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The data on p�p elastic scattering at 1.8 and 1.96 TeV are analyzed in terms of real and imaginary

amplitudes, in a treatment with high accuracy, covering the whole t range, and satisfying the expectation

of dispersion relation for amplitudes and for slopes. A method is introduced for the determination of the

total cross section and the other forward scattering parameters and to check compatibility of E-710, CDF,

and the recent D0 data. Slopes BR and BI of the real and imaginary amplitudes, treated as independent

quantities, influence the amplitudes in the whole t range and are important for the determination of the

total cross section. The amplitudes are fully constructed, and a prediction is made of a marked dip in

d�=dt in the jtj range 3–5 GeV2 due to the universal contribution of the process of three-gluon exchange.
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I. INTRODUCTION

The precise knowledge of total cross section and scat-
tering amplitudes in pp and p�p elastic scattering at high
energies is essential for understanding the QCD interac-
tions and hadronic structure, and also for the parametriza-
tion and extrapolation of the total cross section that may
pass through the LHC measurements [1] and go up to the
study of ultrahigh-energy phenomena in cosmic rays [2].
However, at high energies, the small size of the ratio � of
the real to the imaginary parts of amplitudes at t ¼ 0,
together with the absence of data for small jtj, turn the
extrapolations towards the limit jtj ! 0 very delicate. It is
of fundamental importance to well characterize the scat-
tering amplitudes that are used to determine forward slopes
and the total cross section.

It is universally understood that the real and imaginary
amplitudes in pp and p�p elastic scattering at high energies
reflect the nonperturbative QCD dynamics, determined by
overall features of the proton and antiproton structures.
Regge-like behavior characterizes the s and t dependencies
at large s and small jtj. There appears to be a dip or an
inflection point in the differential cross section d�=dt, near
the occurrence of a zero in the imaginary part, and the
detailed shape around this region is influenced by the
magnitude, sign, and form of the real part. An analysis of
the interplay of real and imaginary amplitudes is necessary
to reproduce with accuracy the behavior of the jtj
dependence.

An analytical representation for the amplitudes valid for
the whole jtj range must contain implicitly the exponential
decrease of the amplitudes in the very forward region;
account for their curvatures, zeros, signs, and magnitudes;
and also should contain the ingredients that describe the
universal power behavior at large jtj due to the three-gluon
exchange contribution. The determination of the detailed
properties of the real and imaginary parts is crucial for the
accurate description of the observed differential cross sec-
tion. The analytical forms of the amplitudes used in the

present work extend previous studies at the ISR energies
[3] based on the stochastic vacuum model [4]. More
recently, with additional controls offered by dispersion
relations for amplitudes and for slopes [5], the method
has been applied to the recent 7 TeV data from LHC [6].
The present work extends the previous studies to give a

high-precision description of the data on p�p elastic scat-
tering at 1.8 TeV [7,8] and 1.96 TeV [9], consistently
covering the forward and the backward regions. This
work is particularly opportune in view of the publication
of the new measurements at 1.96 TeV covering a large jtj
range by the D0 Fermilab experiment [9]. Our framework
offers the opportunity of an investigation of the connection
and compatibility of the previous 1.8 TeV and the recent
1.96 TeV data. It should be stressed here that in the analysis
of the data, we use information from forward dispersion
relations to control parameters of the full description and
particularly emphasize the importance of the difference of
the slope parameters, BR and BI, of the real and imaginary
parts. It is commonly assumed in the analysis of data that
these slopes are the same, but this is wrong theoretically, a
fact that is often overlooked due to the small value of the �
parameter. However, to describe consistently the scattering
amplitude for the full jtj range, the difference of slopes is
crucial, since a description that covers the large t region
constrains the quantities of the forward range. This is
particularly true and important for the real amplitude that
is small with respect to the imaginary part in the forward
direction, but not at large jtj. Actually, in our analysis the
differential cross section at high jtj is dominated by the real
part [3,6].
In the very large jtj domain, the perturbative QCD

effects become dominant, forming a power decreasing
tail in the differential cross section that was first measured
at 27.4 GeV [10]. It is known that this tail is energy
independent and formed by a real contribution due to
three-gluon exchange [11], with opposite signs for pp
and p�p (positive in pp and negative in p�p) scattering.
In our approach the universality of the perturbative 3-gluon
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exchange process is incorporated explicitly, determining
the asymptotic behavior of the real amplitude. It is thus
interesting to investigate the connection of the measured
points at 1.8 and 1.96 TeV with the assumption of the
universal tail. We show that the perturbative amplitude
leads to a striking prediction for the behavior of the cross
section. In p�p scattering, when added to the nonperturba-
tive positive real part, the perturbative term creates a third
zero located in the region about jtj � 3–4 GeV2. As the
imaginary part is less important in this domain, a marked
dip is caused by this cancellation.

