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We study timelike and spacelike virtual Compton scattering in the generalized Bjorken scaling regime

at next-to-leading order in the strong coupling constant, in the medium energy range which will be studied

intensely at JLab12 and in the COMPASS-II experiment at CERN. We show that the Born amplitudes get

sizeable Oð�sÞ corrections and, even at moderate energies, the gluonic contributions are by no means

negligible. We stress that the timelike and spacelike cases are complementary and that their difference

deserves much special attention.
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I. INTRODUCTION

Spacelike deeply virtual Compton scattering (DVCS) [1]

��ðqinÞNðPÞ ! �ðqoutÞN0ðP0 ¼ Pþ �Þ;
q2in ¼ �Q2; q2out ¼ 0

(1)

has been the model reaction for studying quantum chromo-
dynamics (QCD) collinear factorization in exclusive pro-
cesses in terms of generalized parton distributions (GPDs)
[2,3], which access correlated information about the light-
cone momentum fraction and transverse location [4] of
partons in hadrons. The specific kinematical regime where
this factorization property is proven at leading twist is the
generalized Bjorken regime of large energy and large Q2

but finite and fixed momentum transfer �2. A number
of experimental results at various energies [5] have now
established the relevance of this approach at accessible
kinematical conditions. Detailed phenomenological studies
[6] are under way to quantify to which degree one may in
the foreseeable future extract from experimental data the
physical information encoded in GPDs. The DVCS process
contributes to the leptoproduction of a real photon

l�ðkÞNðPÞ ! l�ðk0Þ�ðqoutÞN0ðP0 ¼ Pþ �Þ: (2)

It interferes with the Bethe-Heitler process

l�ðkÞ��ð��Þ ! l�ðk0Þ�ðqoutÞ; (3)

where the hadronic interaction is entirely determined by the
nucleon (spacelike) electromagnetic form factors F1ð�2Þ
and F2ð�2Þ.

Timelike Compton scattering (TCS) [7]

�ðqinÞNðPÞ ! ��ðqoutÞN0ðP0 ¼ Pþ �Þ;
q2in ¼ 0; q2out ¼ Q2;

(4)

which contributes to the photoproduction of a lepton pair

�ðqinÞNðPÞ! l�ðkÞlþðk0ÞN0ðP0 ¼Pþ�Þ; kþk0 ¼qout;

(5)

and interferes with the Bethe-Heitler process

�ðqinÞ��ð��Þ ! l�ðkÞlþðk0Þ; (6)

shares many features with DVCS and allows us in principle
to access the same GPDs. The experimental situation [8] is
not as encouraging as in the DVCS case but progress is
expected in the next few years. The amplitudes of these
two reactions are related at Born order by a simple
complex conjugation but they significantly differ at
next-to-leading order (NLO) in the strong coupling con-
stant �s [9].
Complete NLO calculations [10–14] are available for

both the DVCS and TCS reactions and there is no indica-
tion that NLO corrections are negligible in the kinematics
relevant for current or near future experiments.
In this paper, we explore the consequence of including

NLO gluon coefficient functions and NLO corrections to
the quark coefficient functions entering the DVCS and
TCS amplitudes, firstly in the calculation of spacelike
and timelike Compton form factors (CFFs) with two mod-
els of GPDs. Then we proceed to the calculation of specific
observables in the kinematical conditions which will soon
be accessible in lepton nucleon collisions.
We focus on kinematics relevant to the next JLab and

COMPASS measurements. The case of very large energy,
and subsequently very small skewness, deserves its own
study that will be addressed elsewhere. Ultraperipheral
collisions at hadron colliders may already open the access
to timelike Compton scattering in this domain [15]. Also
the proposed next generation of electron-ion colliders
[16,17] will access in a detailed way this interesting
domain with small skewness.
In this paper we concentrate on the influence of the NLO

corrections to the DVCS and TCS observables. Because of
that, although required to ensure QED gauge invariance
[18], we do not discuss here twist-three effects. Neither do
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we implement the new results on target mass and finite t
corrections [19] nor the recently proposed resummation
formula [20] which focuses on the regions near x ¼ ��.

II. KINEMATICS AND AMPLITUDES

A. Kinematics

We introduce two lightlike vectors p and n satisfying
p2 ¼ 0, n2 ¼ 0 and n � p ¼ 1. We decompose the mo-
menta in this light-cone basis as k� ¼ �n� þ �p� þ k

�
T ,

with k2T < 0, and we further note kþ ¼ k � n. We
also introduce the standard kinematical variables: � ¼
P0 � P, t ¼ �2 and W2 ¼ ðqin þ PÞ2.

