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We extend the analysis of elastic pion-nucleon scattering up to O(p*) level using the extended-on-mass-
shell subtraction scheme within the framework of covariant baryon chiral perturbation theory. Numerical
fits to partial wave phase shift data up to /s = 1.13 GeV are performed to pin down the free low energy
constants. A good description of the existing phase shift data is achieved. We find a good convergence for
the chiral series at O(p*), considerably improved with respect to the O(p?)-level analyses found in
previous literature. Also, the leading order contribution from explicit A(1232) resonance and partially-
included A(1232) loop contribution are included to describe the phase shift data up to \/s = 1.20 GeV. As
phenomenological applications, we investigate chiral corrections to the Goldberger-Treiman relation and
find that it converges rapidly, and the O(p?) correction is found to be very small: = 0.2%. We also get a
reasonable prediction of the pion-nucleon sigma term o,y up to O(p*) by performing fits including
both the pion-nucleon partial wave phase shift data and the lattice QCD data. We report that o,y =
52 =7 MeV from the fit without A(1232), and o,y = 45 = 6 MeV from the fit with explicit A(1232).
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I. INTRODUCTION

Pion-nucleon scattering is an important process for the
understanding of chiral QCD dynamics and the interpreta-
tion of some prominent phenomenology of strong interac-
tions [1]. Many efforts have been made to study it. However,
unlike the successfulness of chiral perturbation theory,
(xPT) [2,3] in the pure meson sector, a chiral expansion in
the pion-nucleon scattering amplitude suffers from the
power counting breaking (PCB) problem in the traditional
subtraction MS — 1 scheme [4]. Many proposals have been
made to remedy this problem, e.g., heavy baryon (HB) chiral
perturbation theory [5], infrared regularization (IR) scheme
[6], extended on mass shell (EOMS) scheme [7,8], etc.

As a successful nonrelativistic effective field theory, HB
chiral perturbation theory rebuilds a power counting rule
through simultaneous expansions in terms of 1/my and
external momentums. The pion-nucleon scattering has
been investigated up to O(p?) [9,10] and O(p*) [11] with
HB approach. Though the description of 7-N scattering
phase shift data is well described near the threshold region,
the nonrelativistic expansion encounters the problem of
convergence in many cases [6,11-13], e.g., the scalar
form factor of the nucleon does not converge in the region
close to the two-pion threshold ¢ = 4M?Z [6,13].

On the other side, in the framework of relativistic chiral
theory, one may conclude that all the power-violating
terms are polynomials and can thus be absorbed in the

*chenyh@ihep.ac.cn
Tyaodeliang @pku.edu.cn
#zhenghq @pku.edu.cn

1550-7998/2013 /87(5)/054019(34)

054019-1

PACS numbers: 12.39.Fe, 13.75.Gx

low energy constants from the effective Lagrangian
[14,15]. Hence the IR prescription and EOMS scheme
are proposed to retain both correct power counting and
covariance. Nevertheless, they are different in practice
when removing chiral polynomials, the former subtracts
all the so-called infrared regular part of the loop integrals,
which is always an infinite chiral polynomial of different
order, while the latter only cancels the finite PCB terms. In
Refs. [16-18] the pion-nucleon scattering amplitude is
analyzed within IR prescription. In Ref. [16], the O(p*)
calculation was carried out and the analytic property of the
amplitude was discussed. In Refs. [17,18] the O(p?) cal-
culation result was used to fit the phase shift data.
However, it has been shown that the pion-nucleon ampli-
tude in IR prescription is scale-dependent [16] and suffers
from an unphysical cut at u = 0 [18]. Additionally, a huge
violation of Goldberger-Treiman(GT) relation shows up
[18], which queries the applicability of covariant baryon
chiral perturbation theory. Hence these problems lead to
the application of the EOMS scheme.

The EOMS scheme provides a good solution to the PCB
problem in the sense that it faithfully respects the analytic
structure of the original amplitudes, e.g., see Ref. [19], and
being scale independent for merely making an additional
subtraction of a polynomial of PCB terms with respect to the
traditional subtraction. A first attempt of the EOMS scheme
on pion-nucleon scattering was made up to O(p?) level by
Alarcén et al. [20]. Remarkably, achievements in the de-
scription of violation of the GT relation [21] and the pion-
nucleon sigma term [22] are obtained. However, as pointed
in Ref. [23], the size of the O(p?) contribution can be very
large and comparable to those given by the lower-order
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terms even at very low energies above threshold. Thus, the
applicability of EOMS scheme to describe the partial wave
phase shift at O(p?) seems to be questionable. The authors
of Refs. [20,23] solve the problem by explicitly including
the contribution of A(1232) resonance.

In this paper, we extend the analysis up to O(p*), and
settle down the convergence problem occurred in the
O(p?)-level analysis, even when the A(1232) resonance is
absent. Compared with the O(p*)-IR results in Ref. [16], the
pion-nucleon scattering amplitude presented here is the first
analytic and complete O(p*) result. Especially, we pay great
attention to the subtraction of PCB terms, such that the
“threshold divergence” problem first pointed out by
Ref. [24] within the IR prescription never occurs. We per-
form fits to partial wave phase shift data and determine all
the low energy constants (LECs) involved. Besides, the
leading order contribution from an explicit A(1232) reso-
nance and partially-included A(1232) loop contribution are
included to describe phase shift data up to energies just
below the resonance region.

A phenomenological discussion is also made based on
the pion-nucleon scattering amplitude we obtain. We have
mainly studied the Goldberger-Treiman relation and the
pion-nucleon sigma term o 5. The GT relation violation is
a basic quantity to test the applicability of EOMS-B yPT to
the pion-nucleon system. Hence we calculate it up to
O(p?). The prediction of the violation is in good agreement
with other determinations [25,26], and its chiral series
converges rapidly. The analysis on o,y is important to
understand the origin of the mass of the ordinary matter
and can be useful for the study of the supersymmetric dark
matter [27,28]. Taking both pion-nucleon phase shift and
the lattice QCD data into consideration, we give a reason-
able prediction for the pion-nucleon sigma term: o,y =
52 =7 MeV from the fit without A(1232), and o,y =
45 = 6 MeV from the fit with an explicit A(1232). The
first one is smaller than the O(p?) result given by Ref. [20]
but larger than the recent O(p*) result in Ref. [29], while
the latter is in reasonable agreement with previous results
found in the literature [29-31].

II. THEORETICAL DISCUSSIONS
ON 7N — @z N IN EOMS SCHEME

A. Kinematics and effective Lagrangian

In the isospin limit, the standard decomposition of the
elastic 77-N amplitude reads [4,16],

: 1 _
T;lﬂ(l/ = /\/1-[\-//{611’11T+ + E[Ta” Ta]T }XN’ (1)

T = a4+ 5+ DB Ju(p.),

where p, g (p/, ¢') denote the momenta of the incoming
(outgoing) nucleons and pions, respectively, and a (a’)
stands for the isospin index of the incoming (outgoing)
pion, see Fig. 1. 7,, 7, are Pauli matrices and yy/, xn

PHYSICAL REVIEW D 87, 054019 (2013)
7, a AN /q,7 CL/

NS

t

FIG. 1. Kinematics of elastic 7-N scattering. p, ¢ (p', ¢')
denote the momenta of the incoming (outgoing) nucleons and
pions, respectively, and a (a’) stands for the isospin index of the
incoming (outgoing) pion.

are the isospinors of the nucleons. For on-shell elastic
scatterings, p? = p"? =m%, ¢*> = q"*> =M% and the
Mandelstam variables s,¢ and u fulfill s + ¢ + u = 2m3, +
2M?2. Eq. (1) can be written in an alternative form through
the replacement of A by D = A + vB with v = 4.

4my

= =ua(p’, s’)IiDi +ﬁa’””q;q,,3i]u(p, 5). (2
N

Since the leading order contribution of A and B may cancel
each other, one should better use D and B to perform the
low energy expansion of the scattering amplitude when
extracting the PCB terms. Our calculation of the 7-N
scattering amplitude up to O(p*) level demands the corre-
sponding calculation of D= and B~ up to O(p*) and O(p?),
respectively.

In chiral perturbation theory, each graph is assigned an
overall chiral order D, which means the graph is of size
(p/A)P, where one has the soft scale p << A and A stands
for a ‘‘high energy scale”, i.e., the breakdown scale of the
theory. For processes containing one baryon in the initial
and final states, the chiral order for a given graph with L
loops, V,, n-th order vertices, N); meson propagators and
Np baryon propagators, is given by

D =4L + Y nV, — 2Ny — Np. (3)

The effective Lagrangian relevant to the one-nucleon
sector consists of 77-N and purely mesonic Lagrangian,

— s @ ®) @ @
Loyg=L v+ L+ L+ L0+ -+ Lo
+ L+ )

where the superscripts denote the chiral order. The lowest
m-N Lagrangian takes the standard form

£$}v=ﬁ{i¢—m+%gﬂy5}N. (5)

The nucleons are described by an isospin doublet as
N = (n, p)T, and the covariant derivative D . acting on it
is defined as D, = 9, + FM, with

1
L= E[uf(a,u —irgutu, — il,u)"ﬁ]’ (6)
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where [, and r, are constructed from the external vector
and axial vector currents as [, = v, =v, +
a,,. The Goldstone bosons are collected in a 2 X 2 matrix-
valued field u in the so-called exponential parametrization

—a, and Ty

u, = i[u*(aﬂ —ir,)u—u(d, — il#)uf],
_ it (7
u= exp( 5F )

with 7 being the Pauli matrices. The parameters appearing
in this lowest-order 77-N Lagrangian, m, F, and g are the
bare values of the nucleon mass, the pion decay constant
and the axial charge, respectively.

For the complete form of £2),, £%) and £, we refer
to Ref. [32]. Here we only write down the terms which are

relevant to our calculation:
|

L% =N ‘{e14<h,wh vy — 3‘5 o (DR + Hee) + 10 ‘f“’ L (D7 + He) + =1

l€]8

- ([h/\,u,r hyp]a-MVD/\p + H. C) + el9<X+><u u>
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@ _ N _ C2 V\( NI
Ly =ci{x+)NN ﬁ@i“” YIND,D,N + H.c.)
m
C — Cp —
+ 5 (NN = Ny y Ty, w, N, ©)

[ d,+d
3 _ 1 2
‘£7TN —N{_W([M’u
d;
12m3

,[D,, u*]+[D*, u,]]D” + H.c.)

([u,,[D,, u)\J)(D*D"D* + sym.) + H.c.)

diyy—d
. 5 .14 15
+ l%([)(_, MM]D’U“ + HC) + 187

X (oD, uyJu, — u,[D,, uy)D* + H.c.)
d id
+ % YRy e u, + 718 Y*y’[D,, )@]}N, )

l€l7 [h)\#, h)\]O"u'V

2 (N YD+ He) + 2y e

ie - e -
+ ezz[Dw [D*, (x:)]] — — (<X h,,)D*" + H.c.) + iess{u,[D*, Y1) — % Uy, [D,, x-]lo*”
" 115 2\ _ €li6 2\ 2 2\ 2
exsx)xe) + =0 = x2) — 2 () = (- + GA) — )N (10)
f
where the ¢;, d; and e, are the low energy constants. The v vy M,
. — <1, — K1, — X1,
new symbols appearing here are defined as follows, A A A
s—u _ ZM,,
x= =utyult =uxtu,  h,,=[D, u,]+[D, u,l where o = s — my, v = ', vy = "= Here the high

={D,Dg...D, + sym.}.

(In

Here y = M = diag(M? M?) and M is the bare pion
mass. In the pure meson sector, the relevant terms of
L2 and L), are given by

1
X=+ _§<Xi>! Da,B...w

20 i s

TT T 4 u M,u, X+>: 12)
£ =L + Ly (
=3 4(u M,L><X+> E(3 DX+

and /5, [, are low energy constants that will appear in our
calculation, too. It is noticed that throughout this paper m,
M, g, F represent the bare quantities for nucleon mass,
pion mass, axial coupling constant and pion decay con-
stant, respectively, whereas my, M, g4, F, the corre-
sponding physical quantities. For the kinematic region
close to the 7N threshold, one has

M
T« B,

9«1
A2 A

AZ

or equivalently

energy scale A = {47F ., my, my, mA - mN} with m, the
mass of A(1232). Hence o, t, M, (or v, vy, M,) are
adopted as expansion parameters, and

o~ 0(p), t~ 0(p?), M, ~ O(p),
v~ O(P)’ Vp ~ 0(p2)r my ~ 0(p0)r (13)
A~ 0(p°), my — my ~ O(p°).