Our treatment of the whole data with overall high pre-
cision leads to definite prediction for the forward scattering
parameters in the context of one analytical form for each
amplitude. We thus have a determination of the total cross
section � and of the quantities �, BI, and BR, while still
allowing curvatures of the scattering amplitudes. When
data are not available at very low jtj, the existence of
curvatures prevents accurate analysis in terms of pure
exponential forms, so that the determination of � becomes
model dependent. Based on our experience with other
energies, we here advocate that the determination of the
scattering parameters based on the full data is necessary,
since it incorporates realistic properties of the amplitudes.

We organize the present work as follows. In Sec. II,
we present the analytical forms of the scattering ampli-
tudes that describe the whole jtj range and the necessary
quantities are defined, with a discussion of the role of the
universal perturbative contribution for large jtj. In Sec. III,
the analysis of the 1.8–1.96 TeV data with determination
of all quantities is presented. In Sec. IV, we present the
amplitudes and compare our results with other theoretical
models. In Sec. V, we discuss our predictions and
proposals.

II. GENERAL FORM OF FULL t
SCATTERING AMPLITUDE

In the treatment of elastic pp and p�p scattering in the
forward direction, with amplitudes approximated by pure
exponential forms, the differential cross section is written

d�

dt
¼ �ðℏcÞ2

��
��

4�ðℏcÞ2 eBR t=2 þ FCðtÞ cos ð��Þ
�
2

þ
�

�

4�ðℏcÞ2 eBI t=2 þ FCðtÞ sin ð��Þ
�
2
�
; (2.1)

where t � �jtj and we assume different values for the
slopes BI and BR of the imaginary and real amplitudes.
In the following discussion, we use the unit system where
� is in mb (milibarns) and energy in GeV, so that ðℏcÞ2 ¼
0:389 mbGeV2.

The Coulomb amplitude FCðs; tÞ enters for pp=p�p with
the form

FCðs; tÞei��ðs;tÞ ¼ ð�=þÞ 2�jtj e
i��ðs;tÞF2

protonðtÞ; (2.2)

where � is the fine-structure constant, �ðs; tÞ is the
Coulomb phase, and the proton form factor is written

FprotonðtÞ ¼ ½0:71=ð0:71þ jtjÞ�2: (2.3)

Contradicting expectations from dispersion relations [5], in
usual treatments of the data no distinction is made between
BR and BI slopes, and BR � BI requires a more general
expression for the Coulomb phase [6], which is used in the
present work. Other evaluations of the Coulomb phase [12]
do not change meaningfully the results of this paper.
In elastic pp and p�p scattering at all energies above

ffiffiffi
s

p ¼
19 GeV, the real and imaginary amplitudes have zeros
located in ranges jtj � ð0:1–0:3Þ GeV2 and jtj ¼
ð0:5–1:5Þ GeV2, respectively, and the use of exponential
forms beyond a limited forward range leads to inaccurate
determination of the characteristic forward scattering pa-
rameters �, �, BI, and BR. To obtain a precise description
of the elastic d�=dt data for all jtj, we introduce ampli-
tudes with forms [3,6]

TRðs; tÞ ¼ �RðsÞ exp ð��RðsÞjtjÞ þ �RðsÞ�Rð�RðsÞ; tÞ
þ ffiffiffiffi

�
p

FCðtÞ cos ð��Þ (2.4)

and

TIðs; tÞ ¼ �IðsÞ exp ð��IðsÞjtjÞ þ �IðsÞ�Ið�IðsÞ; tÞ
þ ffiffiffiffi

�
p

FCðtÞ sin ð��Þ; (2.5)

with the shape functions

�Kð�KðsÞ; tÞ ¼ 2e�K

2
4e��K

ffiffiffiffiffiffiffiffiffiffiffiffi
1þa0jtj

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a0jtj

p � e�K
e��K

ffiffiffiffiffiffiffiffiffiffiffiffi
4þa0jtj

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ a0jtj

p
3
5;

