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In a recent article [K. Dusling and R. Venugopalan, arXiv:1210.3890 [Phys. Rev. D (to be published)]],

we showed that high multiplicity dihadron proton-proton (pþ p) data from the CMS experiment are in

excellent agreement with computations in the color glass condensate effective field theory. This agreement

of the theory with several hundred data points provides a nontrivial description of both nearside (‘‘ridge’’)

and awayside azimuthal collimations of long range rapidity correlations in pþ p collisions. Our

prediction in Dusling and Venugopalan [arXiv:1210.3890 [Phys. Rev. D (to be published)]] for proton-

lead (pþ Pb) collisions is consistent with results from the recent CMS pþ Pb run at
ffiffiffi
s

p
NN ¼ 5:02 TeV

for the largest track multiplicity Ntrack � 40 we considered. The CMS pþ Pb data shows the following

striking features: (i) a strong dependence of the ridge yield on Ntrack, with a significantly larger signal than

in pþ p for the same Ntrack, (ii) a stronger pT dependence than in pþ p for largeNtrack, and (iii) a nearside

collimation for large Ntrack comparable to the awayside for the lower pT ¼ p
trig
T ¼ passoc

T dihadron

windows. We show here that these systematic features of the CMS pþ Pb di-hadron data are all described

by the color glass condensate (with parameters fixed by the pþ p data) when we extend our prediction in

Dusling and Venugopalan [arXiv:1210.3890 [Phys. Rev. D (to be published)]] to rarer high multiplicity

events. We also predict the azimuthally collimated yield for yet unpublished windows in the p
trig
T and

passoc
T matrix.

DOI: 10.1103/PhysRevD.87.054014 PACS numbers: 13.85.Ni

I. INTRODUCTION

Rapidity separated dihadron correlations in high multi-
plicity events at the LHC offer subfemtoscopic scale snap-
shots of rare configurations constituting the structure of
matter in the colliding hadrons. A largely unexpected dis-
covery at the LHC by the CMS collaboration in high multi-
plicity Ntrack > 110 proton-proton (pþ p) events [1] was
a collimation in the azimuthal ‘‘nearside’’ separation
(�� � 0) between charged hadrons that have rapidity
separations 2 � j��j � 4. For recent reviews on this near-
side ‘‘ridge’’ effect, see Refs. [2,3]. In Ref. [4], we showed
that this ridge could be explained by ‘‘glasma graphs’’
[5–7] that arise in the color glass condensate (CGC) effec-
tive field theory (EFT) [8]. When the phase space density of
gluons in the proton’s wave function reach maximal occu-
pancy, or saturation, these graphs are significantly enhanced
in high multiplicity events relative to minimum bias by
��8
S , a factor of 104–105 for typical values of �S. This

enhancement is a remarkable illustration of how the power
counting changes in different dynamical regions of the EFT.

Recently, we extended this study significantly [9], and
showed that a combination of saturation [10,11] and
Balitsky-Fadin-Kuraev-Lipatov (BFKL) dynamics [12,13]
in theCGCEFT provides an excellent description of several
hundred data points comprising a matrix (in uniformly

spaced windows in the dihadron momenta p
trig
T and pasc

T )
of the associated dihadron yield per trigger versus ��. A
novel feature of this studywas the demonstration that BFKL

dynamics, which generates gluon emissions between the
gluons that fragment into triggered hadrons, does an excel-
lent job describing the awayside spectra. The description is
significantly better than PYTHIA-8 [1], and 2 ! 4 QCD
graphs in the quasi-multi–Regge-kinematics, both of which
overestimate the awayside yield, especially at larger
momenta.
In Ref. [9], we also made a prediction for the ridge and

the awayside collimation in proton-lead collisions atffiffiffi
s

p
NN ¼ 5:02 TeV at the LHC. However, as we shall dis-

cuss in detail, the prediction corresponded to a value of
Ntrack � 40 for pþ Pb collisions. The magnitude of the
signal is comparable to that in pþ p collisions at Ntrack �
100. Dihadron data from the pþ Pb run at the LHC atffiffiffi
s

p
NN ¼ 5:02 TeV are now available [14] and results are

available for multiplicities much larger than those consid-
ered in Ref. [9]. These data show the following remarkable
features. (i) They exhibit a strong dependence on the
number of charged hadron tracks [15], labeled Noffline

trk by

the CMS collaboration. In particular, it is observed that the
associated dihadron yield per trigger in pþ Pb is signifi-
cantly larger than the same signal at the same value of
Noffline

trk in pþ p collisions. (ii) Second, they observe a

distinct pT (p
trig
T � pasc

T Þ dependence of the collimated
yield which is peaked around the same values of pT in
both pþ p and pþ Pb collisions, but drops off much faster
in pþ Pb with increasing pT . (iii) Finally, the dihadron
yield, as a function of��, is nearly as high on the nearside
as on the awayside for low values of pT , indicating that the
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long range in �� awayside dijet signal is suppressed
relative to the glasma graph contribution.