We define kinematics separately for spacelike (sl) and
timelike (tl) Compton scattering. We denote the (positive)
skewness variable as � in the DVCS case, and as � in the
TCS case. In the DVCS case, where �q2in ¼ Q2 > 0 and

q2out ¼ 0, we parametrize the momenta as follows:

q
�
in ¼

Q2

4�
n� � 2�p�;

q
�
out ¼ �sln

� � �2
T

2�sl

p� � �
�
T ;

P� ¼ ð1þ �Þp� þ M2

2ð1þ �Þn
�;

P0� ¼ �slp
� þM2 ��2

T

2�sl

n� þ �
�
T ;

(7)

where M is the nucleon mass. The coefficients �sl, �sl in
(7) satisfy the following system of equations:

�sl ¼ Q2

4�
þM2

2

�
1

1þ �
� 1

�sl

�
þ �2

T

2�sl

;

�sl ¼ 1� �þ �2
T

2�sl

;
(8)

which in the limit M ¼ 0 and �T ¼ 0 relevant for calcu-
lation of the coefficient function leads to the standard
values �sl ¼ Q2=4� and �sl ¼ 1� �.

In the TCS case, where q2in ¼ 0 and q2out ¼ Q2 > 0, we
parametrize the momenta as

q
�
in ¼

Q2

4�
n�;

q�out ¼ �tln
� þQ2 ��2

T

2�tl

p� ���
T ;

P� ¼ ð1þ �Þp� þ M2

2ð1þ �Þ n
�;

P0� ¼ �tlp
� þM2 � �2

T

2�tl

n� þ �
�
T :

(9)

The coefficients�tl,�tl in (9) are solutions of the following
system of equations:

�tl ¼ Q2

4�
þM2

2

�
1

1þ �
� 1

�tl

�
þ �2

T

2�tl

;

�tl ¼ 1þ ��Q2 ��2
T

2�tl

;

(10)

which, again in the limit M ¼ 0 and �T ¼ 0 relevant for
calculation of the coefficient function, take the standard
values �tl ¼ Q2=4� and �tl ¼ 1� �.

B. The DVCS and TCS amplitudes

After proper renormalization, the full Compton scatter-
ing amplitude1 reads in its factorized form (at factorization
scale �F)

A�� ¼ �g��
T

Z 1

�1
dx

�XnF
q

TqðxÞFqðxÞ þ TgðxÞFgðxÞ
�

þ i�
��
T

Z 1

�1
dx

�XnF
q

~TqðxÞ ~FqðxÞ þ ~TgðxÞ ~FgðxÞ
�
;

(11)

where we omitted the explicit skewness dependence. The
renormalized coefficient functions are given by

TqðxÞ ¼
�
Cq
0ðxÞ þ Cq

1ðxÞ þ ln

�
Q2

�2
F

�
� Cq

collðxÞ
�
� ðx ! �xÞ; TgðxÞ ¼

�
Cg
1ðxÞ þ ln

�
Q2

�2
F

�
� Cg

collðxÞ
�
þ ðx ! �xÞ;

~TqðxÞ ¼
�
~Cq
0ðxÞ þ ~Cq

1ðxÞ þ ln

�
Q2

�2
F

�
� ~Cq

collðxÞ
�
þ ðx ! �xÞ; ~TgðxÞ ¼

�
~Cg
1ðxÞ þ ln

�
Q2

�2
F

�
� ~Cg

collðxÞ
�
� ðx ! �xÞ:

(12)

Results of the NLO calculations [10–14] of the quark coefficient functions, based on the standard definitions of GPDs
given in Diehl’s review [2], read in the DVCS case

1We do not consider the photon helicity changing amplitude coming from the transversity gluon GPD [21].
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Cq
0ðx; �Þ ¼ �e2q

1

xþ �� i"
;

Cq
1ðx; �Þ ¼

e2q�SCF

4	

1

xþ �� i"

�
9� 3

xþ �

x� �
log

�
xþ �

2�
� i"

�
� log 2

�
xþ �

2�
� i"

��
;

Cq
collðx; �Þ ¼

e2q�SCF

4	

1

xþ �� i"

�
�3� 2 log

�
xþ �

2�
� i"

��
;

~Cq
0ðx; �Þ ¼ �e2q

1

xþ �� i"
;

~Cq
1ðx; �Þ ¼

e2q�SCF

4	

1

xþ �� i"

�
9� xþ �

x� �
log

�
xþ �

2�
� i"

�
� log 2

�
xþ �

2�
� i"

��
;

~Cq
collðx; �Þ ¼

e2q�SCF

4	

1

xþ �� i"

�
�3� 2 log

�
xþ �

2�
� i"

��
;