(2.6)

where K ¼ R for the real amplitude and K ¼ I for the
imaginary amplitude. Here, we have eight quantities, �I,
�I, �I, �I, �R, �R, �R, �R, that determine the nonpertur-
bative amplitudes. �K is dimensionless, while �K, �K, and
�K are in GeV�2. These forms have been developed in the
application of the stochastic vacuum model to pp and p�p
elastic scattering [3], and the fixed quantity a0 ¼
1:39 GeV�2 is related to the square of the correlation
length of the gluon vacuum expectation value [a ¼
ð0:2–0:3Þ fm] [4].
From the above expression, we can express the total

cross section �ðsÞ, the ratio � of the real to imaginary
amplitudes, the slopes BR;I of the amplitudes at t ¼ 0, and
the differential cross section d�=dt as

�ðsÞ ¼ 4
ffiffiffiffi
�

p ðℏcÞ2ð�IðsÞ þ �IðsÞÞ; (2.7)

�ðsÞ ¼ TRðs; t ¼ 0Þ
TIðs; t ¼ 0Þ ¼

�RðsÞ þ �RðsÞ
�IðsÞ þ �IðsÞ ; (2.8)
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BKðsÞ ¼ 1

TKðs; tÞ
dTKðs; tÞ

dt

��������t¼0

¼ 1

�KðsÞ þ �KðsÞ
�
�KðsÞ�KðsÞ

þ 1

8
�KðsÞa0ð6�KðsÞ þ 7Þ

�
; (2.9)

d�

dt
¼ ðℏcÞ2jTRðs; tÞ þ iTIðs; tÞj2: (2.10)

We have thus defined the form of the amplitudes for all t at
each energy. The parameters must be determined by a
phenomenological analysis of the data, with control from
dispersion relations for amplitudes and for slopes. The
forms of Eqs. (2.4), (2.5), and (2.6) are able to describe
the imaginary and real amplitudes at all energies, with
consistency in their features (magnitudes, signs, locations
of zeros), and with smoothness in the energy dependence
of the parameters. Values of � and BR must be related with
� and BI respecting dispersion relations. This description
represents the nonperturbative QCD dynamics that is
responsible for the soft elastic hadronic scattering.
They effectively account for the terms of Regge and eiko-
nal phenomenology that determine the process of jtj ranges
up to about jtj � 2:0 GeV2.

This representation of the scattering amplitudes has been
used successfully to reproduce the data at ISR [3] and LHC
energies [6]. In these applications, it was found that the
imaginary amplitude presents one zero located in the
range (0:5–1:5 GeV2), while the real amplitude presents
one zero at low jtj (jtj< 0:3 GeV2), according to a
theorem by Martin [13], and a second zero whose
location determines the shape of d�=dt around the dip
(or inflection point). As a general behavior, we have that
the imaginary part, Eq. (2.5), is negative and the real part,
Eq. (2.4), is positive for jtj larger than 1:5 GeV2. These
simple features are general and all data are described
accurately.

It is observed that after the dip (or inflection point) the
behavior of the differential cross sections becomes increas-
ingly energy independent. The elastic pp experiment atffiffiffi
s

p ¼ 27 GeV [10] has measured the range from 5.5 to
14:2 GeV2 and these are the only measurements at such
high values of jtj. This distribution at high jtj shows
remarkable universality: at all energies

ffiffiffi
s

p ¼ 23:5, 30.7,
44.7, 52.8, and 62.5 GeV, namely, at all energies where
measurements have reached the intermediate jtj region,
d�=dt approaches the same set of points of the 27.4 GeV
experiment.