In this paper, we will show that all these novel features of
the pþ Pb data can be explained systematically in the color
glass condensate framework. The parameters in the compu-
tations are fixed to be identical to those in our study of pþ p
collisions in Ref. [9], with the exception being the values of
the scaleQ0ðy0Þ (whose meaning we shall discuss further) in
the proton and lead nuclei. These are varied at an initial
rapidity y0 to take into account the different geometry of
lead nuclei relative to that of the projectile proton. If the
systematics of the signal were not reproduced by varying the
Q0’s of proton and lead nuclei, there is little freedom left in
the framework to vary something else to obtain it.

The paper is organized as follows. In the next section,
we will present the formulae used in the computation of
glasma and BFKL graphs. Since all details have been

discussed previously in Ref. [9] and references therein,
we will reintroduce them briefly only for completeness,
our focus here being the understanding of the systematics
of the new CMS pþ Pb data. In Sec. III, we will discuss in
detail results in the CGC, compare these to the data, and
make predictions for as yet unpublished data. In the final
section, we will summarize our conclusions, discuss alter-
native interpretations and further refinements and tests of
the CGC framework.

II. GLASMA AND BFKL CONTRIBUTIONS
IN THE CGC EFT

The collimated correlated two-gluon production glasma
and BFKL graphs are illustrated in Fig. 1. The collimated
contributions from all the glasma graphs can be compactly
written as

d2Ncorr
Glasma

d2pTd
2qTdypdyq

¼ �SðpTÞ�SðqTÞ
4�10

N2
C

ðN2
C � 1Þ3�

S?
p2
Tq

2
T

Kglasma

�Z
kT

ðD1 þD2Þ þ
X
j¼�

�
A1ðpT; jqTÞ þ 1

2
A2ðpT; jqTÞ

��
; (1)

where we have defined

D1 ¼ �2
A1
ðyp;kTÞ�A2

ðyp;pT � kTÞ½�A2
ðyq;qT þ kTÞ þ�A2

ðyq;qT � kTÞ�;
D2 ¼ �2

A2
ðyq;kTÞ�A1

ðyp;pT � kTÞ½�A1
ðyq;qT þ kTÞ þ�A1

ðyq;qT � kTÞ�:
(2)

These four terms, called the ‘‘single diffractive’’ and ‘‘interference’’ graphs in Ref. [5], constitute the leading pT=QS

behavior. Also included is the next order correction in pT=Qs where we have [16] A1 ¼ �2ðpT þ qTÞ½I2
1 þ I2

2 þ 2I2
3�,

such that

I1 ¼
Z
k1?

�A1
ðyp;k1?Þ�A2

ðyq;pT � k1?Þ
ðk1? � pT � k2

1?Þ2
k2
1?ðpT � k1?Þ2

;

I2 ¼
Z
k1?

�A1
ðyp;k1?Þ�A2

ðyq;pT � k1?Þ jk1? � pTj2
k2
1?ðpT � k1?Þ2

;

I3 ¼
Z
k1?

�A1
ðyp;k1?Þ�A2

ðyq;pT � k1?Þ
ðk1? � pT � k2

1?Þjk1? � pTj
k2
1?ðpT � k1?Þ2

:

The other contribution, A2, in Eq. (1) can be expressed as

A2 ¼
Z
k1?

�A1
ðyp;k1?Þ�A1

ðyp;k2?Þ�A2
ðyq;pT � k1?Þ�A2

ðyq;qT þ k1?Þ

� ðk1? � pT � k2
1?Þðk2? � pT � k2

2?Þ þ ðk1? � pTÞðk2? � pTÞ
k2
1?ðpT � k1?Þ2

� ðk1? � qT � k2
1?Þðk2? � qT � k2

2?Þ þ ðk1? � qTÞðk2? � qTÞ
k2
2?ðqT þ k1?Þ2

; (3)

where k2? 	 pT � qT � k1?. The above expressions are

the result of including all combinatorial combinations of

graphs represented by the Feynman diagram to the left in

Fig. 1. The combinatorics is a result of different ways of

averaging over strong color sources between the amplitude

and complex conjugate amplitude in both projectile and

target.

In Eqs. (1)–(3) the only function (besides the one loop
running coupling constant �S) is the unintegrated gluon
distribution (UGD) per unit transverse area

�Aðy;k?Þ ¼
�NCk

2
?

2�S

Z 1

0
dr?r?J0ðk?r?Þ½1�T Aðy;r?Þ�2;

(4)
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where T A is the forward scattering amplitude of a quark-
antiquark dipole of transverse size r? on the target A; it, or
equivalently, the UGD, is a universal quantity that can be
determined by solving the Balitsky-Kovchegov (BK) equa-
tion [17,18] as a function of the rapidity y ¼ log ðx0=xÞ. The
forward scattering amplitude T Aðy; r?Þ at the initial scale
x ¼ x0 is a dimensionless function of r2?Q

2
0, where Q0 is a

nonperturbative scale at the initial rapidity. The saturation
scale QS, defined as the transverse momentum defining the
peak value of� on the left-hand side of Eq. (4), is typically
a larger scale even at the initial rapidity, and grows rapidly
via the BK renormalization group equation with rapidity. In
the BK equation, different impact parameters in the proton/
nuclear target are modeled by varying Q0. The minimum-
bias (median impact parameter) value we choose for the
proton Q2

0 ¼ 0:168 GeV2 (corresponding to a QS �
0:7 GeV in the adjoint representation at the initial rapidity),
is the value that gives a best fit to deeply inelastic electron-
proton scattering data from HERA [19].