(13)

where CF ¼ ðN2
c � 1Þ=ð2NcÞ, Nc being the number of colors, and eq is the quark electric charge in units of the proton

charge. Using the same conventions, the gluon coefficient functions read in the DVCS case

Cg
1ðx;�Þ¼

�e2q�STF

4	

1

ðxþ�� i"Þðx��þ i"Þ�
�
2
xþ3�

x��
log

�
xþ�

2�
� i"

�
�xþ�

x��
log2

�
xþ�

2�
� i"

��
;

Cg
collðx;�Þ¼

�e2q�STF

4	

2

ðxþ�� i"Þðx��þ i"Þ
�
�xþ�

x��
log

�
xþ�

2�
� i"

��
;

~Cg
1ðx;�Þ¼

�e2q�STF

4	

1

ðxþ�� i"Þðx��þ i"Þ�
�
�2

3xþ�

x��
log

�
xþ�

2�
� i"

�
þxþ�

x��
log2

�
xþ�

2�
� i"

��
;

~Cg
collðx;�Þ¼

�e2q�STF

4	

2

ðxþ�� i"Þðx��þ i"Þ
�
xþ�

x��
log

�
xþ�

2�
� i"

��
;

(14)

where TF ¼ 1
2 . The results for the TCS case are simply [9]

related to these expressions

TCSTðx; �Þ ¼ �ðDVCSTðx; � ¼ �Þ þ i	Ccollðx; � ¼ �ÞÞ�;
(15)

where the þ (�) sign corresponds to the vector (axial)
case.

III. MODELS FOR GPDS

In our analysis we will use two GPD models based on
double distributions (DDs) [1,22]. DDs allow us to trivially
achieve one of the strongest constraints on GPDs: the
polynomiality of the Mellin moments of GPDs. They
also automatically restore usual PDFs in the forward limit
at �, t ! 0. The GPDs are expressed as a two-dimensional
integral over � and � of the double distribution fi

Fiðx; �; tÞ ¼
Z 1

�1
d�

Z 1�j�j

�1þj�j
d�
ð�þ ��� xÞfið�;�; tÞ

þDF
i

�
x

�
; t

�
�ð�2 � x2Þ; (16)

where F ¼ H, E, ~H, ~E and i denotes the flavor (val for
valence quarks, sea for sea quarks and g for gluons). In our
analysis we only take into account the contribution of H
and ~H. Indeed, E and ~E are mostly unknown, and recent

phenomenological studies of Ref. [23] show that most of
the existing DVCS observables are sensitive mostly to H
and ~H.
The DD fi reads

fið�;�; tÞ ¼ gið�; tÞhið�Þ �ð2ni þ 2Þ
22niþ1�2ðni þ 1Þ

� ½ð1� j�jÞ2 � �2�ni
ð1� j�jÞ2niþ1

; (17)

where � is the gamma function, ni is set to 1 for valence
quarks, 2 for sea quarks and gluons. gið�; tÞ parametrizes
the t dependence of GPDs, the hið�Þ’s in the case of GPDs
H and ~H denote their forward limit and are related to the
usual polarized and unpolarized PDFs in the following
way:

hgð�Þ ¼ j�jgðj�jÞ;
hqseað�Þ ¼ qseaðj�jÞsignð�Þ;
hqvalð�Þ ¼ qvalð�Þ�ð�Þ;
~hgð�Þ ¼ ��gðj�jÞ;

~hqseað�Þ ¼ �qseaðj�jÞ;
~hqvalð�Þ ¼ �qvalð�Þ�ð�Þ:

(18)
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DF
i in Eq. (16) denotes the Polyakov-Weiss D term [24].

Following Refs. [2,7] in our estimates we will use the
parametrizations obtained by a fit to the chiral soliton
model [25]:

DH
q

�
x

�
; t

�
¼ �DE

q

�
x

�
; t

�
¼ 1

3
Dq

�
x

�

�
FDðtÞ;

DH
g

�
x

�
; t

�
¼ �DE

g

�
x

�
; t

�
¼ �Dg

�
x

�

�
FDðtÞ;

(19)

where

DqðxÞ ¼ �ð1� x2Þ X1ðoddÞ

n¼1

dqnC
3
2
nðxÞ;

DgðxÞ ¼ � 3

2
ð1� x2Þ2 X1ðoddÞ

n¼1

dgnC
5
2

n�1ðxÞ;

(20)

where at � ¼ 0:6 GeV matching to the chiral soliton
model gives dq1 ¼ 4:0, dq3 ¼ 1:2, dq5 ¼ 0:4, and we make

an assumption that dgn at input scale vanishes. In the QCD
evolution of dqn, d

g
n we switch from three to four flavors at

� ¼ 1:5 GeV and �3 ¼ 0:232 GeV, �4 ¼ 0:200 GeV.
Although this choice may seem arbitrary and the evolution
from 600 MeV may be questionable, there are no other
better justified D-term models. TCS measurement at
�� 0:1 may serve as a good test of the D-term contribu-
tion to GDP modeling as discussed in Ref. [7], especially
when important NLO effects are taken into account.