The observed d�=dt at the tail has a dependence of form
1=jtj8, and has been explained by Donnachie and
Landshoff [11] as being of perturbative origin, due to a
contribution of the three-gluon exchange. This term is real
and has an amplitude of the form

Aðs; tÞggg ¼ � N

jtj
5

54

�
4��sðj�tjÞ 1

m2ðj�tjÞ þ j�tj
�
3
; (2.11)

where

�sðj�tjÞ ¼ 4�

ð11� 2
3NfÞ½log ðm2ðj�tjÞþ�t

�2 Þ�
(2.12)

is the strong coupling constant and mðjtjÞ is the gluon
effective mass [14]. The factor 3 in �t � ð ffiffi

t
p

=3Þ2 comes
from the assumption that each gluon carries one third of the
momentum. The normalization factor N is negative and
determined by the nucleon structure. To extend our
description to include the very high jtj range of this
form, we introduce a term RgggðtÞ, writing
TRðtailÞðs; tÞ ¼ �RðsÞ exp ð��RðsÞjtjÞ þ �RðsÞ�Rð�RðsÞ; tÞ

þ ffiffiffiffi
�

p
FCðtÞ cos ð��Þ þ RgggðtÞ; (2.13)

where RgggðtÞ is chosen so that the differential cross sec-

tion to be dominated by a term of the form jtj�8 for large jtj
values (say above 2:5 GeV2), while for small jtj the
amplitude is determined by the original nonperturbative
expression. The perturbative three-gluon exchange has
opposite signs for pp and p�p scattering, being positive
for pp and negative for p�p. We then take the following
expression:

RgggðtÞ � �0:45t�4ð1� e�0:005jtj4Þð1� e�0:1jtj2Þ; (2.14)

where the signs � apply to the pp and p�p amplitudes,
respectively. The factor 0.45 is chosen to reproduce the
Faissler measurements and the last two factors are written
to suppress smoothly the perturbative contribution for
small jtj. The transition region from 2 to 5 GeV2 contains
information on the nature and superposition of nonpertur-
bative and perturbative contributions, and must be inves-
tigated, both experimentally and theoretically. In the p�p
case, the negative sign may lead to a zero in the real
amplitude, with an interesting consequence for the form
of d�=dt.
The change in sign of this contribution for pp and p�p

amplitudes leads to a very interesting consequence for p�p
case, which will be discussed in Sec. IV.

III. ANALYSIS OF ELASTIC p�p DATA AT 1.8 TEV

The available experimental data on differential cross
section of p�p elastic scattering at 1.8 TeV are as follows:
(i) N ¼ 51 points in the interval 0:00339 � jtj � 0:627

(in GeV2) from the Fermilab E-710 experiment pub-
lished by N. Amos et al. [7] in 1990.

(ii) N ¼ 26 points in the interval 0:0035 � jtj � 0:285
(in GeV2) from the Fermilab CDF experiment pub-
lished by F. Abe et al. [8] in 1994.

To these data we may now add the results of the experiment
at 1.96 TeV.
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(i) N ¼ 17 points in the interval 0:26 � jtj � 1:20 (in
GeV2) from the Fermilab D0 experiment published
by V.M. Abazov et al. [9] in 2012.

In order to use the last set together with the former two sets,
in this paper we use the reduction factor ð1:8=1:96Þ0:3232 ¼
0:973 obtained as correction of energy effect from 1.96 to
1.8 TeV according to Regge phenomenology [15]. As the
jtj range involved is small we neglect the jtj dependence of
this factor. In the following, we refer to these converted
data as ‘‘1.96 TeV data.’’

The data are shown in Fig. 1. They do not cover a low
enough jtj range for a precise treatment in terms of
exponential forms for the amplitudes, or even less, for
the differential cross section. Besides, there is a discrep-
ancy of values in the data from the two independent experi-
ments, exhibited in Fig. 1, which has lead to a 20 year old
duplicity of values for the total cross section, which has
seriously affected the efforts for a global description of the
energy dependence of the total cross section.

We recall values of the scattering parameters that are
found in original papers by the following experimental
groups:

(i) E-710 experiment [16]: � ¼ 0:140� 0:069, B ¼
16:99� 0:47 GeV�2, � ¼ 72:8� 3:1 mb.

(ii) CDF experiment [17]: B ¼ 16:98� 0:25 GeV�2,
� ¼ 80:03� 2:24 mb.

In the present work we analyze carefully this duplicity
using a full t analytic description of the real and imaginary
amplitudes with help of the new large jtj data from the
1.96 TeVexperiment. As much as possible, we deal with all
experimental information together in a unified analysis.
For this purpose, we group the data in three different sets.

(i) SET I: The 1.96 TeV data (converted) give a natural
and smooth connection with the E-710 data (basi-
cally they come from the same experimental group);
there is some superposition in the extreme ends,
where we select the more recent data, that have
smaller error bars. We thus join 35 points with
3:39� 10�2 � jtj � 0:247 GeV2 from E-710 with
17 points from D0, to form a combined data SET I
(called STANDARD), with N ¼ 52 points in the
range 0:00339 � jtj � 1:2 GeV2.