In Eq. (1), the two parameters which are held fixed in
pþ p and pþ Pb are the transverse overlap area S? and

the nonperturbative constant � ¼ 1=6, which as discussed
further below, specifies the correction to the kT factorized
UGD description due to soft multigluon interactions.
It is independently constrained by pþ p multiplicity
distributions [20,21] and real time classical Yang-Mills
computations [22].
The framework of glasma graphs is based on the facto-

rization theorems derived in Ref. [23], which include
leading log corrections to all orders in perturbation theory
(so-called LLx approximation) as well as all leading mul-
tiple scattering contributions. As the full expression is very
cumbersome, a Gaussian truncation is employed in
Ref. [6], where Eq. (1) was first derived. The Gaussian
truncation was shown in Ref. [24] to be a very good
approximation to the full JIMWLK evolution. In addition,
it is assumed that QS < kT , in order to obtain the expres-
sion in terms of UGDs (unintegrated gluon distributions).
We emphasize that the resulting expression cannot be
interpreted simply as the product of UGDs with matrix
elements, but combines LLx contributions to each. What
we use for the UGDs is the running coupling Balitsky-
Kovchegov equation, which includes all LLx contributions
to the UGDsþ running coupling NLLx effects via the
Balitsky prescription [25].
A state of the art computation of the glasma graphs

would include NLLx evolution along with all multiple
scattering contributions. This is unfortunately not available
at present. As noted, what we have in Eq. (1) is LLx with
some fraction of the NLLx contribution that corresponds to
running coupling. In addition, we are using UGDs instead
of the full multiple scattering contribution which would
need large scale numerical simulations. The parameter � is
a nonperturbative constant that accounts for corrections
due to multiple scattering when QS * kT . These were
computed previously for purely classical double inclusive
gluon production [22,26] and the value of � extracted in
those computations is compatible with the value of one
sixth we have used in our pþ p and pþ A results. This
value of � is also independently constrained by pþ p
multiplicity distributions [20,21]. We note further that the
collimated structures seen in the perturbative classical
computations persist in the full nonperturbative classical
results, thereby lending confidence that these latter primar-
ily renormalize the amplitude of the former.
We now turn to the double inclusive distribution from

the back-to-back BFKL graphs shown in Fig. 1. The double
inclusive multiplicity can be expressed as [27,28]

d2Ncorr
BFKL

d2pTd
2qTdypdyq

¼ 32Nc�sðpTÞ�sðqTÞ
ð2�Þ8CF

S?
p2
Tq

2
T

Kbfkl

�
Z
k0?

Z
k3?

�Aðx1;k0?Þ�Bðx2;k3?ÞGðk0? � pT;k3? þ qT; yp � yqÞ; (5)

FIG. 1 (color online). Anatomy of dihadron correlations. The
glasma graph is on the left and its schematic contribution to the
double inclusive cross section is shown as the dashed orange
curve. On the right is the back-to-back graph and the shape of its
yield (dashed blue curve). The grey blobs denote emissions all
the way from beam rapidities to those of the triggered gluons.
The solid black curve represents the sum of contributions from
glasma and back-to-back graphs. The shaded region represents
the associated yield calculated using the zero-yield-at-minimum
(ZYAM) procedure. Figure from Ref. [9].
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where G is the BFKL Green’s function

Gðqa?;qb?;�yÞ ¼ 1

ð2�Þ2
1

ðq2
a?q

2
b?Þ1=2

X
n

ein
��

�
Z þ1

�1
d�e!ð�;nÞ�yei� ln ðq2

a?=q
2
b?Þ: (6)

Here CF¼ðN2
C�1Þ=2Nc, !ð�; nÞ ¼ �2 ��sRe½�ðjnjþ1

2 þ
i�Þ ��ð1Þ� is the BFKL eigenvalue, where �ðzÞ ¼
d ln �ðzÞ=dz is the logarithmic derivative of the Gamma
function. Further, we have ��s 	 Nc�Sð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qa?qb?
p Þ=� and

�� 	 arccos ð qa?�qb?
jqa?jjqb?jÞ.

The description of the awayside jet in the above BFKL
framework is also LLx with running coupling corrections,
whereby, as for the glasma graphs, the UGD evolution is
described by the running coupling Balitsky-Kovchegov
equation. NLLx corrections to this framework has been
computed in Ref. [27]. There it was demonstrated that
the NLLx correction to the �� independent pedestal is
large (a factor 2 to 3). However, the NLLx contribution to
the collimated hcos ð��Þi and hcos ð2��Þi moments,
which are the quantities of interest here, is 10%–30%, of
which, we expect, the running coupling will account for a
good fraction. Hence, based on the results in these works, it
is reasonable to conclude that the BFKL contribution to the
collimated yield has 10%–30% uncertainties, in line with
the Kbfkl values employed in this work.

As shown in Fig. 1, Eq. (5) gives a collimated ��
contribution exclusively on the awayside, peaked at
�� ¼ �, while Eq. (1) gives a ‘‘dipole’’ cos ð2��Þ-like
contributions with maxima at 0 and �. It is the interplay
between these contributions with varying Q0 in projectile
and target that describes the systematics of the proton-
proton and proton-lead data, that we shall now discuss
further.