A. The Goloskokov-Kroll model for the GPDs

As described in detail in Refs. [23,26–28], the GPDs of
the so-called Goloskokov-Kroll (GK) model are con-
structed using CTEQ6m PDFs [29]. The low-x behavior
of PDFs is well reproduced by a power law, with the power
assumed to be generated by Regge poles. In this GPD
model, the Regge behavior with linear trajectories of the
DD encoded in the function gið�; tÞ [see Eq. (17)] is
assumed

gið�; tÞ ¼ ebitj�j��0
it: (21)

For the unpolarized GPDHðx; �; tÞ the values of the Regge
trajectory slopes and residues �0

i, bi as well as the expan-
sions of the CTEQ6m PDFs [29] used for hi may be found
in Refs. [26–28]. Finally, this model uses simple relations
to parametrize the quark sea

Hu
sea ¼ Hd

sea ¼ �sH
s
sea;

with �s ¼ 1þ 0:68=ð1þ 0:52 lnQ2=Q2
0Þ;

(22)

with the initial scale of the CTEQ6m PDFs Q2
0 ¼ 4 GeV2.

Similarly to the GPD H, the polarized GPD ~H is con-
structed using the Blümlein-Böttcher polarized PDF
parametrization [30] to fix the forward limit. Meson elec-
troproduction data from HERA and HERMES have been
considered to fix parameters for this GPD in the GKmodel,
~H for valence quarks and gluons have been parametrized,
however we have neglected ~H for sea quarks. The values of
the Regge trajectory slopes and residues as well as the
expansions of the Blümlein-Böttcher PDFs used in the GK
model may be found in Refs. [26,31].

B. The MSTW08-based model
with factorized t dependence

For the second model we use double distribution with
MSTW08 PDFs [32]. In that case we take the simple
factorizing ansatz for t dependence

guð�; tÞ ¼ 1

2
Fu
1 ðtÞ; (23)

gdð�; tÞ ¼ Fd
1 ðtÞ; (24)

gsð�; tÞ ¼ ggð�; tÞ ¼ FDðtÞ; (25)

where

Fu
1 ðtÞ ¼ 2Fp

1 ðtÞ þ Fn
1 ðtÞ; (26)

Fd
1 ðtÞ ¼ Fp

1 ðtÞ þ 2Fn
1 ðtÞ; (27)

FDðtÞ ¼ ð1� t=M2
VÞ�2; (28)

with MV ¼ 0:84 GeV, Fp
1 and Fn

1 are the electromagnetic
Dirac spacelike form factors of the proton and neutron. We
use that model to construct only H .

IV. COMPTON FORM FACTORS

Let us now present the results for spacelike and timelike

Compton form factors at NLO, H and ~H defined in the
DVCS case as

H ð�; tÞ ¼ þ
Z 1

�1
dx

�X
q

Tqðx; �ÞHqðx; �; tÞ þ Tgðx; �ÞHgðx; �; tÞ
�
;

~H ð�; tÞ ¼ �
Z 1

�1
dx

�X
q

~Tqðx; �Þ ~Hqðx; �; tÞ þ ~Tgðx; �Þ ~Hgðx; �; tÞ
�
:

(29)

These CFFs are the GPD-dependent quantities which enter the amplitudes. For DVCS they are defined through relations
such as [7]
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A��ð�; tÞ ¼ �e2
1

ðPþ P0Þþ �uðP0Þ
�
g��
T

�
H ð�; tÞ�þ þ Eð�; tÞ i�

þ�

2M

�
þ i���

T ð ~H ð�; tÞ�þ�5 þ ~Eð�; tÞ�
þ�5

2M

��
uðPÞ:

(30)

A similar relation holds for TCS with � replaced by �.
Our results are presented for the � and � values which

include kinematical regimes of the JLab and COMPASS
experiments. As we present our results for Q2 ¼ �2

F ¼
�2

R ¼ 4 GeV2, throughout the whole paper we use the
value of �S ¼ 0:3.