B. Tree amplitudes

We show all the tree graphs which contribute up to
O(p*) in Fig. 2 according to the power counting rule given
by Eq. (5), and list their contributions to D* and B* in
Appendix B separately. The nucleon propagates with
a mass parameter my, = m — 4c,M?> — 2(8es5 + €15 +
e116)M* instead of m, so that the graphs with mass inser-

tions, generated by c¢;(y.) in £g])\, and esg(x+ X x )+
(2 — x2) = (Y2 )= (- +(x3) —(x+)?) in LA,
in the nucleon propagators are automatically considered.
For convenience, one can classify the tree graphs into two
categories: Born-terms and contact terms. In Fig. 2 con-
tributions from Born-term graphs, (a), (d) and (e), and their
crossed diagrams can be summed and rewritten concisely
in terms of the A and B functions as
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FIG. 2. Tree graphs for 7-N scattering up to O(p*). The solid
lines correspond to nucleons, while the dashed lines represent
pions. The vertices with circled 2, 3 and 4 stem from L2, £%)
and Lgf,)\,, respectively. The nucleon propagates with my = m —
dc;M? — 2(8esg + 15 + eyy6). Crossed diagrams for (a), (d)
and (e) are not shown.

A% = As) + A(u),

2 2

_ & ST my
A(s) = 1 s——mﬁ(m“ + my),

B* = B(s) ¥ B(w) (14

83 s+ 2mymy + my
4F? S—mﬁ

B(s) =

>

Withl my = m — 4CIM2 - 2(8638 + €115 + 6116)M4 and
g, = g + 2M*(2d,¢ — d;3). Meanwhile, the rest are con-
tact term graphs without crossed diagrams, and the sum of
them is

D+ _ 461M2 62(1611112\/1/2 - tz)
F? 8F2m?
63(2M% ) 4 ) )
+ ="+ —{e 2M2 — 1)
F? Ff,
+ 2e152M2% — Hv? + de g1},
v 2v
- 2
D™ = Y + F_%{z(dl +d, + 2ds)M=
- (dl + dz)t + 2d37/2},
Bt — A(dyy — dlS)VmN
F2 ’
1 2¢ 8
B~ Cally + ﬂ{en(ZM% - t) + 26181/2}.

~2F2 F? F2
(15)
'As for the O(p*) effective Lagrangian, we adopt the con-

ventions of Ref. [32], so m, differs from the one in Ref. [16],
where ef" = —2(8ezg + ey15 + €116).
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Note that in the graphs of O(p*) and O(p*) shown in
Fig. 2, the bare constants can be replaced by the physical
ones, since the distinction is beyond the accuracy of our
calculation. Such replacements have been done in Egs. (15)
and Appendix B, where the O(p?) and O(p*) contributions
are expressed only by physical parameters. According to
the discussion in Ref. [11], the terms proportional to
ey (k=19, 20, 21, 22, 35, 36, 37, 38) only amount
to quark mass corrections of ¢; (i =1, 2, 3, 4), hence
here we have already adopted in Eq. (15) the following
combinations of LECs,

c — 2M2(€22 - 4638),
6‘2 = C + 8M2(€20 + 635),
&3 =c3 T 4AM?(2e19 — ey — e3),

Cy = Cy + 4M2(2€21 - 637).

:»
I

(16)

)
N
|

C. Loop amplitudes

To carry out the calculation on 7N — 7N process up to
O(p*) level, one ought to include O(p?) and O(p*) loop
corrections with the corresponding Feynman diagrams
shown in Figs. 3 and 4, respectively. The O(p*) loop
graphs in Fig 4 are simply obtained from the graphs in
Fig. 3 involving even number of pions by replacing one
of the O(p) vertices with corresponding O(p?) vertices.
The results—in which no subtractions have yet been
performed—are displayed in Appendix C 2 and C 3.
There the O(p?) loop results are listed explicitly for the
sake of completeness. The definition of the loop functions
is very similar to that in Ref. [16], which is presented in
Appendix C 1. We have checked that our O(p?) loop
results agree with those in Ref. [23] except a few terms
due to the reason that we have chosen exponential parame-
trization instead of sigma parametrization for the pion
fields.>* To our knowledge, the O(p*) loop contributions
shown here are the first analytic and complete calculation
results, and one can consult in Ref. [11] for the O(p*)
results within heavy baryon yPT and in Ref. [16] for
the O(p*) results within infrared regularization. In
Ref. [16] special technical simplification of calculation
is adopted, here we refer the readers to section 6 there
for details.

It must be emphasized that the parameter m in both
O(p?) and O(p*) loop results should be understood as
my = m — 4C1M2 - 2(8638 + €115 + 6116)M4 for the
following reasons [33]:

2All the terms proportional to 11(92) in Ref. [16] should be
reversed in sign, as it is first pointed out by Ref. [18].

3The physical pion-nucleon scattering amplitudes up to O(p?)
here and in Ref. [23] are the same and are independent of
parametrization.
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FIG. 3. Loop graphs contributing to 7-N scattering at O(p*). The nucleon propagates with m,=m—4c;M?> —2(8esg+ €115+ e116)-

Crossed graphs for (a)—(i) and (n)—(s) are not shown.

(i) All loop diagrams with contact interaction inser-
tions in the nucleon propagators are summed up
automatically;

(i1)) When performing renormalization, one can directly
set m, = my in the one-loop results up to O(p*)
level, since corrections are at least of two-loop order
(the lowest chiral order of two-loop contributions is
naively O(p°)).

D. EOMS scheme and PCB terms

Since the nucleon mass my is nonzero in the chiral limit,
the necessary power counting rule for an effective theory
breaks down, namely PCB problem occurs. To remedy the
PCB problem we adopt the EOMS scheme proposed by T.
Fuchs et al. [8], which suggests performing renormaliza-
tion in two steps: the first traditional MS — 1 subtraction to
cancel the ultraviolet divergencies and then EOMS sub-
traction to remove the PCB terms. The EOMS subtraction
is remarkable in the sense that the renormalized 7N — 7N
amplitude will possess good analytic and correct power
counting properties since the PCB terms are polynomials

of quark masses and momenta and are absorbed in the
LECs eventually. Especially, as proved by Becher and
Leutwyler [6], the PCB terms stem from the regular part
of the loop integrals, which allows us a simple way to
obtain the PCB terms if we have known all the regular
parts of the loop integrals needed—these are shown in
Appendix D.

Taking the O(p?) loop amplitude for example, one first
changes the amplitude in A, B form to D, B functions* and
reduces them to expressions only containing scalar one-
loop integrals. Then those scalar one-loop integrals are
substituted by their regular parts to a given order, and a
chiral expansion in terms of small quantities like M, t, o =
s —m? is performed. Finally, for the total O(p?) loop
amplitude, the series whose chiral order are lower than
O(p?) are regarded as PCB terms which read

“In Ref. [16] the fact that the leading contribution from A and
B cancels, while not for D and B, is pointed out.

>One can also chose o = s — sy, with s4 = (m + M)?, as
expanding parameter like Ref. [24], here we follow Ref. [4].
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FIG. 4. Loop graphs contributing to 77-N scattering at O(p*). The vertex with circled 2’ stems from L(ﬁ,)\, The nucleon propagates
with m, = m — 4c;M?> — 2(8es3 + €115 + e1)¢). Crossed graphs are not shown.

1
3
DY = a3 087 M 0 + 20 + g [2m (10M* = TMPt + ) + 3m* (= TM? + 300> + o]}
(3)- g'm 2 2 2(9 142 2
4.4 (17)
@+ __8M _
BPCB = W(ZMZ t+ 20’),
(3)- g*m? 2 4 L2 A2 2 2
The same procedure can be taken to extract the PCB terms of the total O(p*) loop amplitude,
1
Dggi; = m{864qg2szZa’3 + [1604 - (9C2 - 216C3 + 272C4)g2]m2(t - 2M2)(T3
— (9c,y + 32¢;5 + 32¢4)g%m*(t — 2M?)?(2M? — t + 0) — 2(9¢c, + 32c5 + 32¢,)g*m* o
+ 4[2¢c, — 9¢c, + 16¢5 + 14c,)g?(t — 2M? + 0')0'4},
_ 1
- _ _ _
DPCB = m{:sz(ZCz + 17C3 1964)g2m2M2(2M2 t)0'2
— 4[144c, — 2c5 — ¢y + 4(18¢; + ¢, — c3 — Tcy)g?lto™* + 8[(72¢; — 2c, — 6¢53 — 3cy)
+ (36¢, — 2¢, + 9¢53 — 33¢4)g%1(t — 2M?)o*
— (9¢c, + 32¢5 + 32¢4)g?m*(t — 2M?)[2m*(2M? — £)2M?* — t + o) + *(4m? + 0)]
4
+ —[(34c, + 30c; — 3eg) — (4ey + 15c4)g2]0'6},
m
m
BYE = — m{zma“ + g[32(2¢y + 17¢5 — 19¢,)m*M?a? + (67¢, — 56¢5 + 96¢,) 0]
+2(9c, + 32¢;3 + 32¢,)g?m*[4M* + 12 — to + 20% + M (—4t + 20')]},
BYS = ’"—3{[9c2 +32¢3 + 16¢, — 2(9¢, + 16¢5 — 28¢,)g*]o?
576 f4m o
+2g>m?*(9c, + 32c5 + 32¢,)2M? — H2M? — t + a’)}. (18)
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Those PCB terms will be subtracted, namely absorbed
by redefinition of the LECs, when performing the
EOMS renormalization of the wN — 7N amplitude in
section II E.

Before ending this subsection it may be worthwhile to
mention that the PCB terms should be prevented from
divergences induced by prefactors of the type

1 1
- d i
A(s, m?, M?) an A(s, m?, M?) + st

19)

respectively, and so should the EOMS-renormalized am-
plitude be. The obstacle is first noted by Ref. [24], that
the numerical analysis of the IR-renormalized amplitude
encounters divergences at threshold sy, = (m + M)?> and
at t = —A(s, m?, M?)/s. Nevertheless, both the EOMS-

and IR-renormalized amplitudes should possess good
|

Hg:PMH]+2MH2,

dd+2k
H ="

PHYSICAL REVIEW D 87, 054019 (2013)

analytic properties at those s and ¢ values, namely
singularities caused by (19) are canceled by the nume-
rators of the amplitudes. It can be easily seen from
Hy(s)P(i=1,...,6) and H%)(j = 1,2) in Appendix C 1
that the prefactors are actually introduced by the standard
Passarino-Veltman decomposition [34] of tensor integrals,
which can be avoided by the new approach developed in
Ref. [35].

Taking the tensor integral Hf for example, in Passarino-
Veltman approach Hj is decomposed into

Hiy = (p+ 2)#Hy' + (p = SH),
where the expressions for Hg) and Hg) refer to Egs. (C5)

and (C6). On the other hand, following the approach in
Ref. [35], HY is now decomposed into the new form

1

T dd+2k

— ) en™ 2 =T = (P = kPFIm — (5 = 07T

1

Hz_

where H; and H, are already scalar loop integrals in
dimension 6 momentum space, in other words, coefficient
like 1/A(s, m?, M?) in standard Passarino-Veltman decom-
position never occurs. Hence the threshold divergence
introduced by 1/A(s, m?, M?) disappears, the same conclu-
sion holds for the divergence at t = — A(s, m?, M?)/s when
considering H';.

The new approach enables us to reduce the tensor in-
tegrals in the amplitude to scalar integrals defined in higher
dimension momentum space, without confusion such as
the divergence at threshold. If further regular parts of the
scalar integrals are known, the PCB terms can be obtained
in a new way. In Appendix D, the method proposed by
Refs. [6,36] is adopted to calculate the regular parts of the
scalar integrals in dimension 4 space, those of the scalar
integrals in higher dimension space can also be calculated
term by term using the same method. With the aid of the
regular parts, the PCB terms for H; and H, can be easily
obtained, which are W and 35>, respectively. Using

the relations HY) =1 (H, + H,) and HY = L(H, — H,),
one then gets the PCB terms for Hg) and Hg) in this new
way, which are W and 0, respectively. On the other

hand, the PCB terms for Hg) and Hg) can also be obtained
in the usual way adopted in the paper. One first replaces the
scalar integrals in Egs. (C5) and (C6) by their regular parts

shown in Appendix D, then expands Hg) and Hg)

of o, t, M,. From the expanded expressions of Hg)

and Hg), one finds that the PCB terms for Hg) and Hg)
are lemz and 0, which are the same as the expressions

in terms

i) e MR — KA m? — (P — 0 m — (3 — k)PP

obtained through the new way above. In this sense, the
approach developed in Ref. [35] provides us a new way to
obtain the PCB terms.

E. Renormalization

As an example, we will first show the renormalization of
nucleon mass my as well as axial-vector coupling g4 to
interpret the essence of EOMS scheme. Noticeably the
expressions of my and g, are also needed for replacing
the corresponding bare quantities in the tree amplitude
when performing numerical fits. Part of the results are
already given in Ref. [37].