The two K factors used throughout this work are
introduced to take into account not only uncertainties in
higher order computations but also acceptance corrections
and uncertainties in the choice of fragmentation functions
and hadronization. There is no reason a priori why all
these should be the same in pþ p and pþ A. Also,
modulo a better understanding of the multiplicity distri-
bution in pþ A, some of the uncertainties in K factors
could be absorbed in the initial saturation scale Q0,
corresponding to slightly different number of participants.
A systematic study of these, along with data from ALICE
and ATLAS will be reported in a forthcoming work. In
addition to data on multiplicity distributions in the rapid-
ity window of interest, uncertainties on fragmentation
functions in particular can be constrained by forthcoming
data from the LHC on single particle spectra at forward
rapidities. Given these uncertainties, the fact that both K
factors are of order unity and able to explain dihadron
data from pþ p to pþ Pb (results for which we will now

discuss) for different centralities and pT selections is
remarkable.

III. RESULTS

As noted, all parameters in Eqs. (1) and (5) are identical to
those describing the proton-proton data. To simulate the pþ
Pb collision, all we do is vary Q2

0 in the proton and

lead nuclei. The proton Q2
0 is varied in multiples of the

‘‘minimum bias’’ value of Q2
0 ¼ 0:168 GeV2 to simulate

events that probe more central impact parameters in the
proton, where the gluon density is considerably higher
than the gluon density for the median impact parameter
corresponding to minimum-bias events. Likewise, we
define the initial saturation scale in lead to be Q2

0 ¼
NPb

part � 0:168 GeV2, where NPb
part denotes the number of nu-

cleon participants on the lead side.
For the analysis of the CMS data, we must be able to

make a reasonable estimate of the centrality class based on
the total charge particle multiplicity. As this quantity is
sensitive to soft particle production we make use of local
parton hadron duality:

Noffline
trk ¼ �g

Z þ2:4�yshift

�2:4�yshift

d�
Z
0:4 GeV

d2pT

dN

d�d2pT

ðpTÞ;

(7)

where �g is a gluon liberation factor. The single inclusive

gluon distribution in the right-hand side is defined as [4]

dN1

dypd
2pT

¼ �sNC

4�6ðN2
C � 1Þ

S?
p2
T

Z
kT

�A1
ðyp;kTÞ

��A2
ðyp;pT � kTÞ; (8)

where yshift ¼ 0:465 is the shift in rapidity in the center-
of-mass frame in asymmetrical pþ Pb collisions towards
the lead fragmentation region. In Eq. (7), the combination
of the transverse overlap area S? times �g is fixed (for

Q2
0 ¼ 0:168 GeV2 in both protons), from minimum bias

proton–proton collisions to give Noffline
trk ¼ 16, the value

quoted by CMS [1]. This value, (�gS?), is subsequently

held fixed to determine Noffline
trk as Q2

0 in both the proton

and lead nucleus is varied. Admittedly, the constant S?
may vary with both beam energy and centrality. This
uncertainty would be reflected in a rescaling of the x
axis of Fig. 2 and the left plot of Fig. 3. However, we
expect these corrections to be small. As shown in
Ref. [20] the value of S? varies only logarithmically
with beam energy. Furthermore, as discussed later, the
interaction cross section is on the order of the size of the
proton and not the nucleus.
Part of the analysis of the CMS data requires the

calculation of the number of trigger particles, defined
here as
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Ntrig ¼
Z þ2:4�yshift

�2:4�yshift

d�
Z pmax

T

pmin
T

d2pT

Z 1

0
dz

DðzÞ
z2

dN

d�d2pT

�
pT

z

�
:

(9)

In Eq. (9), the fragmentation functions are chosen, as in
Ref. [9], to be the NLOKPP parametrization [29] for gluon
fragmentation to charged hadrons.
The double inclusive multiplicity is computed as

d2N

d��
¼

Z þ2:4�yshift

�2:4�yshift

d�pd�qAð�p; �qÞ

�
Z pmax

T

pmin
T

dp2
T

2

Z qmax
T

qmin
T

dq2T
2

Z
d�p

Z
d�q�ð�p ��q ���Þ

�
Z 1

0
dz1dz2

Dðz1Þ
z21

Dðz2Þ
z22

d2Ncorr

d2pTd
2qTd�pd�q

�
pT

z1
;
qT
z2

;��

�
: (10)

Bounds on the range of the trigger and associated hadron
momenta are denoted respectively as pmin ðmax Þ

T and
qmin ðmax Þ
T . Likewise, ��min ð��max Þ ¼ 2:0ð4:0Þ denote

the pseudorapidity gap [30] of hadrons within the experi-
mental acceptance Að�p;�qÞ		ðj�p��qj���min Þ�
	ð��max �j�p��qjÞ=B where B ¼ 2

R
4
2 d��ð1�

��=4:8Þ ¼ 1:5 takes into account the acceptance of the
uncorrelated background.