A. Spacelike Compton form factors

Let us first discuss the importance of including NLO
effects in CFFs related to DVCS observables. We show on
Fig. 1 (resp. Fig. 2) the results of our calculations for the
real (resp. imaginary) parts of the CFF H ð�Þ (multiplied
by � for a better legibility of the figure, since the CFFs are
roughly proportional to 1=�), with the two GPD models
described in Sec III. The dotted curves are the leading-
order (LO) results and the solid lines show the results
including all NLO effects. Although the results are natu-
rally dependent of the choice of model GPDs, the main
conclusions are quite universal. One can first observe that

NLO corrections are by no means small, as exemplified by
the ratio of these NLO corrections to the LO result shown
in the lower parts of Figs. 1 and 2. One can also observe
that the NLO corrections tend to diminish the real part of
the CFF, and even change its sign for � * 0:01. NLO
corrections also decrease the imaginary part of the CFF.
These are not new results [11–13]. To quantify the main
source of the NLO contribution, we show on the same plots
with dashed lines the real and the imaginary parts of the
CFF including quark NLO effects but not the gluon effects.
Gluon effects are the most important part of the NLO
correction, even at quite large values of � (up to around
� � 0:3) and they contribute as a very significant part to
the full CFF H ð�Þ including NLO effects. Since the CFF
H ð�Þ dominates the DVCS amplitude, this means that
extracting quark GPDs from a leading-order analysis of
DVCS data is, to say the least, questionable. More posi-
tively, this result indicates that DVCS experiments even in
the low energy regime of JLab12 provide us with a nice

FIG. 1 (color online). The real part of the spacelike Compton form factor H ð�Þ multiplied by �, as a function of � in the double
distribution model based on Goloskokov-Kroll (upper left) and MSTW08 (upper right) parametrizations, for �2

F ¼ Q2 ¼ 4 GeV2 and
t ¼ �0:1 GeV2, at the Born order (dotted line), including the NLO quark corrections (dashed line) and including both quark and gluon
NLO corrections (solid line). Below are the ratios of the NLO correction to the LO results in the corresponding models.
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FIG. 2 (color online). The imaginary part of the spacelike Compton form factor H ð�Þ multiplied by �, as a function of � in the
double distribution model based on Goloskokov-Kroll (upper left) and MSTW08 (upper right) parametrizations, for �2

F ¼ Q2 ¼
4 GeV2 and t ¼ �0:1 GeV2, at the Born order (dotted line), including the NLO quark corrections (dashed line) and including both
quark and gluon NLO corrections (solid line). Below are the ratios of the NLO correction to the LO results in the corresponding models.

FIG. 3 (color online). The real (upper left) and imaginary (upper right) parts of the spacelike Compton form factor ~H multiplied by
� as a function of � in the double distribution model based on GK parametrizations, for �2

F ¼ Q2 ¼ 4 GeV2 and t ¼ �0:1 GeV2, at
the Born order (dotted line), including the NLO quark corrections (dashed line) and including both quark and gluon NLO corrections
(solid line). The plots in the lower part show the corresponding ratios of the NLO correction to the LO results.
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way to measure gluon GPDs. This fact has, to our knowl-
edge, never been clearly spelled out before.

For completeness, we show on Fig. 3 the real and

imaginary parts of the CFF � ~H ð�Þ only for the GK model.
As for the case of H ð�Þ, although the effects are less
dramatic here, the NLO corrections are by no means small.

Let us now comment on the D-term contribution to the
CFFs. Since the GPD originating from a D term is a
function of the ratio x=�with a support in the ERBL region
�� < x < �, it results in a constant real contribution to
CFFs in the spacelike case. For Q2 ¼ �2

F ¼ 4 GeV2 and
t ¼ �0:1 GeV2, the values of different contributions to
HD are shown in the second column of Table I. One
can see that this D-term contribution is very important
for �� 0:1, since it modifies the full NLO result by about

50%. It is much less important at lower values of � (around
3% for �� 0:01 and only a few per mil at �� 0:001).

B. Timelike Compton form factors

Let us now discuss the corresponding results for the
timelike CFFs. On Figs. 4 and 5, we show the real and
imaginary parts of the CFF H for the GK and the
MSTW08 models of GPDs described in Sec. III, for the
invariant mass of the lepton pair Q02 ¼ 4 GeV2, t ¼
�0:1 GeV2 and factorization scale �F ¼ Q. For the
imaginary part the correction does not exceed 40%. In
the real part, the correction is of the order of a few hundred
percent. We observe that the main part of that large cor-
rection comes from the contribution of gluonic GPDs. To
quantify the sensitivity of this statement on the uncertain-
ties of the input PDF parametrizations we replot on Fig. 6
the upper-right panel of Fig. 4 and the upper-right panel of
Fig. 5, now with the shaded bands showing the effect of a
one sigma uncertainty of the input MSTW08 fit on the full
NLO result compared to the LO.
TheD-term contribution to the CFF is an �-independent

quantity and it has both real and imaginary parts at NLO in
the TCS case. We show in Table I the values of thisD-term
contribution in the LO and NLO cases. Its relative effect on
the imaginary part of the CFF decreases significantly from
10 to 1 and 0.1% when � decreases from 0.1 to 0.01 and to
0.001.