1. Nucleon mass and wave-function
renormalization constant

As a simple example to illustrate the EOMS method, we
evaluate the nucleon physical mass up to O(p*). The O(p*)
result of my in the EOMS scheme can also be found in
Refs. [8,38]. The one-loop Feynman diagrams are depicted
in Fig. 5. A straightforward calculation leads to the primi-
tive expression for the nucleon mass,

o 4 3mg2 2 2
my =m—4c,M* — 2e,,M* — 2 {Ay — M?H(m?)}
3M? c 3¢, M?g?
i R R |

X {_2[AN - MzH(mz)] + 4m2[JN(O) - MZHA(O)]},

where e,, = 8e33 + €115 + e116- The second and third
terms are tree contributions stemming from O(p?) term
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FIG. 5. One-loop Feynman diagrams contributing to the self-
energy of the nucleon up to O(p*). The vertex with circled 2’
stems from £2).

involving ¢, and O(p*) term related to esg, €5 and e;4.
The term with the first, second and third brace bracket
represents the loop contribution from (a), (b) and (c) in
Fig. 5, respectively. Definitions of all loop functions ap-
peared here follow Appendix C 1. One can perform differ-
ent renormalization schemes on the above expression of
my, e.g., IR prescription, etc. However, we proceed with
the EOMS remormalization by first carrying out traditional
MS — 1 subtraction, which gives

2 4, _3mg’ < 257 (12
mN:mr_4C}1’M _2ean _W{AN_M H(m )}
3M? cy - 3cM?g?

+F{(201 —c3) _E}Aw_T

X{—2[Ay — M>H(m*)] + 4m*[JT(0) — M?H ,(0)]},
(20)

The bar over the loop function denotes the finite part of it,
and the LEC with a subscript  means that it is a MS — 1
quantity® The MS — 1 subtraction does nothing but shifts

the divergencies in loop functions to the bare mass and
LECs:

. 3m3g’R
m = - >
32F?
, 3g°mR
(& =Cl+m(1 —12c1m),
r — 3R 2
€, = €y m[_gcl(l +3g )+C2+4C3],

where R =—-2;+ yp— 1 —In4s. Since my is scale-
independent, we now take the renormalization scale u =
m in Eq. (C4) for simplicity, and therefore Ay = 0. If the
loop functions are replaced by their regular parts, one
naively finds that the term 3mM8* f (m?) in Eq. (20) should

27
be O(p?), but actually contributes an O(p?) PCB term
33"2%2;'22 , and the same thing happens for the last term where

a O(p?) PCB term % occurs. Since they are poly-

nomials, they can be absorbed by the LEC cf,

®Hereafter we denote the MS — 1 and EOMS renormalized
LECs with a superscript r (eg., c¢}) and overhead tilde (eg., ¢y),
respectively.

PHYSICAL REVIEW D 87, 054019 (2013)
3mg?
128 F? 72
Finally, we get the expression for my in EOMS scheme,

which takes the following form

¢y =cf— (14 8¢ m).

3 M2 2
my = i — 4G, M? — 28, M* + %H(mz)
3M? ) < 3¢, M?g?
+ 7F2 {(26'] - C3) - gz}Aﬂ. - 71}72

X {2M*H(m?) + 4m*[Jy(0) — M*H ,(0)]}
_ 3mM?g? _ 3cym*M?*g?
3272 F? 4F2 72

, 21

with m = m’, é,, = e}, namely they are unaffected by the
PCB terms.

We note that one can also carry out the mass renormal-
ization by replacing m by m, = m — 4c,M? — 2e,,M* in
the nucleon propagator. In this case, the graph (c) in Fig. 5
is absent and automatically included in graph (a), and the
result is

3myg? o
my =m — 4cM? — 2e,,M* — S {Ay — M>H(m3)}
3M? c
+ F{(zcl —¢3) — EZ}A”’ (22)

while the wave-function renormalization constant of
nucleon reads
3g?
Zy=1——"=
N 4F?
_ 6C2 1‘42
F2m4 d k

{A,, — 4miM? aiH(s)}
s

p=my

(23)

Hereafter, the m, related to loop contributions is always
taken as m for short. Instead of Eqs. (21)—(23) are adopted
for the renormalization of the 77-N scattering amplitude.
Throughout this paper, we use this way to simplify our
calculation for the reasons discussed in section II C.

2. Axial-vector coupling constant

The axial-vector current A#%(0) between one-nucleon
states can be written as

(N(p"lA#4(0)IN(p))
=1 Ga@ s + G ys [ Tutp), 29

where g, = p, — p, and a is isospin index. G,(¢?) is
called the axial form factor and Gp(g?) is the induced
pseudoscalar form factor. The axial-vector coupling con-
stant g, is defined as

g4 = Galg* = 0). (25)
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FIG. 6. Diagrams contributing to the nucleon axial form factor G,(¢) up to O(p*). The wavy line with a circled cross at the end

[©)

stands for the axial-vector current. The vertex with circled 2’ and ‘3* stems from £fl)\, and L7}, respectively.

Up to the O(p*) diagrams in Fig. 6 are needed. A straightforward calculation leads to g4:

g2+ g%

g 2m? + M?)

3.2 52
gm” g4 —g%) Ay -
32F2 72 2F?

(8'_ %A42 2A44
A . ;’2 H(m2) —8=_H,(0) +

g4 =g +4dgM* —

2F?
3¢ m*M? 9
F2

A + ST 0)

804mg

— H(s) (A, — M?H(m?))
as

p=my

2 2
_ 2 [cz(zﬁm A - M2H<2>(m2>) —d(es + c4>m2H<2><m2>], 26)

mF? d d

which agrees with Refs. [39,40]” Here, the EOMS renor-
malization procedure is similar to that for m,. The bare g
will be redefined as

3.2 3
N ) N
g=g 16F2 D (9¢y + 32¢5 + 32¢y),
3
r gm’R
g =gt 16F2 2( g _mecz + 8c3 —40cy),
(27)

whereas the redefinition of the LEC d 4 reads

J]() = d16 (02 + 1863 1864),

288F 288F 72
&' =d+
16716 T 9p

(28)

The final expression for g4 is lengthy but rather straight-
forward to get with the help of Egs. (27) and (28), so we do
not present it here explicitly.

3. Full wN — 7N amplitude

In order to present a full #N — 7N amplitude, we also
need the formulae for M, and F', and the corresponding Z
factor for the pion. To O(p*) level, these read

"Though in Ref. [40] the mass insertion graphs are calculated
directly, the comparison between our result and the one there is
easy.

R
WBg(l — g% — mg(cy + 6c5 — 18¢,)].

M? 1
M%. = M2<1 + 2€3—2 + —ZAW)’
fmo2f

M? 1

7 JTZAW]J (29)
172 5

Zﬂzzl'+}§[§AT'_2€MW}

FW=F|:1+€4

All of them do not contain PCB terms from loop integrals,
and hence can be treated traditionally.

Since all the necessary preparations are completed,
we proceed with the renormalization of 7N — 7N ampli-
tude. Unlike the renormalization of my and g,, it is hard
to visualize the procedure of 7N — 7N amplitude renor-
malization for its extremely lengthy expression. However,
the essence is the same, that is to carry out renormal-
ization procedure in two steps: MS — 1 renormalization
and EOMS renormalization. Corresponding to the MS — 1
renormalization, those LECs appeared in the tree ampli-
tudes are demanded to cancel the ultraviolet divergences
and yield the so-called MS — 1 renormalized LECs,

d
yimR - YiR
i Ty A ATt
V¢R
i) = e~

where details of y{, yjd. , v¢ can be found in Appendix E. To
absorb the PCB terms (17) and (18), c(p) and djj(u) are
further redefined as
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¢ d
51:01-’—%» &j:df_%’
167 F 167 F

whereas e} (u) remain the same, i.e., &, = e}(u), since the
chiral order of PCB terms are lower than O(p?). Also &¢
and 5]4 are specified in Appendix E. So far, we have already
completed the renormalization of the #N — 7N ampli-
tude in the EOMS scheme, the main feature of this method
is characterized by additional EOMS subtractions, which
distinguishes EOMS scheme from other prescriptions like
IR and HB. We observe that an amplitude in EOMS
scheme differs from the full covariant amplitude only by
a polynomial of small quantities and hence owns the same
analytical structure but possesses correct power counting.
The validity of the #N — 7N description in EOMS
scheme will also be judged by numerical fits to existing
experimental data.

F. Partial wave expansions

We choose to perform fits to the partial wave phase
shift data. The isospin decomposed amplitudes for 7N
scattering are

T =Tt +277,  TISH=T'-T".  (30)

The final partial wave amplitudes with isospin I, orbital
momentum ¢, and total angular momentum J = € +;
(denoted by €= concisely) take the form [1],

F18) = ey + my)ALS) + (V5 — ) BY(9)]
+(E, - mN)[_Aérl(S) + (Vs + my)BL. ()]},
(31)
where

1
Al(s) = [71 Al(s, t)P;(cos 0)d cos 6,

1
Bi(s) = f_ Bl (s, t)P;(cos #)d cos 6.

_ s+mN M2

Here £, = — f and @ are the nucleon energy and

scattering angle in center-of-mass system, respectively.
Po(cos 8) are the conventional Legendre polynomials.
The angular variable cos @ relates to the Mandelstam

. . _ 2st . _
variables via cosf =1+ PXTRTAR with A(a, b, c) =
a? + b?

+ ¢2 — 2ab — 2bc — 2ac being the Kiillén func-
tion. As a straightforward consequence of unitarity of S
matrix, one can further express the partial wave amplitudes
by the phase shift 8%,

flos) = fexp il () — 1], (32)

2II

where p is the 3-momentum of nucleon in the center-of-
mass frame. Since the phase shift is real for elastic

PHYSICAL REVIEW D 87, 054019 (2013)

scattering, we follow Ref. [10] to related it with our
perturbative computation of f7_ (s) via

8. (s) = arctan{| p|Ref}. (s)}. (33)

III. PHENOMENOLOGICAL AND
NUMERICAL STUDIES

In this section, we first perform fits to partial wave phase
shift data near threshold to pin down the free LECs. In
order to describe the partial wave phase shifts up to a
higher energy region, we include explicitly the leading
A(1232) Born-term contribution and partially-included
A(1232) loop contribution. The contribution to the LECs
from the A(1232) resonance is also considered. We
proceed with discussing the convergence of the chiral
expansion of the resulting partial wave phase shift. The
improvement of the fourth-order calculation compared
with the third-order is shown. Finally, the deviation
(Agr) of Goldberger-Treiman relation and the pion-
nucleon o term o,y are discussed. The O(p?) analyses
are also included for the sake of comparison with the
previous literature.

A. Partial wave phase shift

To begin with, we first fit the partial waves at the O(p?)
level. We denote this fit by “Fit I-O(p?)”". As input we use
the phase shift data from Ref. [41], namely the current
solution of George Washington University group. Since the
George Washington University group does not give data
errors, we assign them with the method of Ref. [18],

err(8) = ye? + €282, (34)

with the systematic error e; = 0.1° and the relative error
e, = 2%. Throughout the numerical analyses, we employ
ga = 1267, F,. =924 MeV, my =939 MeV, M, =
139 MeV, and the renormalization scale p = my. There
are 9 free LECs (or combinations of LECs) in total: ¢|_y4,
dy + d,, ds, ds, di4 — d5, dqg. All of them can be pinned
down by fitting two S- and four P- partial waves. The
fitting range is from threshold (1.078 GeV) up to
1.130 GeV in +/s, and the interval between two data points
is 4 MeV. The 2nd column in Table I collects our fit results
at O(p?) level. In column 3 of Table I, we have also listed
the results from Ref. [21] for comparison. We see that, in
general, our fit results at O(p?) level are in good agreement
with those in Ref. [21], except for the ds parameter.
Especially, the d,g, related to Agr, is nearly the same.
The fourth-order analysis of 7-N scattering is denoted
by “Fit I (a)-O(p*)” in Table II. There are 14 free LECs,
which are four dimension two LECs: ¢, 5, C3, C4, five
dimension three LECs: d| + d,, d5, ds, d14 — d,5, d15, and
five dimension four LECs: e4, €5, €14, €17, €153. Unlike
the O(p?) fit, d,g is now fixed at its O(p?) fitted value,
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LECs given by fit up to O(p?). Fit I is performed up to 1.13 GeV, while Fit IT up to

1.20 GeV including the explicit A(1232) contribution. For comparison, we provide the results
from Refs. [21,23]. The ¢; and d; have units GeV™! and GeV 2, respectively, and h, is
dimensionless. In Fit II, the results correspond to ¢: and d} instead of ¢; and d;, respectively.

LEC Fit I-0(p?) WIOS [21] Fit II-0(p?) WIOS [23]
c —1.39 = 0.07 —1.50 = 0.06 —0.81 = 0.03 —1.00 * 0.04
¢ 4.01 + 0.09 3.74 + 0.09 1.46 + 0.09 1.01 + 0.04
c; —6.61 = 0.08 —6.63 +0.08 —3.10 = 0.12 —3.04 = 0.02
4 3.92 = 0.04 3.68 = 0.05 2.35 +0.06 2.02 = 0.01
d, +d, 4.40 + 0.54 3.67 = 0.54 0.79 = 0.09 0.15 + 0.20
d; —3.02 + 0.51 —2.63 = 0.51 —0.47 +0.05 —0.23 +0.27
ds —0.62 = 0.13 —0.07 = 0.13 —0.17 = 0.04 0.47 + 0.07
diy — dis —7.15+ 1.06 —6.80 = 1.07 —0.90 + 0.15 -0.5*0.5
dis —0.56 = 1.42 —0.50 = 1.43 —0.91 +0.25 -0.2+0.8
hy e e 2.82 + 0.04 2.87 + 0.04
Xaor 0.20 0.22 0.35 0.23

according to the discussion of Agy below in Sec. III D. The
O(p*) fit is performed up to 1.13 GeV too, and the results
are shown in column 2 of Table II. Also, we have taken the
results of HByPT from Ref. [11] for comparison. Our
results show improvements compared to Ref. [11]. First,
from Table II, one can observe that the ¢;, d; and e, are
mostly of natural size in EOMS scheme, but in HB results,
especially Fit 2 in Table 1 of Ref. [11], some of the ¢; come
out fairly large. Second, our results seems to be more self-
consistent. The ¢; change a lot when extending the O(p?)