The associated yield is computed using the zero-yield-
at-minimum (ZYAM) procedure,

AssocYield ¼ 1

Ntrig

Z ��min

0
d��

�
d2N

d��
� d2N

d��

����������min

�
;

(11)

where ��min is the angle at which the two particle corre-
lation strength is minimal. An important point to note is
that the transverse overlap area S? cancels out between the
numerator and denominator in the right-hand side elimi-
nating a source of uncertainty in dihadron spectra.
After these preliminaries, we are now ready to discuss

our results. In Fig. 2, we plot the integrated associated
nearside yield per trigger [obtained from Eqs. (10) and
(11)] versus Noffline

trk as determined in Eq. (9). The only

inputs are Q2
0(proton) and Q2

0ðleadÞ ¼ NPb
part � 0:168 GeV2.

We first point out that the prediction in our paper [9] for the
pþ Pb ridge corresponded to NPb

part ¼ 6 (which we called

‘‘central’’) for the left most curve [with Q2
0ðprotonÞ ¼

0:168 GeV2]. Clearly, this signal is close in magnitude to
the high multiplicity pþ p ridge signal, if one follows the
line of sight of the NPb

part ¼ 6 grey dashed line. This is

similar to the observation in Fig. 3 of Ref. [14], where
the signal atNoffline

trk ¼ 60 in pþ Pb is comparable to that in

pþ p at Noffline
trk ¼ 100.

What is particularly striking about Fig. 2 is the large
signal one obtains as one cranks up both Q2

0(proton) and

NPb
part in the lead nucleus. As one goes to larger (rarer)

values of Noffline
trk , one observes that each of the curves

grows rapidly. The number of participants on the lead
side is in line with Monte-Carlo Glauber estimates for
not especially rare events [31,32]. Interestingly, rarer
events are achieved more efficiently by having gluon dis-
tributions at more central impact parameters in the proton
[larger values of Q2

0(proton)] interact than by adding a

larger and larger number of participants on the lead side.
As is well known, the multiplicity in pþ A collisions
grows linearly with increasing the saturation scale in the
proton, but only logarithmically with the saturation scale in
the nucleus [33], if the latter is the larger of the two [34].
There is also a further effect that when one increases the

 0

 0.02

 0.04

 0.06

 0  50  100  150  200  250

N trk
offline

Associated Yield (1.0 ≤ pT [GeV] ≤ 2.0)

NPart
Pb = 6

NPart
Pb = 10

NPart
Pb = 14

NPart
Pb = 18

NPart
Pb = 22

p+p

p+Pb: Q0
2(proton)=0.168 GeV2

p+Pb: Q0
2(proton)=0.336 GeV2

p+Pb: Q0
2(proton)=0.504 GeV2

p+Pb: Q0
2(proton)=0.672 GeV2

FIG. 2 (color online). The nearside yield per trigger as a

function of Noffline
trk for 1 � pT � 2, for pT ¼ p

trig
T ¼ pasc

T .

Each of the pþ Pb curves corresponds to a fixed initial
saturation scale in the proton. The trajectory of a curve shows
how the yield increases with a larger number of participants
in the nucleus. The initial saturation scale in the Pb
nucleus is related to the number of participants through
Q2

0ðleadÞ¼NPb
part �0:168GeV2. The values of Q2

0ðprotonÞ¼
0:168–0:672GeV2 (the typical saturation scale in the adjoint
representation probed in the collisions is on the order Q2

S �
0:7–2:5 GeV2) represent estimates of these quantities from me-
dian (‘‘minimum bias’’) impact parameters in the proton to very
central impact parameters, respectively.
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saturation scale in the nucleus, some of the excess multi-
plicity is pushed out of the detector acceptance, this ac-
ceptance having wider coverage in the lead nucleus
fragmentation region. In general, however, one will have
a multiplicity distribution with Noffline

trk generated by a

number of different impact parameters in the overlap of
proton and lead nuclei, and one needs to average over the
signal on the y axis of Fig. 2 with the appropriate weight for
a more quantitative analysis. Nevertheless, as seen in the
figure, the essential point is that there is no problem
obtaining a large associated yield for pþ Pb collisions at
the LHC for reasonable values ofQ2

0 andN
Pb
part. The reasons

for this we will discuss at length in the next section.
In Fig. 3, we show comparisons of computations of the

integrated nearside associated yield per trigger with the
CMS data from Ref. [14]. In the left plot in this figure,
we compare to the data the centrality dependence of the
associated yield computed for two different values of
Q2

0(proton) while varying Npart on the lead side. These

curves are the same as the second and third curves (from
left) in Fig. 2, with the same NPb

part values labeling the

different points. The pT distributions (for p
trig
T ’ pasc

T ) as

measured by the CMS collaboration are shown in the right
plot of Fig. 3. Also shown is a compilation of four curves
from the glasma graph computation obtained by varying
the initial saturation scale in the proton from Q2

0ðproton ¼
0:336 to 0:504 GeV2 for NPb

part ¼ 14 and 16 or NPb
part ¼ 12

and 14, respectively. These configurations were chosen to
be representative of the Noffline

trk 
 110 centrality class.