TABLE I. Different contributions from the D term. The values
of the real part coincides for spacelike and timelike CFF H ,
while the imaginary part is nonvanishing only for the timelike
case.

ReHD ImHD

LO �2:59 0

NLO quark contribution �0:16 �0:85
NLO gluon contribution 0.18 0.16

Full NLO �2:57 �0:69

FIG. 4 (color online). The real part of the timelike Compton form factor H multiplied by �, as a function of � in the double
distribution model based on Goloskokov-Kroll (upper left) and MSTW08 (upper right) parametrizations, for �2

F ¼ Q2 ¼ 4 GeV2 and
t ¼ �0:1 GeV2. Below are the ratios of the NLO correction to the LO results of the corresponding models (dotted, dashed and solid
lines as in Fig. 1).
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We then compare TCS and DVCS by plotting the

ratio of NLO corrections on Fig. 7. There is a striking

difference in the magnitude of the corrections to the real

part of CFFs, mostly insensitive to the choice of GPD

parametrizations. As discussed in Ref. [9], this is a

consequence of Eq. (15) which by adding a phase to

the dominant imaginary part of the spacelike CFF at

small skewness gives rise to a sizeable real part of the

corresponding CFF in the timelike case. Such large

corrections to the real part of CFFs will have a signifi-
cant influence on observables which depend on the
interference of the TCS process with the Bethe-Heitler
amplitude, i.e., connected to the azimuthal angular dis-
tribution of the leptons. We shall discuss this in the next
section.
For completeness, we show on Fig. 8 the real and

imaginary parts of � ~H ð�Þ. The NLO corrections are
here smaller than 20% in the whole domain.

FIG. 5 (color online). The imaginary part of the timelike Compton form factor H multiplied by �, as a function of � in the double
distribution model based on Goloskokov-Kroll (upper left) and MSTW08 (upper right) parametrizations, for �2

F ¼ Q2 ¼ 4 GeV2 and
t ¼ �0:1 GeV2. Below are the ratios of the NLO correction to the LO results of the corresponding models (dotted, dashed and solid
lines as in Fig. 1).

FIG. 6 (color online). The real (left) and imaginary (right) parts of the TCS Compton form factor H multiplied by �, as a function
of � in the double distribution model based on MSTW08 parametrization, for �2

F ¼ Q2 ¼ 4 GeV2 and t ¼ �0:1 GeV2. The dotted
line shows the LO result and shaded bands around solid lines show the effect of a one sigma uncertainty of the input MSTW08 fit to the
full NLO result.

MOUTARDE et al. PHYSICAL REVIEW D 87, 054029 (2013)

054029-8



V. CROSS SECTIONS AND ASYMMETRIES

A. Deeply virtual Compton scattering

Let us first briefly review the effects of including NLO
corrections on the DVCS observables. On Fig. 9 we show
the total DVCS cross section, the difference of cross sec-
tions for opposite lepton helicities and the beam spin
asymmetry A�

LU defined by Eq. (48) of Ref. [23]. We

choose a kinematic setting representative for JLab12,

namely Q2 ¼ 4 GeV2, Ee ¼ 11 GeV, t ¼ �0:2 GeV2

and � ¼ 0:2. The observables are shown as a function of

the azimuthal angle � (in the Trento convention). The

Born order result is shown as the dotted line, the full

NLO result by the solid line and the NLO result without

the gluonic contribution as the dashed line. We see that the

effects of the NLO corrections are significant (Fig. 9 is

based on GK parametrization as results are very similar in

both GPD models). Although the value of � is quite large,

FIG. 7 (color online). The ratio of the timelike to spacelike NLO corrections in the real (left) and imaginary (right) part of
the Compton form factor H , as a function of � in the double distribution model based on Goloskokov-Kroll (dashed) and
MSTW08 (solid) parametrizations, for �2

F ¼ Q2 ¼ 4 GeV2 and t ¼ �0:1 GeV2. For comparison, timelike CFFs where calculated
at � ¼ �.

