17)

where �MOM is the coupling constant in the MOM scheme,

�MOM ¼ �s

�
1þ �s

�
TMOM

�
; (18)

with T being a function of the number of colors, number of
flavors and of a gauge parameter (See Ref. [16] for details)
and

�sð�2Þ ¼ 4�


0 ln ð�2=�2
QCDÞ

: (19)

Moreover, the function Q̂ is the BLM optimal scale, which
is given by

Q̂ 2ð�Þ ¼ Q2 exp
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��
; (20)

with % ¼ �2
R
1
0 dx ln ðxÞ=ðx2 � xþ 1Þ � 2:3439. Finally,

r̂ is the NLO coefficient of the characteristic function,
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with

~�ð�Þ ¼ 2
Z 1

0
dx

cos ð� ln ðxÞÞ
ð1þ xÞ ffiffiffi

x
p

�
�2

6
� Li2ðxÞ

�
; (22)

where Li2ðxÞ is the Euler dilogarithm or Spence function.
In Fig. 2 we present a comparison between the distinct

BFKL characteristic functions discussed above. For
comparison we also present the LO BFKL function. We
have that the All-poles and BLM approaches regularize the
behavior of the original NLO BFKL characteristic function
at small � and predict similar behaviors for the function!.
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FIG. 2 (color online). � dependence of the characteristic func-
tion obtained considering NLO, NLOþ All-poles and NLOþ
BLM approaches. For comparison, the behavior of the LO BFKL
characteristic function is also presented (�s ¼ 0:21).
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In particular, the All-poles approach predicts that !ð0Þ ¼
0:11, while the BLM one predicts!ð0Þ ¼ 0:18. As we will
show in the next section, this small difference has impor-
tant implications in the energy dependence of the total
cross section for diffractive photon production.

In the next section, we will use Eqs. (11), (15), and (17),
as input in Eq. (7) in order to calculate the differential and
total cross section in the BFKL formalism.

IV. RESULTS

In this section we present our results for the differential
and total cross section and compare our predictions with
the H1 experimental data [12]. The differential cross sec-
tion for the process ��p ! �X is given by

d�

dt
¼

Z 1

xmin

dxj
d�ð��p ! �XÞ

dtdxj
; (23)

where we assume that xmin ¼ 10�2 following Ref. [12] and
previous theoretical studies [6–11]. Moreover, the total
cross section is obtained by integration of the Eq. (23)
over the jtj-range given by 4:0 GeV2 < jtj< 36:0 GeV2,
according to H1 data [12]. We will use the MSTW2008LO
parametrization of the parton distribution functions [37],
but we have checked that a different parton parametrization
modifies slightly the predictions. In our calculations we
have two free parameters: the strong coupling constant and
the energy scale parameter s0. In what follows we assume
that �s ¼ 0:21, which is the value used in Refs. [6–11]. It
is important to emphasize that in our calculations �s is
fixed in the impact factors for all approaches studied, since
they have been calculated at leading order and running in
the characteristic function when we are considering the
All-poles and BLM approaches. In contrast to the vector
meson production cross section, which is proportional to
��4

s , in the photon production case, it is proportional to
�2�4

s . Following our previous studies [6,7], we have that
s0 ¼ c1 �Q2 þ c2 � jtj. Considering that the H1 experi-
mental data are for Q2 ¼ 10�6 GeV2, we will assume for
simplicity that Q2 � 0, which implies s0 ¼ c2 � jtj.
Consequently, in our calculations we have only one free
parameter: the coefficient c2, which will be constrained by
the H1 data for the differential cross section as in
Refs. [6,7].