Clearly, as noted, a given Noffline
trk can correspond to differ-

ent combinations of configurations from the proton and
lead side. A more realistic computation would include an
average over all multiplicities weighted by the correspond-
ing multiplicity distribution. This caveat aside, we find that

the results in Fig. 3 reproduce the Noffline
trk and pT depen-

dence of the associated yield rather well.
It is clear at this point that the glasma graphs are able

to account for all of the available systematics of the
nearside associated yield. We now consider a more dif-
ferential quantity, the correlated yield as a function of the
relative azimuthal angle �� between dihadrons having

momentum p
trig
T and pasc

T . In order to fully understand the

�� dependence, there are three components one must
have under control as summarized in Fig. 1: first, the
nearside glasma diagrams, which have already been dis-
cussed at length. Second, one needs to include the con-
tribution from minijet back-to-back graphs in order to
have a quantitative picture of the awayside. As mentioned
here, and as shown clearly in our previous work on high
multiplicity pþ p collisions, dijet production with BFKL
evolution between the triggered particles is the right
framework for assessing this quantity. Finally, one needs
to have control of the underlying event. The underlying

event is a true correlation with a distinct ptrig
T and pasc

T

structure but no angular dependence. However, we know
that there are other CGC diagrams [35–38] that may
contribute to the underlying event, which do not produce
a robust collimation, hence the importance of the ZYAM
procedure to remove these contributions. We will briefly
discuss some interesting characteristics of the underlying
event within our framework.
Figure 4 shows the correlated yield 1=Ntrigd

2N=d�� for

various ranges of p
trig
T and pasc

T and centrality classes after

performing the ZYAM procedure in each bin [39]. The
shaded band corresponds to one source of uncertainty in
our results from the choice of K factors. The curve that
appears larger on the awayside corresponds to theK factors
obtained from our previous analysis of pþ p data
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FIG. 3 (color online). Left: The integrated nearside associated yield per trigger as a function of Noffline
trk for 1 � pT � 2. The two

curves on which data from Ref. [14] are overlaid are the Q2
0ðprotonÞ ¼ 0:336 GeV2 and Q2

0ðprotonÞ ¼ 0:504 GeV2 results from Fig. 2.

Right: The pT (p
trig
T ¼ pasc

T ) dependence of the associated yield for the same Q2
0(proton) values as the previous plot denoted by green

(lower) and black (upper) dashed lines, for two different NPb
part ranges. The data here are for Noffline

trk 
 110 that is approximated (see

Fig. 2) by the NPb
part ranges considered.
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(Kglasma ¼ 1:5 and Kbfkl ¼ 1:65) with the other curve cor-

responding to a new choice (fit by eye) of Kglasma ¼ 1:95

and Kbfkl ¼ 0:9. The centrality dependence of the result is
controlled by our selection of representative values of both
Q2

0(proton) and NPb
part that approximately reproduce the

mean multiplicity in each centrality class.
In Fig. 5, we show results for the highest multiplicity

events. CMS pþ Pb data is only available at present for

three of these windows diagonal in ptrig
T � pasc

T , shown as

the red data points. The curves are the sum of the glasma
contribution and the BFKL contribution. The solid black
curve is the result for Q2

0ðprotonÞ ¼ 0:504 GeV2 on

NPb
part ¼ 14 and the dashed green is for Q2

0ðprotonÞ ¼
0:336 GeV2 on NPb

part ¼ 16. As before, we have chosen

these values to be representative of the Noffline
trk 
 110

centrality class. A more quantitative result could in prin-
ciple be obtained by the appropriate averaging over various
events as discussed earlier. The K factors were chosen to

coincide with those extracted from our previous analysis of
pþ p collisions (Kglasma ¼ 1:5 and Kbfkl ¼ 1:65). There is

no reason why these should not be adjusted to pþ Pb
collisions [40].
The differential associated yields show that the combi-

nation of glasma and BFKL dynamics provides quite a

good description of the data without too much fine tuning.

The K factors for glasma and BFKL graphs used previ-

ously for the high multiplicity pþ p results do a good job

in many windows of the matrix in Fig. 4 but tend to over-

predict the BFKL contribution in some of the windows.

Reasonable changes in K values, as shown by the band, are

likely to give a finer tuned description of these �200 data

points along with the additional several hundred data

points of pþ p data all with K values of order unity.
As shown in Fig. 5, the systematics of the awayside

signal becoming dominated by the ‘‘dipole’’-like glasma

graphs in high multiplicity events is reproduced. It is very
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FIG. 4 (color online). Correlated yield 1=Ntrigd
2N=d�� after ZYAM as a function of �� integrated over 2 � j��j � 4 for several

multiplicity bins, each for a particular range in p
trig
T ¼ pasc

T . The data points are from the CMS collaboration [14]. The theoretical

curves are the result of adding the glasma and BFKL contributions with the band representing the variation in results when changing
the K factors from Kglasma ¼ 1:5, Kbfkl ¼ 1:65 to Kglasma ¼ 1:95, Kbfkl ¼ 0:9. The results for the different multiplicity windows

correspond (from left to right) to Q2
0ðprotonÞ ¼ 0:168 GeV2, NPb

part ¼ 3; Q2
0ðprotonÞ ¼ 0:336 GeV2, NPb

part ¼ 6; Q2
0ðprotonÞ ¼

0:336 GeV2, NPb
part ¼ 12; Q2

0ðprotonÞ ¼ 0:504 GeV2, NPb
part ¼ 14; Q2

0ðprotonÞ ¼ 0:504 GeV2, NPb
part ¼ 22. Predictions are shown for

very large multiplicity windows and higher values of p
trig
T ¼ pasc

T .
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nontrivial that the BFKL awayside dynamics is suppressed
in awayside events such that the combination of Glasmaþ
BKFL on the awayside does not overestimate the awayside
signal. This happens because the BFKL dijet yield per
trigger is very weakly dependent on Npart since the UGDs

in the numerator of Eq. (5) are the same as in the expres-
sion for Noffline

trk in Eq. (9).