FIG. 8 (color online). The real (upper left) and imaginary (upper right) parts of the timelike Compton form factor ~H multiplied by �
as a function of � in the double distribution model based on GK parametrizations, for�2

F ¼ Q2 ¼ 4 GeV2 and t ¼ �0:1 GeV2, at the
Born order (dotted line), including the NLO quark corrections (dashed line) and including both quark and gluon NLO corrections
(solid line). The plots in the lower part show the corresponding ratios of the NLO correction to the LO results.
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FIG. 9 (color online). From left to right, the total DVCS cross section in pb=GeV4, the difference of cross sections for opposite
lepton helicities in pb=GeV4, the corresponding asymmetry, all as a function of the usual � angle (in the Trento convention [34]) for
Ee ¼ 11GeV, �2

F ¼ Q2 ¼ 4 GeV2, t ¼ �0:2 GeV2 and � ¼ 0:2. The GPD Hðx; �; tÞ is parametrized by the GK model, the
contributions from other GPDs are not included. In all plots, the LO result is shown as the dotted line, the full NLO result by the
solid line and the NLO result without the gluonic contribution as the dashed line. The Bethe-Heitler contribution appears as the dash-
dotted line in the cross section plots (left part).

FIG. 10 (color online). The DVCS observables for the COMPASS experiment, from left to right, mixed charge-spin asymmetry,
mixed charge-spin difference and mixed charge-spin sum (in nb=GeV4). The kinematical point is chosen as � ¼ 0:05, Q2 ¼ �2

F ¼
4 GeV2, t ¼ �0:2 GeV2. On the upper panel, the GPD Hðx; �; tÞ is parametrized by the GK model, on the lower panel Hðx; �; tÞ is
parametrized in the double distribution model based on the MSTW08 parametrization. The contributions from other GPDs are not
included. In all plots, the LO result is shown as the dotted line, the full NLO result by the solid line and the NLO result without the
gluonic contribution as the dashed line.
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we see that the gluon contribution (i.e., the difference
between the dashed and the solid curve) is by no means
negligible.

On Fig. 10 we show the DVCS observables relevant to
the COMPASS experiment at CERN, namely (from left to
right) the mixed charge-spin asymmetry, the mixed charge-
spin difference and the mixed charge-spin sum defined in
Eq. (59) of Ref. [23], at the kinematics � ¼ 0:05, Q2 ¼
4 GeV2 and �t ¼ 0:2 GeV2. The upper part of Fig. 10
uses the GK parametrization and the lower part the
MSTW08 parametrizations with 1� errors. We display
here only the contribution from the GPD H. The lower
value of the skewness � ¼ 0:05 allows us to test a com-
plementary regime with respect to JLab measurements.
Note the dramatic difference in the real part once gluon
GPDs are in, inducing for instance a change of sign of the
mixed charge-spin asymmetry and the mixed charge-spin
difference for the MSTW case for instance. Note that the
change is also huge in the case of GK parametrization but
there is no sign change indicating a significant model
dependence. At any rate, NLO effects should be highly
visible at COMPASS, which probes processes occurring at
higher energy than JLab.

B. Timelike Compton scattering

Now we pass to predictions for the observables in the
timelike counterpart of DVCS, namely TCS. On the left
part of Fig. 11 we show the TCS contribution to the
differential cross section as a function of the skewness �
for Q2 ¼ �2 ¼ 4 GeV2, and t ¼ �0:2 GeV2 integrated
over � 2 ð	=4; 3	=4Þ and over � 2 ð0; 2	Þ. We see that
the inclusion of the NLO corrections is more important at
small skewness. On the right panel of Fig. 11 we show that
the Bethe-Heitler dominates the integrated cross section
for this kinematics. In consequence, more differential
observables, as the azimuthal � dependence (with angles
� and � defined in Ref. [7]) reveal in a better way the

different contributions. Moreover, simple � dependence
of the interference term allows for an easy access to the
real part of the CFFs which, as we observed in Fig. 4,
is subject to big NLO corrections. We indeed observe
that effect on Fig. 12, which shows the � dependence of
the unpolarized differential cross sections for pure BH
process, and with LO and NLO corrections to the interfer-
ence term.
To quantify how big the deviation is from the pure

Bethe-Heitler process in the unpolarized cross section we
calculate (see Fig. 13) the ratio R defined in Ref. [7] by

Rð�Þ ¼
2
R
2	
0 d’ cos’ dS

dQ02dtd’R
2	
0 d’ dS

dQ02dtd’
; (31)

where S is a weighted cross section given by Eq. (43) of
Ref. [7]. It is plotted on Fig. 13 as a function of the skew-
ness � for Q2 ¼ �2 ¼ 4 GeV2, and t ¼ �0:2 GeV2. In
the leading twist the numerator is linear in the real part of
the CFFs, and the denominator, for the kinematics we
consider, is dominated by the Bethe-Heitler contribution.
The inclusion of NLO corrections to the TCS amplitude is
indeed dramatic for such an observable and includes also a
change of sign.
Imaginary parts of the CFFs are accessible through

observables making use of photon circular polarizations
[7]. The photon beam circular polarization asymmetry