TABLE II.

analysis to the O(p*) analysis in Ref. [11], while our ¢
change much more acceptably.

We plot both O(p?) and O(p*) fits in Fig. 7. Though fits
are performed up \/s = 1.13 GeV, we plot up to 1.16 GeV.
The conclusions made in Ref. [11] still hold: the P33 wave
is slightly improved compared to the O(p?) calculation,
and the P;; partial wave are somewhat off above 1.14 GeV.

Note that the effect of unitarity is automatically included
through the phase shift formula Eq. (33), which is dis-
cussed in Appendix F.

LECs given by fit up to O(p*). Fit I(a) and Fit II(a) are performed with phase shift data, while Fit I(c) and Fit II(c) with

both phase shift data and QCD lattice data (see section III E). Fit I(a) and Fit I(c) are performed up to 1.13 GeV, while Fit II(a) and Fit
II(c) up to 1.20 GeV including the explicit A(1232) contribution. In Fit II(a) and Fit II(c), the results correspond to &/, d/; and ¢, instead

1 J

of ¢;, d; and ey, respectively. For comparison, we provide the results from Ref. [11]. The c¢;, d; and ¢, have, respectively, units of
GeV~!, GeV~? and GeV 3, and h, is dimensionless. The * denotes an input quantity.

LEC Fit I(a)-O(p*) HBYPT [11] Fit I(a)-0(p*) Fit I(c)-O(p*) Fit T(c)-0(p*)
3 ~1.08 + 0.06 (—3.31,-0.27) ~1.03 + 0.03 ~1.09 + 0.08 ~0.95 + 0.05
& 2.78 + 0.11 (0.13, 3.29) 0.50 + 0.04 2.44 + 0.05 0.10 * 0.06
& ~5.26 +0.14 (—10.37, —1.44) ~3.17 = 0.05 ~5.05 +0.22 ~2.64 + 0.08
& 243 +0.19 (2.80, 3.53) 0.79 + 0.03 2.43 +0.19 0.80 = 0.03
dy + d; 6.29 + 0.12 (445, 5.68) 2.99 * 0.05 6.18 = 0.11 2.93 * 0.05
dy —6.87 +0.16 (—4.91, —2.96) ~5.04 + 0.05 —6.87 +0.15 ~4.90 + 0.04
ds 0.51 +0.11 (—0.95, —0.09) 1.32 + 0.04 0.55 = 0.11 1.24 + 0.03
diy — dys ~12.09 * 0.24 (—11.14, —7.02) ~5.61 + 0.09 ~11.94 = 0.23 ~5.58 + 0.09
dis ~0.56" (—1.53, —0.85) 1.14 = 0.20 ~0.56* 1.64 = 0.17
el 3.69 + 0.36 (—4.68,7.83) ~4.53 +0.09 ~1.80 + 0.33 ~8.22 + 0.08
ers ~14.99 + 0.55 (—18.41,9.72) 5.05+0.13 ~5.41 +0.57 10.52 + 0.12
e 7.35 + 0.35 (6.42, 7.79) ~0.31 +0.07 434 +0.28 ~1.50 + 0.05
eis ~2.29 + 1.34 (—17.79, 14.88) 16.98 = 0.15 —2.23 + 1.42 15.70 = 0.15
ers 6.07 + 1.18 (—9.15, 19.66) ~10.99 * 0.12 6.00 = 1.26 ~9.87 +0.12
h, . o 2.90* . 2.90"

e e 15.48 = 0.30 16.70 + 0.27
m e e ce 0.88 + 0.02 0.89 + 0.03
ot 0.04 (0.008, 0.44) 0.23 0.51 0.36
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Fit up to 1.13 GeV. The fourth- and third-order fits are presented by the blue solid and green dash lines,

respectively. Results of Fit I(a)-O(p*) in Table II and Fit I-O(p?) in Table I are adopted for plotting.

B. Contribution of A (1232)

In this subsection, the effect of A(1232) is explicitly
included to describe the partial wave shift up to 1.20 GeV.
Pascalutsa et al. discussed how to treat the A(1232) as an
explicit degree of freedom in covariant baryon chiral
perturbation theory in Refs. [42-44]. The description of
A(1232) is subtle, because the conventional Rarita-
Schwinger representation is a field with 16 components
while only 8 of them are physical. However we adopt the
consistent formulation here [43]. Additionally, we follow
the so-called J-counting rule [42] which assigns an extra
factional suppression of O(p'/?) to the propagator of
A(1232). Up to O(p*) level, there are three typical
A(1232)-included Feynman diagrams of different order:
Born-term of O(p*?2) and O(p*/?), loop graphs of O(p”/?).
Refs. [20,23] remarked that the contribution of Born-term
of O(p*/?) is negligible. It is rather complicated to evaluate
loop graphs of O(p’/?) in the EOMS scheme, since the
loop diagrams involving both propagator of nucleon and
A(1232) will cause much more subtle PCB effects due to
the heavy masses my and m, . So throughout this paper we
consider the leading Born-term contribution of A(1232),
whose expression can be found in Appendix A 1, together
with partially-included A loop contribution illustrated in
Appendix A 2. The complete calculation with A(1232) up
to O(p’/?) is left as an open question. It is important to
mention that the effect of the A(1232) width is considered
through the phase shift formula Eq. (33), which is amply

discussed in Appendix A 2. Likewise, we will have the
operators from Egs. (8)-(10) but with couplings different
from those in the A-less effective field theory. We will
mark the analogous coupling of the theory with A(1232)
with a prime, e.g., ¢; = cl.

Corresponding to the two different fits performed in
Sec. IIT A, we perform another two fits, “Fit II-O(p?)”
and “Fit II(a)-O(p*)”, which explicitly include the
A(1232) contribution. The results are shown in the 4th
column of Tables I and II, respectively. Taking into con-
sideration the A(1232) contribution to the LECs, the d,g is
set free in both fits here. The leading Born-term contribu-
tion of A(1232) is characterized by the NA coupling /.
The value of h, = 2.90 is determined from the Breit-
Wigner width I'y = 118 MeV. In “Fit Il(a)-O(p*)”, we
fix hy = 2.90. However, for “Fit II-O(p®)”, hy is released
as a free parameter, and its fitted value is 2.82. In Table I,
our result is found mostly compatible with those of
Ref. [23]. We plot the A-included O(p?) and O(p*) fits
together in Fig. 8 for the convenience of comparison. We
find that, both O(p?) and O(p*) calculations with A(1232)
contribution give a reasonable description to data and the
O(p*) calculation improves the fit quality.

Note that we denote the O(p*) fits with the notations:
Fit I is A-less and Fit II includes A; Fit (a) and Fit (b)
are performed only with pion-nucleon phase shift data
whereas Fit (b) has the ¢; in ¢; fixed, and Fit (c) is
performed with both phase shift data and lattice QCD
data for my.
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Fit up to 1.20 GeV. The fourth- and third-order fits are presented by the blue solid and green dash lines,

respectively. Results of Fit II(a)-O(p*) in Table II and Fit II-O(p?) in Table I are adopted for plotting.

C. Convergence properties
of partial wave phase shifts

We have made chiral expansions up to O(p?*). It is
necessary, at this stage, to check the convergence prop-
erty of the chiral amplitudes. However, in the fits of
Table II the O(p?) parameters ¢; mix with O(p*) parame-
ters e;, so it is not suitable for testing the convergence of
the chiral expansion. To overcome the problem, here we
follow the strategy of Ref. [11] to redo the fits. That is,
we fix ¢j_4 in ¢1_4 of Eq. (16) with their corresponding
fit values at O(p?) level given in Table 1. In other words,
we perform fits with four dimension-4 combinations:
ey —4esg (In &p), ey t+e3s5 (in o), 2e19 — €y — €36
(in ¢3), 2ey; — e37 (in ¢y), instead of ¢_4. For clarity,
we will denote the modified O(p*) fits discussed here by
“Fit I(b)-O(p*)” and “Fit II(b)-O(p*)”, respectively. In
this case, the contributions from different orders are
separated, so we can study the convergence of the
amplitude. The resulting values for the LECs are shown
in Table III.

Comparing “Fit I(b)-O(p*)” results with those from
Ref. [11], which are summed as intervals listed in the third
column of Table III, it is found, however, that most of our
fitted d; and ¢ do not locate inside the intervals. The main
reason might be that our primitive values for ¢,_, as input
are not in the corresponding intervals (see Table III), which
cause the incomparability since a small variation of ¢; may
lead to big changes of the higher order LECs, d; and ¢y,

though both our fit and that of Ref. [11] maintain a good
convergence property.

The convergence can be visualized by plotting contri-
butions from O(p), O(p?), O(p?), O(p*) separately, and
the sum of them in Fig. 9. Note that we plot up to 1.20 GeV,
though fit only up to 1.13 GeV. One can observe that the
O(p*) contributions (cyan dashed-dotted lines in Fig. 9)
are in general small for all the partial waves below
1.13 GeV. The O(p?) contributions (magenta dotted lines)
are mostly larger than O(p) contributions (green dashed
lines), with the exception of the S;; and P33 partial waves.
However, there exist cancellations between the O(p?) (blue
shorted dashed lines) and O(p?) contributions. The red
solid lines represent the total contribution up to O(p*).
They describe the existing partial wave data below
1.13 GeV very well. After all, the convergence property
of the fourth-order calculation is reasonable, while the
third-order calculation is not satisfactory as pointed out
by Ref. [23].

In Fig. 10 we include the A contribution and plot the
contribution from A(1232) together with the contributions
from O(p), O(p?), O(p?), O(p*), and the sum of them.
From the yellow short dash-dotted lines in Fig. 10, we can
observe that A(1232) mainly contributes to Pj3-wave
while the contribution for other channels is nonzero but
very small. On the other hand, the chiral series are in
general well convergent near threshold almost for all the
partial waves. However when increasing the energy far
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TABLE III. LECs given by fit up to @(p*). Fit I(b) and Fit II(b) are performed with c; in ¢;
are fixed at the corresponding O(p?) fit values shown in Table I, see the explanation in the text.
Fit I(b) is performed up to 1.13 GeV, while Fit II(b) up to 1.20 GeV including explicit A(1232)
contribution. In Fit II(b), the results correspond to ¢}, d_’/- and 62 instead of ¢;, d; and ey,
respectively. For comparison, we provide the results from Ref. [11]. The c;, d; and ¢, have,

respectively, units of GeV~!, GeV~2 and GeV 3, and h, is dimensionless. The * denotes an

input quantity.

LEC Fit I(b)-O(p*) HB xPT Fit II(b)-O(p*)
¢ —1.39" (—1.47, —1.21) —-0.81*

o 4.01* (3.13, 3.29) 1.46"

c; —6.61" (—6.14, —5.85) —3.10*

4 3.92¢ (3.47, 3.50) 2.35"

d, +d, 7.39 = 0.11 (4.90, 5.32) 3.18 + 0.05
d; —8.04 +0.13 (—4.37, —3.61) —4.75 + 0.04
ds 0.62 +0.11 (—1.03, —0.13) 1.11 +0.03
diy — dis —13.90 = 0.20 (—9.31, —8.70) —5.82 +0.09
dig —0.56" (—1.49, —0.84) —0.15+0.17
e 3.25 +0.37 (2.33, 4.19) —9.78 + 0.08
eis —14.50 * 0.55 (—3.33,4.54) 15.29 = 0.12
€6 7.65 +0.35 (2.74, 5.69) —2.76 + 0.07
e 8.21 + 1.34 (5.14, 7.20) 18.35 + 0.14
es —0.79 = 1.19 (—3.36, —1.27) —11.58 * 0.11
ey — desg —8.19 + 1.79 (7.38, 27.72) 10.29 = 0.82
e + 35 —12.86 * 0.83 (—17.35, —10.49) —13.12 £ 0.28
2619 — €3y T €3¢ 18.18 = 1.72 (_2512, _149) 0.83 = 0.55
2ey — ey —32.74 = 3.40 (—=17.12, —1.66) —25.46 + 0.48
hy . e 2.90*
Xdor 0.03 (0.14, 0.58) 0.11

above the threshold, the convergence becomes worse.
Especially, we can see from the Fig. 10 that the higher
chiral order contributions grow much more rapidly than the
lower chiral order contributions as the energy increases.
This indicates that the chiral perturbation expansion breaks
down in the large energy region and stops being valid.