(ii) SET II: We observe that there is a good convergence
of the large jtj end points of the CDF spectrum with
the beginning of the recent D0 points. This is a
welcome surprise, and suggests the consistent con-
struction of a combined set from the two groups,
with N ¼ 26 and the N ¼ 17 points, respectively.
Actually, to select points in the range where there is
superposition, and simultaneously to obtain a
clearer smooth connection, we exclude the last 5
CDF points that present a rather scattered behavior
(observe Fig. 1). We thus build SET II here (called
HYBRID), with N ¼ 21þ 17 ¼ 38 points. The
assemblage is shown in Fig. 2. The construction of
this HYBRID SET II is motivated by the considera-
tion that the apparently irreconcilable discrepancy
between the E-710 and CDF experiments that exists
in the low and mid jtj range need not imply that they
are incompatible for larger jtj. Our description aims
at representations of d�=dt covering all jtj spec-
trum, and this hybrid connection is very important.

(iii) SET III: In a third construction, we investigate what
comes out from our full jtj description if we put all
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FIG. 1. Data of p�p scattering at 1.8 and 1.96 TeV [7–9], taken in the E-710, CDF, and D0 experiments in Fermilab. The D0 data are
multiplied by a reducing factor 0.973 to take into account the energy difference (see the text). The E-710 data [7] are restricted to the
first 35 points (open circles) due to superposition with the recent D0 data (open triangles) of the same experimental group. The plot in
the right-hand side (rhs), concentrated in the forward part, exhibits clearly the known discrepancy between the two experiments in the
low jtj region. The solid, dashed, and dotted lines represent, respectively, our best descriptions for data sets I, II, and III constructed
from the combination of three data points available, as described in the text. The dotted line is hidden under the solid line.
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data together on the same footing, merging the
N ¼ 52 points of SET I with the N ¼ 26 CDF
basis. We thus form a GLOBAL SET III, with
N ¼ 78 points.

We fit d�=dt for the three data sets described above,
using Eqs. (2.4), (2.5), (2.6), and (2.10) of our representa-
tion. In the fitting procedure, in principle all 8 parameters
are treated independently to minimize �2, but we find that
some parameters can be chosen with common values to all
data sets without sensitive changes in the solutions. They are

�I ¼ 11:620� 0:024 GeV�2; �R ¼ 1:10 GeV�2;

� ¼ 0:141� 0:002; BI ¼ 16:76� 0:04 GeV�2;

BR ¼ 26:24� 0:39 GeV�2: (3.1)

We remark that the usual quantity B (slope of d�=dt) is
not the same as BI. The relation is

B ¼ BI þ �2BR

1þ �2
(3.2)

and we then obtain B ¼ 16:94 GeV�2, remarkably close to
the values of the experimental groups (16:99� 0:47 and
16:98� 0:25 GeV�2 for the E-710 [16] and CDF [17]
groups, respectively).
The results of the fittings with respect to the other free

parameters are given in Table I, together with some char-
acteristic features of the solutions. The corresponding
curves representing these fittings of d�=dt are shown in
Figs. 1–3.
It is important to observe that the discrepancy between

the CDF and E-710 data shown in the rhs of Fig. 1 becomes
smaller as jtj increases and both sets of data seem to
connect smoothly to the D0 data, as seen in Fig. 3. That
is, the well-known contradiction between E-710 and CDF
data becomes less serious as jtj increases, and the D0 data
help to point out the connection. Our global jtj analysis
helps to describe this connection.
We recall that the above analysis is based on analytical

expressions for the scattering amplitudes applied to all jtj.
In the present 1.8 TeV case, the integrated use of all jtj data
is crucial since there are no data points in the very forward
range, 10�3 to 10�2 GeV2, and the pure exponential
forms are not at all reliable. Due to the very large energy
gaps in the experimental data, this energy region

ffiffiffi
s

p ¼
1:8=1:96 TeV is extremely important for the determination
of the energy dependence of the total cross section, �ðsÞ
and hence for its extrapolation for ultrahigh energies
treated by fundamental theorems.
To show the importance of the use of the full jtj ampli-

tudes and full jtj data together, we test toy fits of the
forward data of E-710 (35 points) and CDF (21 points)
experiments. The E-710 data are fitted with essentially the
same parameters as the full SET I, and this shows their
nearly perfect coherence, with the E-710 and D0 data
matching very well when described by our full jtj ampli-
tudes. However, the separate treatment of the 21 points of
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2 )
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–