In Fig. 3 we present a comparison between our pre-
dictions for the differential cross section considering
the different approaches for the characteristic function
and the H1 data obtained for Q2 ¼ 10�6 GeV2 and W ¼
219 GeV. We adjust the value of s0 in order to describe the
larger number of experimental points. For the LO BFKL
approach we obtain that c2 ¼ 10:0 allow us to describe the
data for low and high jtj. We have verified that if we adjust
the value of s0 in order to describe the data for jtj ¼
12 GeV2, the LO approach is not able to describe any other
data point. In contrast, the value c2 ¼ 12:0 allow us to

describe all data using the BLM approach. Using
the All-poles approach we only describe the data for
jtj> 10 GeV2 (c2 ¼ 0:8). If we adjust c2 in order to
describe the data for jtj ¼ 6 GeV2 (c2 ¼ 0:05) the ap-
proach does not describe the experimental data for larger
values of jtj. Consequently, we can conclude that only the
BLM approach allow us to describe all experimental data
for the differential cross section. This conclusion also is
valid if we consider the value of �s as a free parameter.
In this case the normalization is modified, which implies
that a different of c2 also should be used in order to
describe the data, but we have verified that the shape of
the jtj dependence is not strongly modified.
Having fixed the free parameter in our calculations, we

now are able to predict the energy dependence of the total
cross section considering the different approaches for the
BFKL characteristic function. In Fig. 4 we present our
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FIG. 3 (color online). Differential cross section for the diffrac-
tive photon production at large- t considering differential models
for the characteristic function. Experimental data from Ref. [12].
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FIG. 4 (color online). Total cross section for the diffractive
photon production at large t, considering differential models for
the characteristic function. Experimental data from Ref. [12].
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predictions. We can see that the LO BFKL approach pre-
dicts, as expected, the steeper energy growth of the total
cross section. In contrast, the All-poles approach predicts
the milder energy dependence. In comparison with the
experimental data, any one of the approaches describes all
experimental data for the total cross section. The BLM
approach, which describes quite well the differential cross
section, is able to describe the data at low energy but under-
estimate the total cross section at high energies. The All-
poles prediction is strongly dependent on the parameter c2.
If c2 ¼ 0:8 is used, this approach describes the data for low
energies but underestimates the total cross section at high
energies. In contrast, at c2 ¼ 0:05, this approach is only
able to describe the data forW > 210 GeV.

Some comments are in order before we summarize our
main conclusions. First, the current experimental data for
the diffractive photon production are scarce and have been
obtained in a limited energy range. Certainly, more data
and for larger values of energy should allow us to obtain
more definitive conclusions about the underlying QCD
dynamics. The second, and more important, comment is
related to the fact that in our calculations we are using
leading order impact factors. In a full NLO calculation one
should also consider the NLO corrections to the impact
factors. In the last few years, the real and virtual correc-
tions which contributes at NLO has been estimated [19–23]
and recently analytical expressions have been proposed
[24]. Numerical results were presented in Refs. [23,38]
and indicate that the NLO corrections tend to decrease
the value of the impact factors. Consequently, our esti-
mates for the total cross section using the NLO-BFKL
characteristic functions should be consider an upper bound.
It is important to emphasize that the procedure used in our
analysis was used in Refs. [39–41] in order to estimate the
double production of vector mesons (���� ! VV) and in
Refs. [42,43] to calculate the ���� total cross section.
Moreover, in Refs. [44–46], the production of Mueller-

Navelet jets was investigated considering the NLO BFKL
kernel and LO impact factors and, more recently, the
description of the F2 structure function has been performed
using a similar approach [47–49]. All these studies
demonstrate that the study of the diffractive photon pro-
duction modifying only the BFKL kernel is justified in
order to a first estimate of the magnitude of the NLO
contributions for this process.

V. SUMMARY

The description of the high energy limit of the Quantum
Chromodynamics (QCD) is an important open question in
the standard model. During the last decades several ap-
proaches were developed in order to improve our under-
standing from a fundamental perspective. In particular,
after a huge theoretical effort, now we have available the
NLO corrections for the BFKL characteristic function,
which allow us to improve the analysis of the processes
that are expected to probe the underlying QCD dynamics.
In this paper we have studied, for the first time, the dif-
fractive photon production considering the NLO character-
istic functions proposed in Refs. [16,18]. Moreover, the LO
BFKL approach for the process was revisited. The free
parameters in our calculations have been constrained con-
sidering the H1 data for the differential cross section at
fixed energy, and the energy dependence of the total cross
section has been predicted. We obtain a reasonable de-
scription of the scarce experimental data. New data in a
large energy range should allow us to obtain more defini-
tive conclusions about the QCD dynamics. Moreover, the
inclusion of the NLO correction in the impact factor is an
important step that we expect to perform in the near future.
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