Finally, it is interesting to examine the Noffline
trk depen-

dence of the correlated ��-independent yield. Figure 6
(left) demonstrates that the yield depends on Noffline

trk alone

for differering values of Q2
0(proton) and Npart, while the

collimated signal shown in Fig. 2 clearly has a more
complex structure. In particular, unlike the case of the

collimated yield, the pþ p and pþ Pb underlying event
contributions lie on the same curve. Also shown in Fig. 6)
are the data points for CZYAM from Ref. [14] divided by a
factor of 5. It is very interesting that the data follow the
same Noffline

trk scaling as the glasma graphs. The BFKL

contribution to the associated yield is shown in Fig. 6
(right). It clearly does not have the same Noffline

trk scaling,

and is approximately of the same magnitude as the glasma
underlying event at Noffline

trk � 100. However, as we noted

previously [9], recent computations [27,41] show that the
�-independent NLLx contributions are a factor of 2–3
below the LLx contribution [42]. Hence, there is ample
room for other contributions in the CGC that only produce
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FIG. 5 (color online). Correlated yield 1=Ntrigd
2N=d�� after ZYAM as a function of�� integrated over 2 � j��j � 4 for the most

central multiplicity bin Noffline
trk 
 110. The data points are from the CMS collaboration [14] and have currently only been provided for

the diagonal components p
trig
T � pasc

T of the correlation matrix. The curves are obtained by adding the glasma contributions (K ¼ 1:5)
and the BFKL contribution (K ¼ 1:65). The solid black curve is the result for Q2

0ðprotonÞ ¼ 0:504 GeV2 on NPb
part ¼ 14 and the dashed

green is for Q2
0ðprotonÞ ¼ 0:336 GeV2 on NPb

part ¼ 16.
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a ��-independent contribution [35–38] as long as they
give the same scaling as the glasma graphs.

IV. DISCUSSION AND OUTLOOK

We showed in the previous section that the CGC EFT
gives a good description of the novel systematics of
proton-lead dihadron correlations that are long range in
rapidity and collimated in the azimuthal angle. This is
important because an identical analysis previously gave
very good agreement with the CMS data for dihadron
correlations in high multiplicity pþ p events. We con-
clude that the origins of the proton-lead effect are the
same as the one in proton-proton collisions and unlike
nucleus-nucleus collisions, where the systematics of the
associated yield is dominated by flow [4]. A simple but
apt analogy that exemplifies our conclusion is that a bullet
shot through a plane of glass has an interaction cross
section closer to the size of the bullet and not that of
the glass.

But what is the deeper origin of the effect? The system-
atic features of the comparison to data are consistent with
the following picture of the proton-lead interaction. As
shown previously [20,43] on the basis of HERA electron-
proton diffractive data, the saturation scale in the proton
has a strong impact parameter dependence which we have
modeled here with different values of Q2

0(proton). In

proton-proton collisions, Q2
0ðprotonÞ ¼ 0:168 GeV2, the

value at the median impact parameter is more likely; rare
events that correspond to the higherQ2

0 which produces the

high multiplicity collisions (and the ridge) are very un-
likely. In contrast, in a proton-lead collision, any given
Noffline

trk has a higher probability to be generated by a larger

Q2
0(proton) than the median value. This is because the

likelihood that gluons at small impact parameters in the
proton interact is much larger when the proton is scattering

off many nucleons along its path, as in a lead nucleus. Such
events are more likely to dominate the probability PN for a
given Noffline

trk . That would explain why the values of the

associated yield seen in Fig. 3 are more compatible with
the larger Q2

0(proton) values.

The prior discussion addresses why larger Q2
0(proton)

are more relevant for a given Noffline
trk . But it does not

explain why the associated yield is so large in pþ Pb for
any Q2

0(proton) as one varies Q
2
0(lead) as shown in Fig. 2.

The underlying reason is a subtle form of quantum entan-
glement. To simplify the discussion, we will consider only
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one of the glasma diagrams responsible for the nearside
collimation evaluated [44] at yp ¼ yq ¼ 0. In this case, the

two particle correlation is proportional to

d2N / S?
Z

d2k?�2
AðkTÞ�BðjpT � kTjÞ�BðjqT � kTjÞ:

(12)

To ascertain why the above expression yields a signal that
is collimated, namely, a larger signal for pT ¼ qT as
opposed to the signal when pT � qT , let us consider for
simplicity jpTj ¼ jqTj. This condition, and application of
the Cauchy-Schwarz inequality [45] leads to the condition

Z
d2k?�2

AðkTÞ�BðjpT � kTjÞ�BðjqT � kTjÞ

�
Z

d2k?�2
AðkTÞ�2

BðjpT � kTjÞ: (13)

When the equality holds, there is clearly no collimation
because the rhs does not depend on ��pq. However, the

equality holds if and only if �ðjpT þ kTjÞ / �ðjqT þ
kTjÞ, which is only satisfied if the un-integrated gluon
distribution is flat within the available phase space.
Figure 7 clearly shows that the unintegrated gluon
distributions are not flat. Therefore, on very general
grounds, we expect a collimation from the structure of
the two particle correlation in Eq. (12).