√s = 1.8/1.96  TeV

V. Abazov
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SET II

dashed : SET II

solid : SET I

FIG. 2. HYBRID SET. Combination of N ¼ 21 points from
CDF (open squares) with 17 points from D0 (open triangles).
The last 5 points of CDF data (see Fig. 1) are excluded to exhibit
more clearly a smooth connection, and this is done also numeri-
cally in fittings with SET II (38 points). The E-710 points do not
enter in this SET II. Solid line: Fit of SET I, for comparison.
Dashed line: Fit of SET II. Although the lines of the two solutions
are visually very close, the limits jtj ! 0 lead to different values
of �, given in Table I and shown in close-up in Fig. 3.

TABLE I. Characteristic quantities of the all t representation for the amplitudes. Common values for all sets: � ¼ 0:141� 0:002,
BI ¼ 16:76� 0:04 GeV�2, BR ¼ 26:24� 0:39 GeV�2, �I ¼ 11:620� 0:024 GeV�2, and choice of �R ¼ 1:10 GeV�2. The
remaining free parameters are �I , �R, �. The error bars are given by the CERN Minuit Program in each case with all parameters
fixed, except the one whose error bar is evaluated. Open correlations among parameters may lead to larger error bars. SET I is built
with E-710 (35 points) and D0 (17 points) data. SET II is built joining CDF (21 points) and D0 (17 points). The complete SET III puts
together CDF (26 points), E-710 (35 points), and D0 (17 points) data. jtjinfl is the position of the inflection point in d�=dt. h�2i is the
average value of the squared relative theoretical/experimental deviations.

SET

N �I �R jtjinfl ðd�=dtÞinfl � (el) �
h�2ipoints GeV�2 GeV�2 GeV2 mb=GeV2 mb mb

I 52 3:7785� 0:0078 3:6443� 0:0093 0.745 0.01013 16.67 72:76� 0:13 0.7661

II 38 3:5686� 0:0186 3:8645� 0:0093 0.727 0.01114 18.92 77:63� 0:44 1.4961

III 78 3:7441� 0:0080 3:6784� 0:0096 0.741 0.01029 17.02 73:54� 0:20 2.6591
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the CDF data leads to values of �I ¼ 3:7280 GeV�2,
�R ¼ 3:3060 GeV�2 and � ¼ 79:00� 0:57 mb that are
different from those of the combined SET II in Table I,
and this solution has a disastrous behavior for large jtj.
Thus, we conclude that in our model the use of the pure
CDF points for the determination of the very forward
quantities seems unreliable if it is not controlled by the
D0 points of the larger jtj domain. Thus, in our analysis
the construction of SET II is essential for the treatment of
the CDF data.

IV. PROPERTIES OF AMPLITUDES

It is the general property of our scheme that the non-
perturbative amplitudes fall off rapidly after jtj �
1:5 GeV2, with the magnitude of the positive real part
becoming dominant over the negative imaginary part for
jtj larger than about 2:5 GeV2. The imaginary amplitude
has only one zero located near the inflection point of d�=dt,
while the real part has a first zero at small jtj, obeying
Martin’s theorem [13], and a second zero located after the
imaginary zero. As the nonperturbative real part decreases,
the perturbative tail remains, giving to the differential cross
section the characteristic shape 1=jtj8, discussed by
Donnachie and Landshoff [11]. Such a general aspect of
the scattering amplitudes have been well verified at ISR and
LHC energies [3,6]. The present analysis at 1.8 TeV data
repeats this general behavior, as exhibited in Fig. 4.