D. Goldberger-Treiman relation

The Goldberger-Treiman relation [45] is a straight-
forward result of partial conserved axial current and chiral

(3)

observe that the @(p?) correction, denoted by Ajgopss 18
negligible compared with the @O(p?) correction.
The GT relation reads
gam
gy =5 (1+ Aar) (35)
T

where Agr represents the correction which can be divided
into three parts,

try, which ts the 77-N pseudoscalar (Yuk 2d
symmetry, which connects the 7-N pseudosca ar ( ul awa) Agr = — 2832 4 Afz(),p n Al((S)())p’ (36)
coupling constant g, with the axial vector coupling of g4
nucleon g,. Here its correction up to and including terms
of O(p?) is obtained. In our discussion below, one can  with
|
mig? B B B B B
AR =~ i AN ) + (LALLM = Tn(M3) = (M4 (0) = Ty(0) + 2AP(0)}, (37)
T
4é M~ - - ¢ - M2\ = .
e = S (B = 2R AV 0r3) + [z(zm,zv — MDMEAD (my) — Mz,<m§, - T)H(l)(mfv) + M2AD
Nt 7y
1, - 1 _ _ 2(¢3 + &)myM>3 (&) — & — &)myM?2
4 _ 6 2y 1 2 3 4)1EN 3 2y _ \t2 3 4)MN
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The first term related to d;g is O(p?) and generates the

main contribution to Agr, e.g., 1.71% for Fit I-O(p?). In
(2
loops
(2

loops
from Eq. (37) that its contribution is independent of the
LECs. The last term in Eq. (38) is employed to cancel the
PCB terms generated by the terms before it. According to

contrast, though A is also O(p?), it contributes a much

smaller value, A ~0.36%. In addition, we can see

the naive power counting rule Al(gz)ps should be O(p?), but

actually it possesses a chiral order higher than O(p*)
and including O(p*). This can be easily observed if we
reduce all the tensor integrals in Eq. (38) to scalar integrals
and a common prefactor M% of order four will show up. It
can be estimated by evaluating the loop integrals numeri-

cally, which leads to A[)) =[-7.07¢, + 1.79¢, —

2.30(¢3 + &,)] X 107*. Because the fitted ¢,_, in Fit
I-O(p*) are combinations of dimension 2 and 4 LECs,
we prefer to bring the corresponding Fit I-O(p?) results

in Table I into A{})
AR = 0.23%.
In conclusion, the correction to GT relation can be

rewritten much more explicitly as
Agr = {—3.05d,5 + 0.36 + [—7.07¢, + 1.79¢,
—2.30(¢5 + &4)] X 1072} X 1072, 39)

to estimate its value, which gives

The first two terms contribute about 2.07%, while the last
term stands for the next order contribution which is 0.23%.

PHYSICAL REVIEW D 87, 054019 (2013)

This indicates good convergence of the Agy. Practically,
the calculation of Agr to at O(p?) is sufficient, since Ag} is
negligible. Hence in our O(p*) fits without explicit
A(1232), the parameter d,g is fixed at the O(p?)-fit value.

E. Pion-nucleon o term: o,y

In what follows, an explicit expression for o,y up to
O(p*) is introduced. Then fits are performed both includ-
ing 77-N phase shift data and QCD lattice data to fix the
unknown LECs related to o ,y. Finally, the fit values are
used to predict o,y: o,y =52 *7 MeV for Fit I (c)
without A(1232) and o,y = 45 = 6 MeV for Fit II (c)
with the explicit A(1232) contribution.

The sigma term is a quantity of great physical impor-
tance to understand the composition of the nucleon mass. It
is defined as the matrix element of the explicit chiral
symmetry breaking part of the QCD Lagrangian situated
between the nucleon states at zero momentum transfer,

d -
Ty =3 my TN = <Nlm,itu+ myddIN >.  (40)
< dm
q=u,d q
Using the Gell-Mann-Oakes-Renner relation M2 =
By(m, + m,), the above equation becomes
om
= M2 5, 41

OnN T aM%. ( )
where my takes the following explicit form derived
by Eq. (21),

3mgiMZ (M M, M2 M 3¢, M%
my = m — 46, M2 + & M4 — #{—”\[4m2 — M2 arccos —~ + —Z ln—”} + T
N W =S 3002 F2 | m? g 2m  2m? m?]  1287%F2
M { 3 MZ 3¢ g M M2 —2m*> M2 (M% —2m*>)M M
+ ———18¢, — 3¢; — —52}ln—7 - AT {1 -—Z In—+ -2 7 arccos—”}, (42)
167> F2 4 m?>  8mwF% 2m? m* 2 Jam® — M2 2m
here m is the nucleon mass in the chiral limit and &, = —2(4ey — 8esg + €115 + €116 — 48,03/ F2). Actually, ¢, is

the EOMS renormalized quantity for &, = ¢; — 2M?(e,, — 4esg). All the quantities except m on the right-hand side of
Eq. (42) are substituted by the physical ones. o,y is obtained straightforwardly,

3 2M3 3 2_M2
O-WN:_451M727+51M?7'_ gA s { " 7

arccos— + M, In—=
m

M Moo . 3. M2
} +716772F2 {SC] - 3C3 _ZC2}<4IHW+ 1)

167 Fom | Jam? — M2 m
36, MY 3&,g2ME (4m? —3M2 M, 12m*>—2M2% 26m>’M; —60m*M, —3M;, M,
P L) s In——t+————0 > arccos—-t. (43)
647 F. 8w F; m m 4m*— Mz, m*(4m?* — M2)2 2m

At O(p?) o,y can be determined by the value of ¢,. In
Ref. [20], through an analysis on 7-N scattering partial
wave phase shift data using the EOMS-B yPT, it predicts
o.n =59+ 7MeV. At O(p*) o,y in Eq. (43) has the
unknown coupling constants combination e; which does

not appear in the 7-N scattering amplitude. However,
recently the lattice QCD simulations have gotten many
data on the quark mass dependence of the nucleon mass,
which enables us to fix e; as well as c;. Taking only the
lattice QCD data into consideration, chiral effective field
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FIG. 11 (color online). The nucleon mass as a function of
the pion mass. The solid line denotes the result from the
Fit 1(c)-O(p*) and the dashed line is Fit II(c)-O(p*). Sources
of different lattice QCD data are: solid squares (PACS-CS) [46],
open squares (LHPC) [47], open circles (QCDSF-UKQCD) [49],
open triangles (HSC) [48], solid triangles (NPLQCD) [50]. The
solid diamond is the physical point.

theory have been used to predict o,y up to O(p*) [29,31].
In the current paper, fits are performed both including the
m-N scattering partial wave phase shift data and lattice
QCD data. In our fits, lattice QCD data are taken from
PACS-CS [46], LHPC [47], HSC [48], QCDSF-UKQCD
[49] and NPLQCD [50] collaborations. Following the
strategy of Ref. [29], in order to minimize uncertainties
of finite volume effects we only use the data with M L >4,
and we also only choose those with M2 < 0.25 GeV?. So
there are only 11 lattice data points which meet the require-
ments. They are denoted with stars in the tables of the
Appendix A in Ref. [29]. Note that the physical nucleon
mass is included in the fits as a constraint. Compared with
the previous fits to partial wave phase shift data, two
additional fit parameters: m and e, are included. The fit
results are listed in Table II, where in Fit II(c) the leading
A-exchange Born term and the partially-included A loop
contribution (see Appendix A 2) are considered whereas
Fit I(c) does not. The predicted nucleon mass as a function
of pion mass is plotted in Fig. 11.

From Table II, we find that most fit parameters in Fit I(c)
and Fit II(c) change little compared with Fit I(a) and
Fit TI(a) in Table II, respectively. The prediction for o
are: o,y =52=*7MeV for Fit I(c) and o,y =
45 = 6 MeV for Fit II(c). Our result o, = 52 £7 MeV
is smaller than the result obtained from the fit to the 7-N
scattering partial wave phase shift data up to O(p?) given
in Ref. [20]: o,y = 59 £ 7 MeV. We improve our deter-
mination of o,y in two ways. On one hand, the fourth-
order correction to o,y is obtained. On the other hand, to
our knowledge, this is the first attempt to treat the 77-N
scattering data and lattice QCD data together using
the EOMS-BYPT up to O(p*), and this may constrain

PHYSICAL REVIEW D 87, 054019 (2013)

the value of the sigma term better. The result: o,y = 45 =
6 MeV agrees well with the recent analysis on lattice
QCD data using EOMS-BYPT up to O(p*) [29], which
gives o,y = 43(1)(6) MeV. However, because the exact
A-included loop graphs are not considered, o,y = 45 *
6 MeV can still be improved in future.

IV. CONCLUSIONS

In this paper, we performed a calculation of the pion-
nucleon elastic scattering amplitude in the isospin limit
within the framework of covariant baryon xYPT using
EOMS scheme up to O(p*). The amplitude is covariant
and possesses correct analyticity and power counting prop-
erties. The resultant description of the existing partial wave
phase shift data from Ref. [41] is very good for the energy in
center of mass frame up to 1.13 GeV, and up to 1.20 GeV
including the leading order A(1232) Bomn-term and the
partially-included  A(1232) loop contributions. The
dimension-2, -3, and -4 LECs or their combinations are
determined. The convergence properties of the chiral series
are discussed. The fourth-order calculation without explicit
A(1232) displays a good convergence property at O(p*) in
the threshold region—the O(p*) (next to next to next to
leading order) contribution is found much smaller than
the leading order (LO), next to leading order and next to
next to leading order ones for all the partial waves. It is
certainly an improvement to the unsatisfactory situation in
the third-order calculation, discussed in previous literature
[23]. However, when we explicitly include the O(p3/?) Born
term contribution of A(1232) in §-counting [42], as well as
partially the A(1232) loop graphs, the convergence property
is not good in the region close to the A resonance, which
indicates that the exact O(p’/2) loop contribution may be
sizable and should be considered carefully in the future.

As physical applications, first, the correction to GT rela-
tion is discussed up to O(p?). The O(p?) correction is much
smaller (about 0.2%) than the O(p?) correction (about 2%),
which implies good convergence property of Agr and con-
firms the applicability of EOMS-B yPT to low energy phys-
ics. Secondly, a reasonable prediction for the pion-nucleon
o term o is obtained. We find o,y = 52 = 7 MeV from
the fit without A(1232), and o,y = 45 = 6 MeV from the
fit with explicit A(1232). The two values are obtained by
performing fits including the pion-nucleon partial wave
phase shift data and the lattice QCD data for m,,.
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APPENDIX A: A(1232) CONTRIBUTION

1. Effective lagrangian and leading Born-term
contribution

For our calculation here, the relevant -effective
Lagrangian with A(1232) as explicit degree of freedom
reads

L8 = Lrs+ Lona,

Lis = A JiyF 0, — may*}A,,
iy

TNA ZFWmA

(AL)

L NTJ)/'“”"(GMAV)&A#“ + H.c,

Ah( )= —Th 8 {(m +m)[(M2—5)—1(s—m2)]—s
At 6FZmy s —m3 | A T 2) 3 N 3s

t
M2 -
R

h? s
Bh(s,t)=—A - —"
sA\S ) 2
s 6F,my s — mjy

1
A (s, )= —-Al(s0),

3 ——B+ W (s, 0).

B_,(s, 1) =

2. A contribution to LECs and partial
inclusion of the A loop

In order to evaluate the tree-level contribution to the
LECs c¢;_4 when the A-resonance is integrated out, the
leading Born-term contribution is expanded in powers of
o = s — m%, M2 and t, and then compared with the O(p?)
tree amplitude Eq. (B4), leading to

A _
ct =0,

)
A _ hymy

Y= —cf =2ch = > =185 GeV™!,

9(mp — mN)mA
(A4)

where we used i, = 2.90, my = 0.939 GeV, and m, =
1.232 GeV for the numerical value at the end of Eq. (A4).
We are not able to exactly calculate pion-nucleon loop
diagrams involving A resonance. Nevertheless, this short-
coming can be partially remedied by substituting the O(p?)
vertices in the O(p*) loop graphs shown in Fig. 4 by the
contributions from A exchanges in Eq. (A4). The proce-
dure is illustrated in Fig. 13. Hence, the ‘full’ one-loop

FIG. 12. Leading A-exchange Born-term contribution. Double
solid, solid and dashed lines represent A, nucleon and pion,
respectively. Crossed graph is not shown.

1
+ g[sz(mN + my) — M%r] -
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where T, are the isospin-1/2- isospin 3/2 transition matri-
ces satisfying TTT,, 2501, 3 igyp.T.- Conventions for
y#¥® and y*” can be consulted in Ref. [42]. The leading
A-exchange Born-term contribution to pion-nucleon scat-
tering is O(p*?) in the so called 8-counting rule proposed
by Ref. [42], and the Feynman diagram is shown in Fig. 12.
The total contribution of leading Born-term reads

Af(s, ) = A5 (s, 1) = AZ, (u, 1), (A2)
By (s,t) = B, (s, 1) ¥ B, (u, 1),

with

") + M2
S DI s+ )+ g ]

—m} + M3T1
L mg\, 7[5 (s — mzzv +M3) + mNmA:I},
s

(A3)

O(p*) contribution can be given by the diagrams in Fig. 4
with a replacement® ¢; = ¢+ c®. The effects of this
replacement include only the 0(p7/ 2)  A-included
loop graphs, while higher order graphs, like 7N —
wA(loop) — 7N of O(p''/?), are beyond the accuracy of
our calculation and therefore absent. Also, the O(p”/?)
loop diagrams involving the A propagator contributing
to the self energy of nucleon can be estimated in the
same way.