A ¼ �þ � ��

�þ þ �� (32)

is shown on the left part of Fig. 14, as a function of � for
the kinematic variables relevant for JLab:Q2 ¼ 4 GeV2 ¼
�2

F, t ¼ �0:1 GeV2 and E� ¼ 10 GeV (which corre-

sponds to � � 0:11). The same quantity is shown on the
right panel of Fig. 14 as a function of � for � ¼ 	=2 and

FIG. 11 (color online). Left: LO (dotted) and NLO (solid) TCS contributions to the cross section as a function of � for
Q2 ¼ �2

F ¼ 4 GeV2, and t ¼ �0:2 GeV2 integrated over � 2 ð	=4; 3	=4Þ and over � 2 ð0; 2	Þ. Right: LO (dotted) and NLO
(solid) TCS and Bethe-Heitler (dash-dotted) contributions to the cross section as a function of t for Q2 ¼ �2 ¼ 4 GeV2 integrated
over � 2 ð	=4; 3	=4Þ and over � 2 ð0; 2	Þ for E� ¼ 10 GeV (� � 0:11).
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Q2 ¼ 4 GeV2 ¼ �2
F. The effect of the NLO corrections

on that observable is rather large, ranging from 10%
at the � ¼ 0:1 (relevant for JLab) through 30% at � ¼
0:05 (relevant for COMPASS) up to 100% at very
small �’s.

VI. CONCLUSION

Deeply virtual Compton scattering, both in its spacelike
and timelike realizations, is the golden channel to
extract GPDs from experimental observables. This extrac-
tion may be seen as a two-step process: Firstly, Compton
form factors may be separated from a careful analysis of
various differential cross sections and asymmetries.
Secondly, convolutions of coefficient functions with model
GPDs may be confronted to these CFFs. We have demon-
strated here, in the case of medium energy kinematics
which will be explored in the near future at JLab and
COMPASS, that the inclusion of NLO corrections to the
coefficient function is an important issue, and that the
difference of these corrections between the spacelike and
timelike regimes is so sizeable that they can be promoted to
the status of direct tests of the QCD understanding of the
reactions.
Let us stress again a feature that was largely overlooked

in previous studies, namely the importance of gluon con-
tributions to the DVCS amplitude, even when the skewness
variable � is in the so-called valence region. This is not a
real surprise when one recalls that gluons (in terms of
distribution functions) are by no means restricted to the
very low-x region and that gluon CFFs at a given � value
also depend on gluon PDFs at lower values of x. This effect
is particularly big when one considers the real part of CFFs
in the timelike case. This promotes the observables related
to this quantity as sensitive probes of the three-dimensional
gluon content of the nucleon.
We did not extend our study to the very high energy

regime which will be explored (both for spacelike and

FIG. 13 (color online). Ratio R defined by Eq. (31) as a
function of �, for Q2 ¼ �2

F ¼ 4 GeV2 and t ¼ �0:1 GeV2.
The dotted line represents LO contribution and the solid line
represents the NLO result.

FIG. 12 (color online). The � dependence of the cross section
at E� ¼ 10 GeV, Q2 ¼ �2

F ¼ 4 GeV2, and t ¼ �0:1 GeV2

integrated over � 2 ð	=4; 3	=4Þ: pure Bethe-Heitler contribu-
tion (dash-dotted), Bethe-Heitler plus interference contribution
at LO (dotted) and NLO (solid).

FIG. 14 (color online). Left: Photon beam circular polarization asymmetry as a function of �, for t ¼ �0:1 GeV2, Q2 ¼ �2
F ¼

4 GeV2 integrated over � 2 ð	=4; 3	=4Þ and for E� ¼ 10 GeV (� � 0:11). Right: The � dependence of the photon beam circular

polarization asymmetry forQ2 ¼ �2
F ¼ 4 GeV2, and t ¼ �0:2 GeV2 integrated over � 2 ð	=4; 3	=4Þ. The LO result is shown as the

dotted line, the full NLO result by the solid line.
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timelike Compton scattering) at future electron-ion
colliders, nor to the case of ultraperipheral collisions at
present hadron colliders. This will be addressed in separate
studies. We did not discuss the rich scope of factorization
scale dependence issues, which deserves special attention.
Contrary to the case of inclusive reactions where various
strategies have been built to optimize the factorization
scale, it has been shown in Ref. [33] that it is quite
impossible to find a recipe to minimize higher order cor-
rections both for the real and the imaginary part of a CFF.
Moreover, we found it difficult to advocate a different
choice of scale for the two cases of timelike and spacelike
reactions.
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