A. Role of perturbative tail in p�p scattering

The universal (energy independent) perturbative
3-gluon exchange process [11], given by Eq. (2.14), con-
tributes in p�p scattering with a negative sign, which leads
to an interesting prediction. As mentioned above, the

nonperturbative real amplitude is positive in the transition
region, and the inclusion of the negative tail amplitude
leads eventually to its cancellation and the creation of a
third real zero (see Table II). This mechanism is shown in
the rhs of Fig. 4, where we draw two curves for the real
amplitude with a solid line and a dashed line correspond-
ing, respectively, to the presence and absence of perturba-
tive contribution.
As the imaginary part is not dominant in this region, a

marked dip may be observed in d�=dt. This is shown in
Fig. 5. In this figure (rhs), we also show with a dotted line
the behavior of cross section with nonperturbative ampli-
tudes only, without the effect of perturbative tail.
The precise form of this dip-bump structure created by

the perturbative tail depends sensitively on the values of
model parameters (such as �R) that govern the properties
of the transition domain. Unfortunately, the existing data
stops at about jtj ¼ 1:2 GeV2, leaving the higher jtj region
without information to fix the connection with the range of
the perturbative tail. Thus, the parameter �R cannot be
fixed accurately, and as its value is crucial for the predic-
tion of the position and depth of a dip in the transition
region for p�p scattering at 1.8 TeV, we present in Table II
two alternative choices, with �R ¼ 1:10 and 1:40 GeV�2.
In Table II, are given the values of jtj at the zeros of

the amplitudes, and the locations of the dip and bump in
d�=dt at large jtj that are due to the contribution of
the three-gluon exchange term. The quantity ratio ¼
ðd�=dtÞbump=ðd�=dtÞdip that informs about the shape of

the structure depends strongly on the values of the parame-
ter �R, that must be determined by the experiment, neces-
sarily with extension of the measured range to higher jtj
values. The common parameters are given in Eq. (3.1).
The fitting of each solution is needed only to evaluate �R.
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B. Comparison with the Bourrely-Soffer-Wu
(BSW) model

In our work, we emphasize the importance of the
determination of the amplitudes that describe the
observed quantities in elastic scattering. However,
this description is naturally model dependent so that it is
interesting to compare our results to those of other
models. Results on amplitudes that can be directly com-
pared with ours are given by the model proposed by
Bourrely, Soffer, and Wu (hereafter referred to as the
BSW model) [18]. Properties of the Pomeron amplitudes
[19] are note studied here. The comparison is presented
below.

The parameters of the BSW model at 1.8 TeV are

� ¼ 73:99 mb; � ¼ 0:129;

BI ¼ 18:12 GeV�2; BR ¼ 22:82 GeV�2;

ZI ¼ 0:685 GeV2; ZRð1Þ ¼ 0:275 GeV2;

ZRð2Þ ¼ 2:040 GeV2:

Instead of the inflection points, the model gives the first
dip and bump for d�=dt, with a flat structure, with the
values

jtjdip ¼ 0:72 GeV2; jtjbump ¼ 0:90 GeV2; ratio¼ 1:226:
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FIG. 4. Amplitudes in p�p elastic scattering at
ffiffiffi
s

p ¼ 1:8 TeV shown in different ranges and scales, described by Eqs. (2.4), (2.5), and
(2.6) with parameters determined by phenomenology. The solid lines drawn refer to the solutions for TR and TI obtained for SET I.
In the jtj range up to about 2 GeV2 the amplitudes are governed by nonperturbative dynamics and are qualitatively similar for pp
and p�p, with one zero for TI and two zeros for TR. TI remains negative and goes fast to zero, while at jtj � 3 GeV2 the nonperturbative
TR is positive and dominates. In p�p scattering the negative contribution of the 3-gluon exchange term inverts the sign of TR,
forming a third zero and a marked dip in d�=dt, with locations and depths dependent on the detail of the �R parameter, as shown
in Table II.

TABLE II. Positions of zeros of the real and imaginary amplitudes, locations of the dip and bump at large jtj predicted by the
introduction of the perturbative tail of negative sign, and the ratio characterizing the shape of this structure. The parameter �R, that
determines the behavior of the real part at the end of the nonperturbative region, is not tightly determined by the data (that ends at
1:2 GeV2), and has an important role for the location and depth of the large jtj dip. We present results for two choices of �R.
The parameter �R varies in the fits, following the choice of �R. The quantities �, BI, BR, �I are universal, as in Table I. The quantity
ratio is ½d�=dt�bump=½d�=dt�dip.