APPENDIX B: TREE AMPLITUDES

For convenience, the two independent scalar kinemati-
cal variables, v and v, are defined as

S—u

t—2M2%

y =
4mN

s Vg =
4mN

The Feynman graphs in Fig. 2 are calculated directly and
expressed in the D and B functions, while their crossed
graphs are obtained by the following crossing relations:

D+(_V’ VB) = D+(V) VB);
D™ (—v,vg) = =D (v, vp);
B+(_V, VB) = _B+(V, VB),

(BI)
Bi(_y’ VB) = Bi(y) DB);
A+(_V) VB) = A+(V: VB)’
A7 (—v,vg) = —A" (v, vp).

8We thank J.J. Sanz Cillero for pointing it out to us.
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FIG. 13. Matching between A-included and A-less loop graphs. The circled ‘2’ vertex is related to c4_,. Possible polynomial terms
(containing PCB terms), denoted by a black square, would be absorbed in the ¢;, d;, e, couplings as it was done in Sec. Il E. Barring
the latter, the left hand side A-included loop graph differs from the right-hand side A-less loop graph by contributions of O(p>) and
higher in the chiral expansion.

Here the crossing relation for the A function is also dis- 2. 0(p?)
played for the sake of completeness. Additionally, if the D

and B functions are expressed in terms of arguments, s and (i) Graph (c):

t, then s should be changed to u on the right-hand side of
each relation in Eq. (B1). Note that only the graphs (a), (d)

and (e) in Fig. 2 have their corresponding crossed diagrams. Dt — _401M2 i e (16myv> — 1) n c3(2M7 — 1)
¢ F? 8F2m? F? ’
2
1. 0(p) D; =0, Bf=0 Bi=""g" (B4)
(i) Graph (a):
. 2 2m 3. 0(p3)
Dy = =2 T oy — v) + (my + my)vg),
4F° s — my
5 (i) Graphs (d) + (e):
+ 8 2WlN
By =—— s(v—vp+my+my), (B2)
4F° s — my >
+ gaMz 2myvp
Dy, = —>5-Qdig—dp)|v+ \
where my =m —4c,M?* —2(8esg + €115+ e116) M*. F= v —vp
(ii) Graph (b): M? 2m ®3)
v 1 By, = — g;\pz T (2dy6 — dlS)[l + N1
o - - - pl V — Vp
D=0, Dy=s—5 B;=0 B =—
(B3) (ii) Graph (f):
|
2
D} =0, D; = F—I;[Z(dl + dy + 2ds)M2 — (dy + do)t + 2d5%],
Bt — 4d4 — dis)vmy B> =0 (B0
- qu,. ’ o
4. 0(p*
(i) Graph (g):
. _ 16 A% 2 _ I\ 4, 1 22 1t
D, = ﬁ{em Mz — 3 + elS(MTr - 5)” +oer” + 5(2319 — ey — e3g) Mo (M7 — 3
1
+ (€39 + e35)M7v* + 5(622 - 4638)Mi}y
16 t 1
D; = O, B; = O, B; = #{617<M% - z) + 6181/2 + 5(2621 - €37)M%.}. (B7)
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APPENDIX C: ONE-LOOP AMPLITUDES

1. Definitions of loop functions

All the integrals appearing in the scattering amplitude
up to O(p*) level can be generalized as

d R
R (R AL (4]}
i (27T)dA]"'AmBl"'Bn

where A;=M?—(k—q,)* — i€ and Bj=m?—(P;—k)* —ie
stems from the meson and nucleon propagator, respec-
tively. A standard approach to evaluate such tensor inte-
grals has been developed by Passarino and Veltman in
Ref. [34]. In this approach, the Passarino-Veltman decom-
position is first carried out by representing the tensor
integral as a sum of independent tensor structures multi-
plied by scalar quantities. Then the scalar quantities are
further expressed by means of initial scalar functions
of the form:

1 d?k 1

Hyp = - .
m i) QmeA --A,B B,

(C2)

In what follows, we will specify the definitions of all the
loop functions and the Passarino-Veltman decomposition
formulae, with the help of the external momenta defined as

S, = (Pt =P+ g,
0" = (P + P,
Ay =(q' —q = (P~ PH.

(1) 1 meson: A, = Hy

1 d?k {1, k*, k*7}
A 3 A“ﬂ") A/;_V =~ / : . ’
i i) emt MR

AL =0,
AR = grr A2

where

M? M?

R !
72
2

M? M? M?
AD =My —(A” - —2).

d 4 32

(i) 1 nucleon: Ay = Hy,

1 d?k {1, k*, k*kV}
Ay, A# AR == = ,
{ N> 2N 2N } i (27T)d m2 _ (2 _ k)2
A}l\l} = E#AN’

A]’l\L,V = g"“}Ag\%) + SHZVAY,
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where

2 2
Ay = 2{R + 1nm—2},
167 M

2

2 2 2
AQ =" A =’”—<A - )
Ng TN \TY O 32

(ii1) 2 mesons: J = H,,

1 [ d% 1 k* Kk
L J- TV == { )

i) Qm)IM? = k*M* = (k= A)*T

1
JH) =54 (@),
JEr (D) =(ArAY — g7 A2 TV (1) + A A JO(1),

where
JV() = a _1 d)t{—%Aﬂ + (M2 — %t)](t)}
= —%{—%AW + (M2 - —t)](t)
+ 161772 <M2 - lt)},
JO(r) = %{—Aﬂ + %tJ(t)}.

(iv) 1 meson, 1 nucleon: H = Hy;

{H, H*, H**, H*, H""?P}
l /‘ Ak {1, k", k*k”, kMK, kM kY kP}
i) @m? M —k]m* = (2 — k)T
H*(s) = SFHY(s),
HY(s) = gt H®(s) + S#3YHO(s),
HH(s) = SrHW(s),
H#P(s) = (ghvsSP + g"P3H + gPMEV)H(4)(S)
+ 43P HO)(s),

where



ANALYSES OF PION-NUCLEON ELASTIC SCATTERING ... PHYSICAL REVIEW D 87, 054019 (2013)

HOG) = {8, = Ay + (s = 2 + MIH(S),

1 1 1
D)=~ 1~ 2 (e — 2 2) g (1)
H®P)(s) = 1{ 2AN + M?H(s) 2(s m* + M*)H (s)},

1

1 1 M?
- 5{— S Ay + MEH(S) = 3 (s = m? + MYHO(s) +

HOG) = =By + MEH(s) = dHO ()

1
— 3—{—AN — M2H(s) + 2(M2 + 5 — m)HO(s) —
S

HD(s) = —Ay + M2HY(s),

M? + m? — %s}
3272 ’
1
HW(s) = 2—{A<,$> —AY + (s — m® + MDHO(5)},
A)
1
HO)(s) = 2—{—AN + (s — m?> + MHH®(s) — 4HW(s)}.
s
(v) 2 nucleons: Jy = Hy,
1 dk {1, k*, k*k"}

i) @m? [m* = (k— Pm* — (k— P2

1
Jy(@) = EQ#JN(I):

{JN’ Jﬁ) ]xV} =

TR0 = (A#A” — g AP (1) + AFAY TP (1) + %(pnp/v + PYP'R) (D),
where

= gl e - = b (o o )

1 1
I = Z{_AN + EIJN(I)}.

(vi) 3 nucleons:

L[ A% 1
B0 ) o [mE = (P = k2 Im® = (k= )2 m — (P = k)]

(vii) 2 mesons, 1 nucleon:

{Hyy, HE, HEY = / d'k {L &% bk
W ) ) [MP = KPIME — (k= APl — (P — BT’

HA() = Q4 HY) () + 3 A#Hyy ()

HEG) = g HE(0) + 040 () + M AHE)(0) + (A# Q" + 0#8") ZHE) (),

where
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Hy(1) = t{J(r) — H(m?) + (M2 - %I)HZI(Z)},
Y0 = g [0 - 0 - 2H0 - S0)

= %{% M2Hy, (1) — (M? — 2m)H) (1) — %m)} - ﬁ
HE0 = 5[ 300 + (2 = L)l - HE o)

1(1 1 1
HY (1) = ;{5 HO(n?) = S HOm?) + 4 tH (1) — Hg?(r)}.

(viii) 1 mesons, 2 nucleon: H,
1 d?k {1, k¥, k*k"}
H, HY HY} == T )
W Hi B3F =5 ) Gyt T2 = 2T = (P — 17 — (P = #7)
HY (1) = 0#H{ (),

H' (1) = g#"HY (1) + Q* Q" HL)(1) + A*AYHD (1),

where

1
4m? — ¢

HY (1) = {H(m?) — Jy(1) + M*H,},
120 = w0 - a6 - v}

1 1 1
=_IM2H,(t) — M2H\V(1) — = T\ (¢ ——},
2{ (1) OEEFMOEE

1 1 1
YW = 1o t{z HOn?) = () + MPH () - ij)(z)},

1

HO () = — ;{% HO(m?) + Hf?(t)}.

(ix) 1 mesons, 2 nucleon: Hyp

1 [ d% {1, k*, k*k}
i) Qi [M* = Im®> — (P — 2 m — (3 — 0T
HY(s) = (P + 3)*H(s) + (P — S)*HP (),
HY"(s) = g""HY) (s) + (P + 3)(P + 3)"H (s) + (P — 3)#(P — )" H(s) + 2(P#P* — L3 HE(s),

{HB’ Hg’ H]l?“/} =

where
HE;”(S) = - m{[ﬁ/lz - (m2 —8)[H(s) + [M2 + (m2 - s)]H(mz) - 2M2JN(M2)
+ [(s — m?> + 2M*)M?* — (m* — 5)*]Hy(s)}, (C5)
HY(s) = — D ;2 78] {Im* — M? + 3s1H(s) + [M? — 3m? — s]H(m?) + 2(m> — 5)J(M?)
+ (m? — $)(3m? — 3M? + 5)Hy(s)}, (C6)
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1 1

2 —d2A(s, m%, M?)

+[m* — 5%+ M* +2M?(s — m?)JH(s) + 2[m® + 2M°® — 2m*s — M*s + m?(s> — 3M*)|Hy(s)},

HY(s)=— {MP(3m? = 3M2 + 5)Jy (M?) + [(s — m?)(2m? — M?) + M*]H(m?)

)= i) nliz, 3yt = H () = H(s) o (s = = MOH (02) = (5 = i+ MHH ()
+4M2 Ty (M) + (s — m?)? = 4M*) Hp(s) — 4(1 — )MPH ()},
Hy'(5) = G nliz, 33y 208+ 3m? = IMO (M) + (s — m? + 2M2)(H(m?) + H(s)) + (s + 3m? = MOH D ()
+Bs +m2 — MOHV(s) + ((s — m2)2 — 4M2(s + 3m2 — 2M2)) I 5(s) — 4(1 — d) (25 + 2m? — M2)HS (5)}
Hi (s) = m{“ —m?)(2Jy (M) + H(m?) + H(s)) + (s +3m? = M) HD (m?)

— (3s+m*—M)HD(s) + (s — m>)(s — m> — 2M*) Hpy(s) — 4(1 — d)(s — m>)HS (s)}.

(x) 1 mesons, 3 nucleon:

{Hy HEY = a' &)
B ) @Ay M2 = K2 DmE — (P — 0 m — (S — B m? — (P — 0T

HY (s, 1) = Q*H\)(s, 1) + (A + 29)*HZ(s, 1),

where
1
A(s, m2, M?) + st

- I:%(s +u) — (m? — Mz):IHos(t) + (s —m* + Mz)':M2 - %(S - M)]Hls(& 1)},

HY G0 = - {(s =+ M5 (5) =3 5 = A0

H (s, 1) = ﬁ{HB(s) — Hos(t) + M2Hy(s, 1) — (4m? — DHO (s, ),

After removing parts proportional to R = ﬁ + yr — 1 — In47r, the remaining scalar integrals are finite and
denoted by, e.g., H(s), Jy(2), H,(2), etc.