Now that we have argued on very general grounds that
there must be a collimation, we would like to understand
the scaling of the yield with Noffline

trk and Npart as seen in

Fig. 2. As seen in Fig. 6, the underlying event (which
characterizes the overall normalization of the signal) scales
linearly with Noffline

trk . Any Noffline
trk dependence in Fig. 2 is

therefore a consequence of the Noffline
trk scaling of the nor-

malization. In addition to this Noffline
trk scaling, there is a

ridge collimation that grows rapidly with Npart. We will

now discuss in turn both aspects of the systematics of the
observed signal.

From the previous discussion, the underlying event has
the form

UE /
R
d2k?�2

AðkTÞ�2
BðjpT � kTjÞR

d2k?�AðkTÞ�BðjpT � kTjÞ
; (14)

where the term in the denominator is itself proportional to
Noffline

trk . Because the�’s, as shown in Fig. 7, are bell shaped

curves peaked about the saturation scales, one can deduce
by inspection [46] that the numerator scales as ðNoffline

trk Þ2,
and hence the UE / Noffline

trk .

We now address the additional Npart scaling that is

observed only in the collimated associated yield (CY).
This can be characterized by looking at that ratio of the
signal from Eq. (12) evaluated in Ref. [47] ��pq ¼ 0 to

that at ��pq ¼ � for jpTj ¼ jqTj,

CY/
R
d2k?�2

AðkTÞ�2
BðjpT�kTjÞR

d2k?�2
AðkTÞ�BðjpT�kTjÞ�BðjpTþkTjÞ

: (15)

The Noffline
trk scaling cancels in this ratio. To see simply how

the additional collimation arises, consider the extreme
scenario where the �s are peaked strongly enough to be
considered Dirac delta distributions. Working within this
approximation we can easily perform the integral over
d2k?, whereby �2

AðkTÞ fixes jkTj ¼ QA and the angular
integral over �BðjpT � kTjÞ fixes

� ¼ arccos

�
Q2

B �Q2
A � p2

T

2pTQA

�
: (16)

After making these substitutions [48], we are left with

CY / �BðQBÞ
�Bð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2

T þ 2Q2
A �Q2

B

q
Þ
: (17)

The collimated signal is always larger than unity [49] since
the maximum of �B is at QB. As QB is increased (while
keeping pT and QA fixed) the wave function in the
denominator is probed further away from its maximum
leading to a larger collimation. If we make a Gaussian
approximation for the remaining wave functions in
Eq. (17), we find a rapid growth in the collimated signal
with Npart. For the region where QB * QA, we find

CY / 1þ 1

Q2
A

ðQB �QAÞ2; (18)

which grows as �Npart.

To summarize the discussion, the behavior of the asso-
ciated yield is a consequence of the quantum entangle-
ment of the wave functions of correlated gluons in both
the projectile and the target. Since two gluons from both
projectile and target participate, one obtains the overlap
of four wave functions. Besides energy-momentum con-
straints on the wave functions, the signal is sensitive to
the detailed structure of these wave functions. This in-
cludes both the density of gluons with varying impact
parameter, as well as the pT dependence of the gluon
distributions for a fixed impact parameter. With the stated
simple yet fairly general assumptions, the scaling of the
collimated yield and the underlying event as a function of
Noffline

trk and Npart is reproduced. The physics of saturation

is absolutely crucial: first, on a ‘‘global’’ level because the
glasma graphs are tremendously enhanced due to the
large phase space occupancy of gluons, but equally so
because the observed signal is sensitive to detailed fea-
tures of the CGC EFT.
The theoretical framework employed here can be fur-

ther improved. An important step is to self-consistently
include multiple scattering effects alongside the rapidity
evolution of two gluon production. The framework to do
this has been developed but not implemented numeri-
cally yet [23]. Another improvement is to quantify the

KEVIN DUSLING AND RAJU VENUGOPALAN PHYSICAL REVIEW D 87, 054014 (2013)

054014-10



NLLx contributions to the collimated yield and the
underlying event for the kinematics of interest [27,41].
Not least, the contributions of leading Nc multigluon
correlators and possible pomeron loop effects need to
be quantified [3].

Finally, while this work was in preparation, a preprint
appeared which interprets the effect as due to hydrody-
namic flow [50]. As noted previously, we believe the ridge
in pþ Pb collisions to be more analogous to high multi-
plicity pþ p collisions than Pbþ Pb collisions: the sys-
tematics of the study here lends weight to this conclusion.
For the pþ p case, we showed that inclusion of flow [4]
changes the structure of the associated yield from that
observed in the data even for modest flow velocities.
While some multiple scattering cannot be categorically
ruled out, a consistent hydrodynamic description is chal-
lenging for systems with transverse sizes the order of the
proton size because of poor convergence of the gradient
expansion and the short lifetime of the system. It will be

interesting to see whether the hydrodynamic description of
Bozek and Broniowski [50] holds for a wider pT and
centrality range than shown. In this regard, it is important
that one include the nonflow jet-like BFKL contribution
that provides a significant contribution to the awayside
yield.
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