SET

�R �R ZI ZRð1Þ ZRð2Þ ZRð3Þ jtjdip jtjbump

ratioGeV�2 GeV�2 GeV2 GeV2 GeV2 GeV2 GeV2 GeV2

I 1.10 3.6443 0.6253 0.1771 1.4336 3.8827 3.9456 4.8631 5.4567

I 1.40 3.6328 0.6253 0.1776 1.5884 3.0605 3.4839 4.1212 1.3086

II 1.10 3.8645 0.6156 0.1792 1.2986 4.3159 4.3520 5.3314 8.4118

II 1.40 3.8492 0.6156 0.1799 1.4217 3.3047 3.6434 4.2920 1.3761

III 1.10 3.6784 0.6231 0.1776 1.3987 3.9781 4.0312 4.9580 6.2212

III 1.40 3.6662 0.6231 0.1781 1.5452 3.1181 3.5111 4.1609 1.3442
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To compare the BSW model with our calculations, we
show in Fig. 6 the comparison of cross sections, and in
Fig. 7 the comparison of amplitudes.

As shown in the left-hand size (lhs) plot, the amplitudes
of the BSW model are qualitatively similar to ours in the
low and mid jtj ranges, with one imaginary and two real
zeros, all of which occur at higher jtj than ours. At higher
jtj, shown in the rhs plot, important differences appear. In
the BSW model, the imaginary magnitude dominates and
falls to zero more slowly. In our case, the real part deter-
mines the tail behavior. At very large jtj (namely jtj �
6 GeV2), the roles of the imaginary and real magnitudes

are interchanged in comparison to ours. These qualitative
similarities and differences of the two models have been
observed also in the 7 TeV case [6].

V. SUMMARYAND DISCUSSION

In this work, we present precise descriptions of the
elastic scattering amplitudes and of the differential cross
sections for the p�p collisions, merging the recent 1.96 TeV
and the former 1.8 TeV data. We use analytical forms for
the real and imaginary amplitudes covering the full jtj
range, identifying their zeros, signs, ranges of dominance,
and the interplays that fix the observed details. To inves-
tigate the existing discrepancy of the 1.8 TeV data of the
E-710 and CDF experiments in the presence of the new
1.96 TeV data, we construct three different combinations
of data (called SETS I, II, and III) for the evaluation of total
cross section and for the representation of the differential
cross sections. Results are given in Tables I and II, and the
solutions are illustrated in Figs. 1–3 for the data and in
Fig. 4 for the amplitudes.
Figure 3 clearly shows how delicate the extrapolation

of experimental data of d�=dt towards jtj ¼ 0 is.
Particularly, in the case where data points are lacking in
the forward region, a more structured approach is funda-
mental for the determination of the so-called forward
scattering parameters �, �, BI, and BR, since they can
only be defined in the limit jtj ! 0. Obviously, we cannot
avoid model dependence, but we believe that the general
features of the real and imaginary amplitudes, such as
magnitudes, curvatures, zeros, and signs, are fundamental
and should be incorporated in the analysis of the data.
For example, the usually adopted assumption BR ¼ BI is
essentially wrong and may lead to incorrect values for the
forward scattering parameters.
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Our work revises the values of total cross section
and slope parameters that are reported in the literature,
suggesting new values, which we believe to be more
realistic. In addition, we show that with the use of the
hybrid set combining CDF with large jtj D0 data, the
well-known discrepancy of CDF and E-710 data can be
more tamed.

We show that, as is the cases of SPS and LHC energies
[3,6], the universality of the perturbative three-gluon ex-
change tail as asymptotic behavior of the real part is
consistent with the data and, in the particular p�p case, leads
to a very interesting consequence, due to the sign of this
contribution. For jtj> 4 GeV2, the nonperturbative real
amplitude is positive and dominates the negative imaginary
amplitude. The inclusion of the negative real contribution
of the perturbative tail makes the real amplitude eventually
negative again, creating a third zero. As the imaginary part
is not dominant there, a marked dip may appear in d�=dt
in this transition region as shown in Fig. 5. As mentioned in
the text, the precise form of this dip structure depends on

the parameters which govern the behavior data in the
transition region between nonperturbative and perturbative
dominance.
The confirmation of the presence of this dip in the 3 &

jtj & 4 GeV2 range would characterize the sign of the real
amplitude and its dominance over the imaginary part in the
mid t region, thus giving model-free information on the
elastic scattering amplitude. We then propose the analysis
of the collected data of the D0 collaboration at values of jtj
beyond those already published.
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