2. O(p?) results

The contributions from the O(p?) loop graphs shown in Fig. 3 are displayed below, respectively. The total O(p?) loop
contributions are given by

Al = Z[Aé(s, 1) = AG(u, 1)] + ZAI?I(S, 1), GE{a,....in, ..., s}
G H (C7)

Bigwy = D[B5(s. 1) ¥ BG(u, )] + ) Bii(s, 1), H € {k L m, 1, u, v},
G H

where the A (u, 1) and B5(u, 1) (G € 1a, ..., i..., s}) are obtained from the graphs (a), ..., @), (), ..., (s) through
crossing.
The abbreviation F(s) in the amplitudes is defined as

F(s) = 2(Ay — M2H(s)) + (s — m*)HW(s).
(i) Graphs (a) + (b):

+
Aah -

2 2 2
DEFG). By — - %{im—an) ~ (Ay — M?H(s)) + F(s)}.
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(i1) Graphs (c) + (d):

A;=@34A+@—WWWWWMPMMH—W%mH«—MWﬂMk

B =2 {(AN MPH(S) + (s — m?)(HO(s) — 4mHY(s))
+S4’" [0+ (5 3m°)(~Un(M?) = MPHy(s) + (s = m?)H )]

(ii1) Graph (e):

. 3g*m [4m?F(s)
AF = W{m —3F(s) +2(Ay — MZH(S))}y

* 3g 4m? 8m 4
B =16F {F (s) = (Ay = MPH(5)) = ———[2F(s) = (Ay = M*H(s))] + e F(s)}
(iv) Graph (f):
1 1 |
Af =ggm(s —mHUGs), - B =g F4{4(s —m)HO(s) + 4(Ay = MPH(s) = A}, Af =3A3,. B =2Bi).

(v) Graphs (g) + (h):

2
Al = %(s — m2){=2H(s) + HO(s) + 8m>H\(s)},
4
By, = o {(Ay = MPH(m) = 28, + 8m2[Iy(M?) — MPHy(s)),

+2(m? — $)[H(s) — HO(s) — 4m>(HY(s) — HP(5))]},
A, =0, By, =0.

(vi) Graph (i):

A+ _3mg*
i 7}
16F

— (s —wHY (1) — (Iy(M?) — M2Hp(s)) — M2(HY (s) — HY (5)) — (m* + 35)HY (s) + (s — m) H (5)]
+32m4(s — m?)HY (s, 1)},

{2M*[H(m?) — H(s)] + (s — m®)[2H(s) + HV(5)] + 8m2[(Jy (1) — M2H (1)) + 4m*H (1)

B = 16F4{(3m2+s)H(s)+4m2H(1)(m2)—(m2+s)H(1)(s)+4m2[ (In(0) = M2H (1) — 2HP (1) — 2(Jy(M?)
— M2Hy(s)) — 23m? + s)H (s) — 2(m? — s)HP ()] + 16m*[(Hy3 (1) — M?H 5(s, 1)) + 2(s — m*)H'Z (s, 1) ]},
N T S et
A =—347, B 3B

(vii) Graph (k):
t
Af =B =0, B = FJ(D([)'

054019-24



ANALYSES OF PION-NUCLEON ELASTIC SCATTERING ... PHYSICAL REVIEW D 87, 054019 (2013)
(viii) Graph (1):

A; =’”—g2{4[AN M2H(m?)] = 3(M? = 20[J(1) — 4m*HY) (0], B} =0,

4mg

Af = — (s —wHS (1), B = {tJ“)(t)+4m2H(2)(t)}.

(ix) Graph (m):

3
AL =Bf =0 A;=-— gF’f (s — wHY (),

B, =~ Sg—;{Aﬁ — Am?[HO(m?) — (Jy(1) — M2H, (1) — 2HY ()]
(x) Graphs (n) + (0):

2
+ mg + + 2m 1
Ao =T - HOO B, = A |

m?—s 4m)

(xi) Graphs (p) + (1):

2
. mg + 44| 2m 1
e L A et

(xii) Graph (s):

AT =BF =0
(xiii) Graphs (t) + (u):
2 3
- mg — M2H(m?)}, B, = _4_At+u’ A, =0, B}, =0.
m
(xiv) Graph (v):
. 5
Ay =By =0, By=- 54,

3. O(p?) results

The contributions from the O(p*) loop graphs shown in Fig. 4 are displayed below. The total O(p*) loop contributions
are given by

A = S[A5(60 = A5 0]+ FA56.0. G Elabf1.f2 8 hmo.s)
(C8)

total Z[BG (s, 1) = B (” ]+ ZBH(S 1), H € {k, m, v},

where the AZ (1, 1) and B; (u, 1) (G € {a, b, f1, f2, g, h, n, o, s}) are obtained from the graphs (a), (b), (f1), (£2), (g). (),
(n), (0), (s) through crossing.
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(i) Graphs (a) + (b):

+ chg M
Ay =

(s = m)HO(s) + Ay — M2H(s)} — {z(s +3m)AD — M2(s — m + M)A,
—2(M? = 4m»)A? +2(s — m? — Mz)[i(s —m?+ M?)(Ay — M?H(s) + (s — m®)HD(s))
— (2 = MDA (s) + (5 + Tm? — 2M)HO(5) + (m? — M2)(s — m2)H<3>(s)]}

ety ;j“)g i {— S = m? £ MDAO() + (M2 = AmP HO(s) + 3 s = m2)(s = m? + MZ)H(3)(S)}
C4g S8 (s — m2)(s + m)HD(s) + (s + 3m?)(Ay — M2H(s))}

. 201g mM?

b= TRy = ){Z(AN — M?H(s)) + (s — m*)H(s5)}

28° @ 1 @)
T mz){—Z(s AR £ M5 =+ M)A, — (5 + 3m? — M)A
+ %(m2 — s+ M2)|:%(s —m? + M?*)(2(Ay — M?H(s)) + (s — m®)HW(s)) — 2(m> — M>)H(s)

+ (55 + 11m? — AM2)HO(s) + (m? — M?)(s — mz)H(3)(s):|}

M{( — m2 + MOAD(s) + 2(s + 3m? — M2)H?)(s) — l(s —m?)(s —m*+ MZ)H(3)(s)}
F(s — m?) g
. Fﬁg "4l ) Ay — MPH() + (5 = ) Bs + ) HO () ©

(ii) Graphs (f1) + (f2):

Aj =%{(m2 —)[Ay+ A, +(s—m2—M>H(s)]+2m2(s — m2)HV(s) + (m? — s + M2)H?(s)

+ %(s o+ MY A g+ (s — m® — MP)HO ()] + m(s — m? + MZ)H(3)(S)}

1 2C1

Ay =347~ 200 N+ (5= m? ~MYH(s)+2m?HO ()} + 5 {(s = m?)AY)

4 P
+%(s —m?— MZ)I:E(S —m*+ M)A+ Ag)]

+%(s = M) (s — m 4+ M)Ay + (s — m? — M2)H(s) + 202 HD(s)]

+ %(s —m>—=M)[(m> —M*)(Ay+ (s —m> — MAHWD (5)) +2(s — M2)HD(s) + 2m2(m? — M2)H<3)(s)]}
+%{%(s — 24 M)Ay + (5 — m? — M2YHO(5)] = (5 — m? — M2)HO (s) + m>(s — m? +M2)H<3>(s)}

Bf =%{2m[AN + A, + (s —m?—M*)H(s)]—2m(s + m*>)HD (s) + 4mH? (s) + m(s — m*> + M) H®(s)}

_ 4C1mM CH 2) 2) 1
By =3B —— HY(s) + 2F4m2{—2m(A§V +AST)+§m(s—m2—M2)(s—m2+M2)H<1>(s)

*é(s"” —M)[—6mH?(s) +2m(m* — M*)H)(s )]}+2?m{

2HP(s) + ;(s—m2+M2)H(3)(s)} (C10)
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(iii) Graphs (g) + (h):

+ o=
Agp

sh—

2c,8*M? 2 217(1) (1,2 2) (1) 2a02(g@ )
7 {(s —=m*)H(s) +2m*HY (m*) — (s + m*)HW (s) + 4m*M*(H"(s) — H ' (s))}
+;21§4{ (s—m M)A+ (M2 —1)Ay — %MZ(ZMQ — )y (M?)

+M2(2(s —m?>— M?) + t)J}V”(MZ) +M22M? = I (M?) +22M* — HH® (m?) + [Mz(m2 + M2~ u)
1
+ %(s —m?>—M*)(2m* —1) ]H(3)(m2) + E(S —m?+MH)[-2M*HD (m?) + (s + m> — M*)H® (m?)]

— QM2+ = W)HO(n2) = L2 = M2+ )(m2 + M2 = ) H o)
MG
4m2
—2(m% = M?)(s + m2)HO(s)]— (s — m2 — MA)[M*(s — m® + M) (HY(s) — HS(s))
—2u—2m*— MY H (s) — M*(s — 5m* + M2+ 20)(HY (5) — HE(5))

M) [(s —m?)(s —m? + M?)H(s) +2(s — 3m>) H?(s) — ((s — m?)> + M*(3s — m?)) HV(s)

+ M2 (s —m? = 3M*+20(HY (s) — HO ()} +—— = (c3— 4)g {( - mz)(%(s —m?+ M2)HD(s) — H<2>(s))
+m2(m* + M — u)H®) (m?) — %(s +m2)(s —m?+ M2)HO (s) = 2m2[2(m* — s + 2M> — ) H (5)
+M22M? + s — u)(HY (s) — HE (5)) — M2(2m? — s — u)(HS (5) — Hg”(s))]}

+";—§2<s— WA = (s = m?)(HO(s) = H(5) = 4m* (Ty (M?) = M*Hy(s)) = 4m?(s = m?)(H () = H (5))}

- :h(C4 =0).
4c1g mM?
F*

ng
2F%m

{JN<M2> M*H(s)— = H<”<s>+(s—m — M2)(HY(s) - H<2>(s>)}

{ (t—2M?)Ay — 2A<2>+ (2m + M?)(t = 2M2)J (M) — 4m>M2J ) (M?) — M2(t — 2M2)T P (M?)

1
—EMZ(S —m?+ M?)H(m?) +§M2(m2 + M2 — u)HY (m?) + (4m? + 4M> — t)H® (m?)

(s—mQ—Mz)I:

—(2m2+s—u)HW (m?) + 5

—H(s) - %(s —m?+M*)HY (s) — (m*> = M*)HO)(s)

s+ I+ M2 =20 (M)~ M2 (s = m2+ M) Hp(5) — M2 = )(HY (5) + HE ()

— M2 = M?)3H (5) — g (s)) + (s = m?)? = MY)(H (5) = H}g (s)) +209m” = s+ M? = 20 H} (s)
+ (s — m? = M?)(5m* — s — M*> = 20)(H§ (s) — HY (s))
(=M =5+ 300 =20 0) ~ 1 5) ||

_ 2 1 1
sz camg® ;3)mg {2H<2>(m2) (s = m? £ MAHO () + 5 QM + s =) (M) ~ MP[QMP + s~ u) Hy (5)

+@2m? —s— ) HP ()] = 2(5m2 — s + M2 — )H (s) + (s — m?> — M2)2M>* + s — u)(H (s) — HY (5))

c4mg

—(s—m2—M2)(zm2—s—u)(H§>(s)—H§§>(s))} {=2A_ + (s — m?)(HD(s) — 2H(s))

+2(s +3m2)(Jy(M?) — M2 Hg(s)) + 2(s — m?)(s + 3m* — M*)(H\(s) — HY (5))},
—B},(c4=0). (C11)
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@iv) Graph (k):

Af = — %{4c1M2[4A7T +3(=M? + 20)J ()] + 203[—4M2A7T +3(2t — Mz)(Aﬁ + (é - MZ)J(t)):I

+ %[_8m2A53)+3(2t M2>( ’ZJ(t>+2(’” _Z) I =3 Hm(”)]}

4cymtJ V(1)

- (C12)

2 t
AL = ﬂ(mZ +M? -5 — 5)rJ“)(r), Bf =0 B =

(v) Graph (m):

2M2
A =28 A~ am2HO ) = 4w U (1)~ MPH, ()
- 3:;‘51 {2M TAD 4 (s — u2HO (m?) — 4QM? — OH® (m?) — 2M2(s — u)2H, (1)
m
+2(s — m? — M2)(m* + M2 — u)[ S(A, = 4m*HO(m?)) — HO (m?) + MzHA(z)] +21(4M2 — 1)J (1)
+ 2200 (0) + MP[ACM? — )HD (1) +2(s — u)*HY (1) — 2t2Hg4>(t)]}
3cg’ s 2p7(1) (2 2 2
T “20 2M? —{A, — 4m*HY (m?) — dm> (I (t) — M?H (1))}
P cag’m?t(s — u)Hf)(t) s,
" F* 4m
+ 6c,8% (1 2 NI 2 2) (172 ) (13,2
Bi——"2 {—(S—m M)+ = u+ M )}(H( Jm2) — HO(m?))
1
B, = C‘gf {A +4m [— SN0 = HO(n?) + MPHA() = MPH (0 = 2HD (1) + (4m® = 0HY (1) = tHg‘”(z)]} (C13)

(vi) Graphs (n) + (o)

Ar = Zi{(CIM2 + 2cam®)[Ay — MPH(m?)] + (c5 + c4)m2|:2H(2)(m2) — %(s —m? — MZ)H(3)(m2)]
e [67 = (= M)Ay — MPHO (%) = 8mPAY = M3 (s = m? = M)A, — MA(H(m?) = HO ()

—2s + 3m® — M)AL — (s — n? + 2M2)H<2>(m2))]}

B, = — (sf’"%{(zclw + cyls + 3m)[Ay = MPH()] = 25 2 [2(s + 3mA)AY
— (s> = (m* = M*))(Ay — M*HW(m?)) + M*(s — m* — MZ)(Aﬁ — M*(H(m*) — HV (m?))
+2(2s5 + 2m2 — M2)(AD — (s — m? + 2M2)HO (m?))]

(e + ca)l(s + 3m)HO(m?) — m(s — m? — M2)H<3>(m2)]} (C14)

(vii) Graph (s):

3g%(s +3m?)
4F*(s — m?)

. 3 2 + 2
{2c1M2A7, — AP — c3M2A7,}, B: = —M{%IMM,T — ey AD — c3M2A7T}.
m m

Ay =
s F4(s_m2)2

(C15)
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(viii) Graph (v)

2 1
A;— = 3—f4{5C1M2A7T - 262[W(S - m2 - 1‘42)(1”12 —u-+ M2)A7T + A(ﬂQ—)] - C3(4M2 - I)Aﬂ.},
A — ca(s —u)A, B —0 B — _4c4mA7T (C16)
v 3F4 v ’ v 3F*
|
APPENDIX D: REGULAR PARTS OF RO — __ 1 { R+3+1n m_z}
SCALAR ONE-LOOP INTEGRALS 2l 322 m? 2f
Following the method proposed by Refs. [6,36], we RO — 1 {2””37 _ [ R L1 In m? ]}
have derived the regular parts of scalar integrals to the 2327 m? |3m? 6m? 3 2]y
order needed by the O(p*) calculation. All the results
;itilzt:: eeq);c;ptof(;zrtohe scalar integrals whose regular (v) 1 meson, 2 nucleons (Case A):
(1) 1 nucleon: 0 ®
Roi = {R+1nm_2} (D1) Ra= R+ REF O+ (D)
2 2[
167 M where
(i1) 1 meson, 1 nucleon:
1 2
R =R+ R R R+ 0+ ) e LR R
a-m
where R _ | {L [R N 1nm_Z] B m_%,}
R(O) —_ 1 {R _ 1 + 1nm_2} A 327sz2 6m2 /1,2 m2 '
11 2 2
167 M
R(lll) s 212 1 i {R 14 lnm—z}, (vi) 1 meson, 2 nucleons (Case B):
2m* 167
&2 zl{m_%, 1 [R 3 +lnm—2] Ry =RY +RY +RY + O(p*) + -+, (D6)
2 2 2
2 lm* 167 where
s—m2\2 1 m?
m 167 M " m2
RO — ! {(s )y [R +3+ lnm_2] ST {R Fhrn 2}’
H 16w 2m* w? " s—m: 1 m
) : RY — - 7{R+2+ln—},
+ (S . n; ) [R +%+ 1nm_2]} B 2m2 3272 me MZ
m R = s e o7 035) 1]
=_ )7z n—) —
e B 3am? |lm? L6 u?
(iii) 2 nucleons: B (S _ m2)2|:R N 3 . 2]}
Ry =Ry + Ry + O(pY) + -+, (D3) 6\ m? 2 helf
where
1 m2 (vii) 3 nucleons:
0 _ _
ko = 162 {R i 1n—2}, 0 4 p@ 4
M Rz =Ry, + Ry + O(p*) + -+, (D7)
o) t
5)2) = 06m2m where
1
. 0) _
(iv) 2 mesons, 1 nucleon: Ros) = o2
Ry = R(z(i) + R(Zzl) +0(p") + -, (D4) R? =l 1 {L n m_i}
where B 63202m? [2m*  m?]
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(viii) 1 meson, 3 nucleons:
Ry =RY+RY +0(p) + -,
where

R(l) _ 1 R(z) I m2 1

37 32t 13 m2 3wt
APPENDIX E: RENORMALIZATION OF THE EFFECTIVE COUPLINGS

(i) MS — 1 renormalized LECs:

. d
r ’Y?mR — Jr ’ij = p! —’}/ER
ci=cl(u) 1672F2 dj—dj(ﬂ)"'mw—ze, ep=ep(u) + 162 F2m’
v = ——g2+gc g*m
1oge Tt
1 g 2c
y%:i—g —I—?-i-[ 34+ (3C2+8C3+4C4)g ]
.1 3g? g 5¢
Y5 :Z_T Z+ [T4+_(_302 +54c; —52c4)g2]m,
) 1 2 4
”ZZZ ‘% ‘%—i—lic4 —( 13¢5 +8c3 — 12¢,4)g> ]
1 g ¢
')/id + ’yg :—8_1—+E+ [_(7C2 + 16C3 1064) +E(3462 - 3263 +4C4)g2]m’
d 5 2
0% =802(1 —g°)m,

1 1
+ [E(_7261 - 3C2 + 8C3 +4C4) +E(48C1 _4C3 +2c4)g2:|m,

a8 T L 1364 80y — 126))8?
Y14 3’15—1 5 a Cyq E( (%) C3 c4)g” |m,

1
7‘118 e 5(2401 +cy —4dey—4dey)gm.

., _1 g
Yie T4 3

4
g 1
+6_4+[4—8(—202—1203 5c4)+ ( 1362"‘802"‘20&1)8]

7§5=Eczg2m,
Yi6e=0

1 g gt [1 7 ]
==+ | —(—cy+2¢4) +—(3cy — 2¢4)8”
Y17 105 a3 Teq [ogl 220w Tgg3ea T 2¢u)e” m

2

1
’V€8 :gcz(l _gZ)m,

2 4 5 3
8 +g_+[ l_ﬂ+ﬁ+c4

1 1
2¥ = Y5 — Y= —+—(21¢y + 2603 — 16¢4)g* |m,
YT 2T Y6 T 167 8 16 23 T T3 Tagleat 263~ 16cy)g ]m

1
Y30t V5= ﬂ02(6 - gz)m,

1 ¢ T 1
295, —v% ZE_E—F [48( 24c| + ¢, +16¢5) + ﬁ(—Scz —6¢c3 + 14c4)g2]m,
1 g g 1 1 )
Y5 —4Y5 = _§+E_§+ [ﬁ(—%cl +3cy+9¢3 +¢y) +9—6(—7201 —2lcy —4Q2c3+cy))g ]m
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(i1) EOMS renormalized LECs:
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=g + oim d’ + 3?
ch = ¢. = j T o

i i 1672 F2 J 1672 F?

3 2
5 = % + 3c,8°m,
4

. g 2c 1
5= 1 =5+ [+ 500+ 160 + lacog?

e 98 T2 1
55 = A + 5 + 7—2(—902 + 216¢5 — 27204)82]””’

) 5¢2 g 1 1
o= = =+ [+ 32+ 1600 + 5500 = 8300 |

1
6‘11 + (Sg = — %[(46‘2 + 106‘3 + 5C4) + (86‘2 - 226’3 + 38c4)g2]m,

1
5? = E[(_34C2 - 30C3 + 3C4) + (4C2 + 1504)g2]m,

1
8¢ = ﬁ[(144c1 —2¢y — ¢4) + (72¢; — 38¢5 + 10c,)g>Im,

1
84, — 8% = [ﬁ + ﬁ(67(:2 — 56¢; + 96c4)g2]m,

3

8% =—(c2 — 3 — c4)gm.

APPENDIX F: THE EFFECT OF UNITARITY

The phase shift formula Eq. (33) for a perturbative amplitude automatically includes the effect of unitarity in an obscure

way. This is illustrated in this section.

The partial wave phase shift for an amplitude, satisfying the elastic unitarity relation exactly, can be obtained via

Eq. (32), which reads

8. = arctan{

1
Im/ “}. (F1)

Refl.

Nevertheless, for a perturbative amplitude the unitarity relation may be violated. In section ITF, we follow Ref. [10] to
define the phase shift presented by Eq. (33). Hence, starting from a perturbative amplitude, one may have several methods

to calculate the phase shift. For instance:

(i) Method 1: perturbative amplitude f” Lad, 5P = arctan {| p|Ref"}.

) , itarization using K—Matrix method . .
Method 2: perturbative amplitude fF———————2— TP ynitarized ampl. fK — 6K = arctan {

1

Here the K-Matrix approach is employed to unitarize the
perturbative amplitude, one can also adopt other ap-
proaches of unitarization. f* and f* denote the perturba-
tive amplitude and the K-Matrix unitarized amplitude,
respectively. 87 stands for the phase shift calculated via
Eq. (33) with f7, while 6X presents the one calculated via
Eq. (32) with fK. Note that the indices for isospin and
angular momentum are suppressed hereafter. In our paper,
Method 1 has been adopted to calculate the phase shift.
Below we take the perturbative 77-N scattering amplitude

mfK
nt)

up to O(p*) without the A(1232) contribution for example
to demonstrate that 5 = 6X.

The chiral perturbative 77-N scattering partial wave am-
plitude at O(p?) is expressed by

fP(s) = fO0) + fOUs) + /) + D). (F)

Using the K-Matrix approach, the unitarized amplitude
that obeys the unitarity relation takes the following form,
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FIG. 14 (color online).
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T

1,90,
. Opl)+0(p2
0.75 H O(p)+O(p7)+O(p")+O

-Matrix -------

0.5

IpIRe(f)

0.25

e
o

s
aiett"
o i

1.09 1.1 141 112 113 1.14 1.15 1.16 117 1.18 119 1.2
s"2(GeV)

Unitarity bound for the real part of the P33 partial wave amplitude. Left: without the A(1232) contribution;

Right: with the A(1232) contribution. The results from Table III are adopted for plotting.

F(s) + £2s) +Ref(s) + Refs)

1—ilpl(fD(s) + fP(s) + RefP(s) + RefP(s))’

(F3)
where f((s) and f®(s) stand for the contributions from
the O(p) and O(p?) tree amplitudes, respectively. The fact
that Ref((s) = f(s) and Ref®(s) = f@(s) has been
used to get Eq. (F3). The phase shift obtained through
Method 1 reads

6F = arctan{| p|Ref" (s)}
=arctan{|p|[fV(s) + fP(s) + RefO(s) + RefW(s)]},

fK(s) =

(F4)
while the one obtained through Method 2 reads
Im /X (s)
ok = arctan{RefK(s)}
= arctan{| pILf M (s) + fP(s) + RefP(s) + RefW(s)]}.
(F5)

Thus, 67 = 6X. A numerical calculation we performed
also supports this observation. Hence in our work the effect
of unitarity has already been included when performing fits
to the partial wave shift data in Sec. III A. The phase shift
formula Eq. (33) for the perturbative amplitude is reason-
able in the sense that it takes the effect of unitarity into

fA,Born(s) + f(l)(s) + f(Z)(s) + Ref(3)(s) + Ref(4)(s)

consideration automatically. The phase shift calculated via
Eq. (33) using the perturbative amplitude and the one via
Eq. (32) using the K-Matrix unitarized amplitude are the
same, which is true at least for the calculation up to O(p*)
in this paper.

Nevertheless, the advantage of the unitarized amplitude
can be shown by plotting the real part of the unitarized
amplitude, the one of the perturbative amplitude and
the unitary bound together, e.g., see Fig. 14 for the P33
partial wave.

APPENDIX G: THE EFFECT OF
THE A (1232) WIDTH

In section III B, when the A(1232) is included explicitly,
the phase shift is obtained through Method 1 discussed in F,

6P = arctan {|p|Ref"(s)}
= arctan {| p|[f2Bom(s) + fD(s) + fA(s)

+ Ref®(s) + Ref@W(s)T}, (G1)
where f2B°™(s) represents the LO Born term contribution
[see Eq. (A3)] without an explicit A width in the propa-
gator. According to the discussion shown in Appendix F, it
is equivalent to calculate the phase shift via a K-Matrix
unitarized amplitude

fK@s) =

1= ilpl(r2Bom(s) + fN(s) + f@(s) + RefP(s) + RefW(s))

(G2)

If one forgets fV(s) + f@(s) + Ref®(s) + RefW(s) for a while, then

fK@s) =

fA,Born(s)

1 — il pl(faBom(s))

(G3)
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FIG. 15. Resummation to generate the A(1232) width. The
solid, dashed and double solid lines represent the nucleon,
pion and A(1232), respectively. The vertical dotted lines show
that the nucleon and pion in the loops are on mass shell.

The above equation contains an infinite resummation of
Feynman diagrams shown in Fig. 15. This resummation
will generate the A(1232) width properly.

On the other hand, one can add to the A propagator in the
fABom () an explicit width given by Ref. [42],

PHYSICAL REVIEW D 87, 054019 (2013)

(a2t my - ML
Mo =25) 5 e B G
This provides us a LO Born term A-exchange contribution
with the explicit A width, which we denote it by
fALBom( o) Using Eq. (32), we have checked that the effect
of fX(s) is almost the same as that of fA"Bom(y),

Now taking fU(s) + f@(s) + Ref®(s) + RefW(s)
into consideration, one can observe that the resummation
shown in Fig. 15 still exists though many new terms of
different types appear. To conclude, in our work, the domi-
nant effect of the A width is included through Method 1,
namely through the phase shift formula Eq. (33) for the
7-N perturbative amplitude, when performing fits to phase
shift up to 1.2 GeV.
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